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We performed a whole-genome association study of human immunodeficiency virus type 1 (HIV-1) set point
among a cohort of African Americans ( ), and an intronic single-nucleotide polymorphism (SNP) inn p 515
the HLA-B gene showed one of the strongest associations. We use a subset of patients to demonstrate that
this SNP reflects the effect of the HLA-B*5703 allele, which shows a genome-wide statistically significant
association with viral load set point ( ). These analyses therefore confirm a member of the HLA-�10P p 5.6 � 10
B*57 group of alleles as the most important common variant that influences viral load variation in African
Americans, which is consistent with what has been observed for individuals of European ancestry, among
whom the most important common variant is HLA-B*5701.

A recent genome-wide association study performed

among individuals of European ancestry identified 2

polymorphisms associated with human immunodefi-

ciency virus type 1 (HIV-1) load at set point and a third

set of polymorphisms associated with a simple measure

of disease progression [1]. One variant that was found
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to be associated with set point (rs2395029) encodes a

nonsynonymous change in the HCP5 gene and is also

a tag for HLA-B*5701, which has been shown to be

associated with improved early outcomes after exposure

to HIV-1 [2, 3]. The other variant that is associated

with set point (rs9264942) is 35 kilobases upstream of

the HLA-C locus and appears to be tagging a causa-

tive variant or variants. A third variant (rs9261174) as-

sociated with disease progression is located near the

ZNRD1 gene in the major histocompatibility complex

(MHC) region, although functional work on this gene

has not yet identified a causal variant. Together, these

variants are able to explain ∼14% of the observed var-

iation in outcome after HIV-1 exposure.

A follow-up study investigated the impact of these

same single-nucleotide polymorphisms (SNPs) on an

HIV-1–positive African American cohort ( )n p 121

[4]. As was seen in individuals of European ancestry,

the HLA-C–associated variant (rs9264942) was again

found to be associated with viral load, with the C “high-

expression” allele leading to lower viral load. Although

no association was observed with the G allele of

rs2395029, this allele is rare in African Americans; in
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Table 1. Baseline Characteristics of Participants in the Multicenter AIDS Cohort Study (MACS)
and Department of Defense (DoD) Cohorts ( )n p 515

Variable MACS Cohort DoD Cohort

No. of participants 118 397
Male sex, % 100 94
Mean age at seroconversion (range), years 32.0 (20–55) 27.5 (18–55)
Mean viral load set point (range), log10 copies/mL 4.00 (1.91–6.01) 4.12 (1.91–5.97)
Mean year of seroconversion (range) 1991 (1984–2005)a 1996 (1986–2003)
Minor allele frequency for rs2523608, % 39.4b 35.4
HLA-B*5703 carriers, % 7.5b 8.3
Samples measured with Illumina Bead Chip, %

1M 53 77
1M-Duo 37 23
550K 10 0

a Serocoversion date was available for only 52 of the 118 MACS participants.
b comparing MACS with DoD cohort.P 1 .05

people of European ancestry, the allele is in linkage disequilib-

rium with HLA-B*5701, which is also rare in people of African

descent. However, an analysis of the HLA-B alleles present in

the region showed an association between HLA-B*57 (com-

prised predominantly of HLA-B*5703) and favorable virologic

outcome.

Although the study described above [4] and others [5, 6]

have assessed the impact of variants in African Americans that

were first identified in patients of European ancestry, to our

knowledge there has not yet been any genome-wide investi-

gation of the most important common variants that influence

viral load in patients of primarily African ancestry. Here, we

present the first genome-wide association study of determinants

of HIV-1 control performed among a non-European popula-

tion. Using a cohort of African American individuals (n p

), we sought to evaluate the associations previously reported515

and to discover novel or population-specific genetic variants

that are associated with HIV-1 control.

METHODS

Samples. This study included HIV-1–infected African Amer-

ican adult participants enrolled in either the United States mil-

itary Department of Defense Human Immunodeficiency Virus

Natural History Study (DoD HIV NHS) or the Multicenter

AIDS Cohort Study (MACS). This study was approved by lo-

cal institutional review boards, and each participant provided

written, informed consent.

The DoD HIV NHS (http://www.idcrp.org/hiv-natural-history

-study.html) is an ongoing, prospective, continuous-enrollment

cohort study of consenting military personnel and beneficiaries

with HIV infection and includes participants from the Army,

Navy/Marines, and Air Force and their dependents. Since 1985,

routine HIV testing (by enzyme-linked immunosorbent assay

and confirmatory Western blot analysis) has been used to ex-

clude HIV-infected persons from enlisting for military service

or from overseas deployment. Periodic testing among active

duty members occurs every 1–5 years, resulting in a defined

seroconversion window for incident HIV infection. Participants

with HIV infection are referred to military medical centers,

where they receive evaluation and ongoing care and are invited

to enroll as participants in the DoD HIV NHS.

Those who consent to enroll in the DoD HIV NHS are seen

every 6 months by an HIV specialist as part of the study, in

addition to receiving routine clinical care. Data are collected

on demographic characteristics, markers of HIV disease pro-

gression, medication use, and clinical events with medical rec-

ord confirmation. Cells, plasma, and serum are collected at

each visit and stored in a central repository.

Information was extracted from the database on HIV-in-

fected African American individuals with �4 years between

their last negative and first positive HIV test results, at least 5

million cells stored in the repository, and either 1 viral load

measurement taken 3–12 months after seroconversion (n p

) or 2 viral load measurements taken within 3 months to140

3 years after seroconversion ( ). Ethnicity was self-iden-n p 347

tified. The seroconversion date was estimated as the midpoint

between the last negative and first positive HIV test results.

The MACS (http://www.statepi.jhsph.edu/macs/macs.html)

is an ongoing prospective study of the natural and treated his-

tories of HIV-1 infection among men who have sex with men

that is conducted by sites located in Baltimore, Chicago, Pitts-

burgh, and Los Angeles. A total of 6973 men have been enrolled;

3427 participants were HIV-seronegative at study entry and

were tested for seroconversion semiannually by means of en-

zyme-linked immunosorbent assay, with positive test results

confirmed by Western blot analysis. Of the seroincident par-
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Table 2. Variants Most Strongly Associated with Set Point in African Americans ( )n p 515

SNP Rank Chromosome P Closest gene Type Frequency

rs454422 1 20 �61.49 � 10 MCM8 Intronic 0.258
rs2523608 2 6 �62.29 � 10 HLA-B Intronic 0.366
rs6948404 3 7 �63.41 � 10 AOAH Intronic 0.074
rs558718 4 19 �63.71 � 10 EVI5L Intronic 0.110
rs1357339 5 11 �64.58 � 10 NA Intergenic 0.035
rs1413191 6 13 �64.61 � 10 GPC5 Intronic 0.181
rs236104 7 20 �66.72 � 10 MCM8 Intronic 0.252
rs7998089 8 13 �67.41 � 10 GPC5 Intronic 0.191
rs2593321 9 3 �67.70 � 10 AC023798.16a Intergenic 0.231
rs6492611 10 13 �67.97 � 10 GPC5 Intronic 0.208
rs4872511 11 8 �69.25 � 10 PPP3CC Downstream 0.011
rs2280890 12 8 �69.25 � 10 SORBS3 Upstream 0.011
rs2789066 13 6 �69.41 � 10 RP11-100A16.1a Upstream 0.127
rs430374 14 18 �51.01 � 10 ST8SIA5 Intergenic 0.196
rs9910853 15 17 �51.07 � 10 ZNF652 Intronic 0.085
rs762372 16 21 �51.10 � 10 NA Intergenic 0.470
rs236106 17 20 �51.23 � 10 MCM8 Intronic 0.252
rs1348478 18 5 �51.26 � 10 PRR16 Intergenic 0.337
rs12103812 19 17 �51.34 � 10 ZNF652 3′ UTR 0.084
rs8014482 20 14 �51.44 � 10 AL355773.4-1a Intergenic 0.256

NOTE. Age, sex, cohort, and 1 statistically significant EIGENSTRAT axis were used as covariates. NA, not applicable;
SNP, single-nucleotide polymorphism; UTR, untranslated region.

a Listed as transcript in Ensembl (July 2009).

ticipants, African Americans with available DNA and viral load

data from before treatment initiation were selected for inclusion

in the current study.

Other cohorts referenced in this analysis include HIV-1–

infected adult participants of European ancestry in a study

performed by the European Center for HIV/AIDS Vaccine Im-

munology (Euro-CHAVI) and MACS participants who were

included in a previous whole-genome association study (n p

) [7]. The Euro-CHAVI cohort represents a consortium2362

of 8 European cohorts and 1 Australian cohort of patients who

agreed to participate in the Host Genetic Core initiative of the

Center for HIV/AIDS Vaccine Immunology (CHAVI).

Genotyping. All samples were genotyped using Illumina

HumanHap 1M ( ), HumanHap 1M-Duo ( ),n p 368 n p 135

or Illumina HumanHap 550K ( ) Bead Chips. All sam-n p 12

ples were brought into a single BeadStudio file using the stan-

dard Illumina cluster file. For quality control purposes, any

sample that had very low intensity or a very low call rate with

Illumina cluster (!99%) was deleted. All SNPs that had a call

frequency of !99% were put into a filter and reclustered (ex-

cluding those on the X chromosome). The reclustering step

created SNP calling errors, but the following procedures were

used to prevent the errant calls from being released in the final

report: (1) the SNPs with a cluster separation value of !0.3

were deleted, and (2) any SNPs with a Het Excess value (an

indicator of the quantity of excess heterozygote calls relative to

expectations) between �1.0 and �0.1 or between 0.1 and 1.0

were deleted. The filter was then released, and any SNP with

a call frequency of !99% was deleted. These procedures resulted

in a success rate of genotyping calls ranging from 99.20% to

99.999%, and 1,212,217 SNPs were included in the analysis.

Ten samples were excluded because of insufficient call rate.

Specification of sex check, cryptic relatedness check, low mi-

nor allele frequency check, Hardy-Weinberg equilibrium check,

and a recheck of the genotyping quality were all performed as

described elsewhere [1], and no samples were omitted at these

steps. A total of 129,723 SNPs were dropped because of a low

minor allele frequency. We also required that all SNPs included

in the study were successfully genotyped in at least 50% of the

samples; hence, 202,676 SNPs were dropped at this point, many

of which were those not genotyped on all of the chips.

We used the Illumina 1M and 1M-Duo Bead Chip data as

input into the PennCNV program [8], which allowed us to

look at deletions (0 or 1 copy) compared with wild types (2

copies) and duplications (3 or 4 copies) compared with wild

types (2 copies). Because of the complications of hemizygosity

in males and X chromosome inactivation in females, this anal-

ysis was restricted to autosomes. In addition, to ensure that we

worked with high-confidence copy number variations (CNVs),

we excluded any CNV for which the difference in the log like-
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Figure 1. Distribution of mean human immunodeficiency virus type 1 (HIV-1) set point according to patient genotype. The direction of the effect of
the rs2523608 genotype is consistent in African American patients (A) and European patients (B). Patients with HLA-B*5703 have a lower HIV-1 set
point (C). VL, viral load.

lihood between the most likely copy number state and the less

likely copy number state was !10 (generated using the “conf”

function in PennCNV). We limited our analysis to CNVs that

occurred in at least 3 people (minor allele frequency, 10.003).

Further quality control thresholds in PennCNV that were used

are detailed in Ge et al [9]. In this analysis, 497 participants

were included.

HLA-B allotypes were assigned by DNA sequencing, begin-

ning with the amplification of genomic DNA using primers

that flank exons 2 and 3. Polymerase chain reaction products

were cleaned using Ampure (Beckman Coulter). The cleaned

products were cycle sequenced on an ABI 9700. The cycle se-

quenced products were cleaned using CleanSEQ (Beckman Coul-

ter) and then run on an ABI Prism 3730. Sequence analysis was

performed using Assign (Conexio Genomics).

The EIGENSTRAT method [10] was used to control for pop-

ulation stratification. Assessment of population structure in 616

African Americans by use of the EIGENSTRAT method resulted

in 73 statistically significant axes of stratification after the removal

of 35 population outliers. The first axis made a larger contri-

bution to the proportion of variation (0.6%) explained than the

contribution made by the second axis (0.2%) and reflected the

degree of African versus European ancestry in individuals. We

therefore used only the first axis as a covariate in our association

analyses, to control for population stratification.

Phenotype. Set point viral load was defined as (1) the mean

viral load for samples with 2 or more viral load values that

were collected at least 30 days apart, within 3 months to 3 years

after seroconversion, and were within a 1 log range, similar to

what was done in the previous study of determinants of set

point in participants of European ancestry [1], or (2) the first

available viral load within 3–12 months after seroconversion,

as long as there was a corresponding CD4+ T cell count of 1350

cells/mL. All viral loads were measured prior to the initiation

of antiretroviral therapy. Viral loads from the 2 definitions were

highly correlated ( ), and the first definition was pref-2r p 0.74

erentially used when sufficient data were available.

Statistical analysis. Viral load at set point was used as a

quantitative trait in a linear regression using additive allelic

effects. Because previous studies have found that sex and age

may be associated with viral load, these factors were used as

covariates in the model [11, 12]. The first EIGENSTRAT axis

was used to control for population stratification, and the co-

hort was also included in the model because of baseline dif-

ferences between the 2 groups. Individual regressions for each

SNP were performed using PLINK software (version 1.06) [13,

14]. The Bonferroni correction was used to control for mul-

tiple comparisons. Associations for which were�8P ! 5 � 10

considered to have genome-wide statistical significance.

All HLA-B allotypes were tested for association with viral
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Table 3. Major Histocompatibility Complex (MHC) Variants and Functional Variants That Are Associated with Viral Load Set Point
in African Americans ( )n p 515

SNP Overall rank P Gene Type Frequency

Top 10 SNPs in the MHC region
rs2523608 2 �62.29 � 10 HLA-B Intronic 0.366
rs34548063 23 �51.57 � 10 STK19 Stop gained 0.028
rs2523933 29 �52.03 � 10 HLA-W Intergenic 0.205
rs2844538 53 �55.07 � 10 ZDHHC20P2 Downstream 0.492
rs2596503 81 �58.15 � 10 HLA-B Downstream 0.162
rs9266689 96 �59.86 � 10 ZDHHC20P2 In noncoding gene 0.485
rs4151650 99 �41 � 10 CFB, C2 Synonymous coding 0.030
rs1736936 99 �41 � 10 HLA-G Upstream 0.492
rs9378200 150 �42 � 10 UQCRHP Intergenic 0.013
rs4713213 150 �42 � 10 OR5V1, OR12D3 Intronic 0.331

Top 10 functional SNPs
rs34548063 23 �51.57 � 10 STK19 Stop gained 0.028
rs1034405 91 �59.65 � 10 C3orf18 Nonsynonymous coding 0.332
rs4838865 99 �41 � 10 TUBGCP6 Nonsynonymous coding 0.048
rs6542522 99 �41 � 10 C2orf76 Nonsynonymous coding, splice site 0.196
rs2280801 332 �44 � 10 BAT2 Nonsynonymous coding 0.012
rs13146272 332 �44 � 10 CYP4V2 Nonsynonymous coding 0.394
rs2273549 332 0.0004 TCP11L1 Nonsynonymous coding 0.092
rs2278329 332 0.0004 OSMR Nonsynonymous coding 0.042
rs10423723 435 0.0005 AC020907.3a Nonsynonymous coding 0.625
rs7258700 435 0.0005 AC020907.3a Nonsynonymous coding 0.625

NOTE. Age, sex, cohort, and 1 statistically significant EIGENSTRAT axis were used as covariates. SNP, single-nucleotide polymorphism.
a Listed as transcript in Ensembl (July 2009).

load set point in a linear regression model and were also eval-

uated to determine whether they were responsible for associ-

ations observed for SNPs in the genome-wide SNP association

analyses.

RESULTS

From the DoD HIV NHS cohort, 487 participants met the

inclusion criteria and 471 were successfully genotyped. From

the MACS cohort, 158 participants met the inclusion criteria

and 145 were successfully genotyped. Thirty-five participants

were dropped from the analysis because of the EIGENSTRAT

correction for ancestry, and 66 participants were not included

because their viral load results did not meet the definition of

set point described in Methods, which left 515 participants in

the final data set. Table 1 shows the baseline characteristics of

participants in the DoD and MACS cohorts, as well as the Bead

Chips that were used for genotyping. There were more women

in the DoD cohort ( ), and participants in this cohortP p .006

were, on average, younger at seroconversion ( ); how-P ! .001

ever, there was no difference between the cohorts in mean set

point viral load ( ).P p .13

No single SNP had a genome-wide statistically significant

association ( ) with viral load at set point. Table 2�8P ! 5 � 10

lists the top 20 genome-wide associations with set point, and

Table 3 lists the top 10 associations from the MHC region and

the top 10 functional SNPs that are associated with set point.

A functional SNP was defined as a SNP that would cause the

gain or loss of a stop codon, would cause a nonsynonymous

coding change, or occurred in a splice site.

The most statistically significant SNP in the MHC region for

association with viral load set point in this African American

cohort was rs2523608, located in the HLA-B gene (P p

) (Figure 1A and Table 3). We found that the same�62.3 � 10

SNP was also statistically significantly associated with HIV-1

set point in a large sample of individuals of European ancestry

( , corrected for age and sex) (Figure 1B). This�6P p 1.1 � 10

association remains nominally statistically significant (P p

) after accounting for variants in the MHC region that.0083

were previously shown to be associated with HIV-1 outcomes

(rs2395029, rs9264942, and rs9261174) and 12 statistically sig-

nificant EIGENSTRAT axes to control for population stratifi-

cation in this cohort.

The rs2523608 variant is located in intron 5 (according to

Ensembl transcript ENST00000376228), which is 1100 base

pairs from the nearest exon. Analysis of the HLA-B allotypes

from 285 genotyped study participants showed that this as-

sociation was due to the association between rs2523608 and

HLA-B*5703 ( ; ). The degree of linkage dis-′ 2D p 1 r p 0.075
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Table 4. Top Associations between HLA-B Allotypes and
Human Immunodeficiency Virus Type 1 Set Point (n p

)285

Allotype Rank P Frequency

HLA-B*5703 1 5.6 � 10�10 0.040
HLA-B*3910 2 0.00032 0.006
HLA-B*1517 3 0.00040 0.006
HLA-B*4501 4 0.00084 0.062
HLA-B*1302 5 0.020 0.005
HLA-B*580101 6 0.021 0.016
HLA-B*5802 7 0.022 0.040
HLA-B*4201 8 0.022 0.040
HLA-B*140201 9 0.024 0.020
HLA-B*1801 10 0.025 0.016

NOTE. Age, sex, cohort, and 1 statistically significant EIGENSTRAT
axis were used as covariates.

equilibrium can be quantified using the D′ statistic [15]. This

statistic compares the ancestral recombination patterns be-

tween 2 variants by standardizing allele frequencies. A value of

indicates that 1 variant always appears on the back-′D p 1

ground of the other. On the other hand, the r2 statistic is sen-

sitive to allele frequency differences and assesses the degree to

which the 2 variants appear together [16, 17]. When considered

alone, HLA-B*5703 had by far the strongest association with

viral load set point of any HLA-B allotype, showing genome-

wide statistical significance ( , with age, sex, co-�10P p 5.6 � 10

hort, and 1 EIGENSTRAT axis as covariates) (Table 4 and Fig-

ure 1C). Moreover, when HLA-B*5703 was included as a

covariate, it was able to account for the effect of the rs2523608

genotype. This analysis shows that HLA-B*5703 is the most

important common variant in influencing viral load in African

Americans, explaining ∼10% of the variation in viral load set

point in this data set, with an allele frequency of ∼4.0%.

CNV analysis. There were 8724 SNPs that showed evidence

of a duplication and 16,778 SNPs that showed evidence of a

deletion. The CNV calls for each SNP were then run as geno-

types in a regression using an additive genetic model, testing

for association with HIV-1 set point. Sex, cohort, and the first

EIGENSTRAT axis were used as covariates. After a Bonferroni

correction was applied ( for duplications and�6 �66 � 10 3 � 10

for deletions), no SNPs reached genome-wide statistical signifi-

cance for either deletions or duplications. Furthermore, when

the association results from these 2 models were compared, there

was no SNP associated with both deletions and duplications for

which .P ! .05

Association with previously implicated variants. We also

analyzed genetic variants that had previously been shown to have

an effect on HIV-1 set point. First, we tested the association with

rs2395029, a nonsynonymous SNP in the HCP5 gene that is a

tag for the functional allele HLA-B*5701, and found this SNP

to show a weak association with viral load set point ( )P p .030

(Table 5). This SNP has a very low minor allele frequency in

African Americans (minor allele frequency, 0.008) because of its

virtual absence in West African populations. Therefore, the power

to detect an association in this cohort is only 81% at ,P ! .05

assuming that the effect size in our cohort is comparable to that

seen for individuals of European descent [1].

We then tested the association with rs9264942, a CrT poly-

morphism that is 35 kilobases upstream of the HLA-C gene.

This SNP itself is not causal, but it is a tagging SNP for an

unknown causal variant or variants. We observed a weak as-

sociation between rs9264942 and set point in African Ameri-

cans ( ) (Table 5).P p .018

We also tested the associations between viral load at set

point and rs9261174, a SNP located near the ZNRD1 gene

in the MHC region, and CCR5-D32, a 32–base pair deletion

in the CCR5 gene (rs333) that is rare in non-European pop-

ulations. In our African American cohort, neither rs9261174

( ) nor CCR5-D32 ( ) showed an associationP p .352 P p .484

with viral load at set point (Table 5).

DISCUSSION

To our knowledge, this was the first genome-wide association

study on HIV-1 outcomes to be performed among an African

American cohort, the majority of whom were infected with

HIV-1 subtype B. We have shown that the intronic SNP

rs2523608, the top associated SNP in the MHC region, is tag-

ging HLA-B*5703. The value of D′ for the association between

rs2523608 and HLA-B*5703 is 1, and a regression model shows

that the HLA-B*5703 genotype is able to account for the effect

of this intronic SNP. HLA-B*5703 is strongly associated with

viral load at set point and reached whole-genome statistical

significance in the subset of samples for which HLA-B allo-

type data were available ( , in a model that al-�10P p 5.6 � 10

so included age, sex, cohort, and the first EIGENSTRAT axis;

).n p 285

HLA-B*5701 is an important mechanism of HIV-1 control

in the European population. It had an allele frequency of ∼6.1%

in a European population, but it was not observed in a Yoruban

population [18]. Its close relative HLA-B*5703 was absent in

a European population, but HLA-B*5703 had an allele fre-

quency of ∼5.8% in a Yoruban population [18]. Here, we have

shown that African American individuals who have HLA-

B*5703 also show improved viral control, of a magnitude sim-

ilar to that afforded by HLA-B*5701 in people of European

descent. Thus, our results indicate that the general mechanism

of genetic control of HIV-1 in African Americans is similar to

that in Europeans: HLA-B*5701 accounts for ∼6% of the ob-

served variation in viral load set point in Europeans [7], and

HLA-B*5703 accounts for ∼10% of the observed variation in

viral load set point in African Americans. There was also a
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Table 5. Association Outcomes for Genetic Variants That Have Been Previously Reported to Be Associated with
Human Immunodeficiency Virus Type 1 Set Point or Disease Progression

SNP Gene Type

African Americans European Americans

No.
of patients P a MAF

No.
of patients P b MAF

rs2395029 HCP5 Nonsynonymous 513 0.030 0.008 2362 �354.5 � 10 0.048
rs9264942 HLA-C Upstream 515 0.018 0.286 2362 �325.9 � 10 0.412
rs9261174 ZNRD1 Intergenic 511 0.352 0.245 2362 �41.1 � 10 0.141
rs333 (D32) CCR5 Genic deletion 502 0.484 0.017 2333 �101.7 � 10 0.099

NOTE. MAF, minor allele frequency; SNP, single-nucleotide polymorphism.
a P values are corrected for age, sex, cohort, and 1 statistically significant EIGENSTRAT axis.
b P values are corrected for age, sex, and 12 statistically significant EIGENSTRAT axes.

Figure 2. Comparison of the mean linkage disequilibrium in the major histocompatibility complex region between persons of European and African
American ancestry. The mean values of D ′ and r 2 are both smaller in the African American genome than in the European genome. Kb, kilobase.

small contribution to HIV-1 control by HLA-B*5701 (fre-

quency, 0.3%) in our African American data set, because of

admixture.

We also found that HLA-B*3910 and HLA-B*1517, in addition

to HLA-B*5703, may be playing a lesser role in viral control,

although additional studies would be needed to confirm these

observations. This pattern was similar to that observed in people

of European descent, among whom HLA-B*5701 is the largest

determinant of HIV-1 control but other HLA-B alleles (HLA-

B*27, HLA-B*35, and others) also play a role [7]. The effects of

the alleles that we have identified are further supported by an

analysis of the MHC region that was conducted in southern

African populations infected with HIV-1 subtype C, in which

HLA-B*5703 was found to be the HLA class I allele most strong-

ly associated with a decreased viral load set point [3, 19], with

a weaker contribution by HLA-B*39 [19].

We found a reduced or absent association with viral load set

point when we explicitly checked variants that had been shown

to be associated with set point in a cohort of patients of Eu-

ropean descent. Similar outcomes were seen in Shrestha et al

[4], who saw a reduced association between rs9264942 and set

point and no association between rs2395029 and set point. Our

sample size was 14 times larger than that in Shrestha et al [4]

and revealed only weak associations between both variants and

set point. So although both rs9264942 and rs2395029 are de-

finitively associated with viral load set point in European pop-

ulations, neither study was able to replicate these associations

in an African American cohort.

It is worth noting that it is only the HLA-B*5701 association

in the previous study [1] for which the causal site is thought

to have been identified. In the cases of rs9264942 and

rs9261174, it is likely that the associated variants are not
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themselves causal but rather markers of an as yet unidenti-

fied causal site or sites. It may therefore not be a coincidence

that the HLA-B*57 association is the only one to show an ef-

fect in African Americans that is similar to that shown in in-

dividuals of European ancestry. For the other 2 associations,

the different and generally lower linkage disequilibrium in this

region in African Americans (Figure 2) could mean that the

causal sites are no longer being tagged by these variants.

A potential limitation of this study is that HIV-infected per-

sons with rapid disease progression may have been excluded.

Rapid progressors may not have had many research visits and

therefore may not have had enough cells in the repository to

be included in this study. In addition, because of their rapid

disease progression, they may not have had available viral load

measurements that satisfied the definition of set point. Ap-

proximately 10% of the participants in this study progressed

to a CD4+ cell count of !200 cells/mm3 within 2 years after

seroconversion; therefore, there were at least some rapid pro-

gressors included in this study.

Earlier studies have likewise suggested that HLA-B*5703 may

also be involved in HIV-1 control in African Americans, but

our study shows that it is indeed the most statistically significant

common genetic factor affecting early viral control in this pop-

ulation. By using a genome-wide scan to implicate another allele

of HLA-B*57 in HIV-1 control, in an ancestral background that

was entirely different from that where this association had pre-

viously been observed, we provide further support for the im-

portant role played by HLA-B*57 in HIV-1 control and the

decreased fitness level of the viral mutants that are selected for

by HLA-B*57. Given the increased burden of disease in African

and African American populations and the paucity of common

variants that clearly influence HIV-1 control, it is important to

continue to investigate rare variants that may function specif-

ically in these populations.
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