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Recently, local probes used in optical experiments added a new dimension to the study of the optical
properties of small particles lying on a surface. Until now, several theoretical frameworks, developed to
understand the interaction of optical fields with mesoscopic and nanoscopic objects, emphasized mainly the
prediction of theelectric near-field distributions generated by these structures. This paper demonstrates how
such subwavelength dielectric surface structures also produce a particular confinement of the opticalmagnetic
near field when the sample is illuminated by a surface wave.@S0163-1829~97!06824-0#
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I. INTRODUCTION

Current progress in nanofabrication techniques ena
one to build well-defined low-symmetry surface structur
Since the first development of the near-field optics~NFO!
instrumentation, the imaging of such small material partic
lying on a surface or occurring in the vicinity of nanomete
size structures became an active research area.1–4 Hence-
forth, the NFO local probe techniques offer a vast array
interesting opportunities, i.e., detecting evanescent field
guiding structures,5,6 imaging and exciting localized plas
mons over a metallic surface,7,8 mapping the structure of th
optical electric field inside two-dimensional resonators tun
by adjustable mirrors,9 and performing subwavelength nea
field optical holography.10

In the past three years, different self-consistent stud
indicated unambiguously that the individual structures ly
on the surface distort the optical electric near-field intens
established by the self-consistent interaction between the
face roughness and the incident light.11–14 It was demon-
strated that when the lateral dimensions of tiny objects
significantly smaller than the incident wavelength, the int
ference pattern collapses and the optical electric near-
intensity distribution tends to be fairly well localized aroun
the objects.15–17 Under well-defined conditions on the inc
dent field~polarization, wavelength! a highly localized elec-
tric near-field intensity occurs just above the subwavelen
protrusions. In fact, when we deal with subwavelength
jects, the importance of retardation effects decreases dram
cally, so that the symmetry of the field distribution is go
erned only by the polarization of the incident field and t
profile of the object itself. Recently this simple picture faci
tated the interpretation of this peculiar NFO phenomen
For example, a simple dielectric cube of cross sect
1003100 nm2 was imaged with the dielectric tip of a photo
550163-1829/97/55~24!/16487~11!/$10.00
es
.

s

f
in

d

s

y
ur-

re
-
ld

th
-
ti-

.
n

scanning tunneling microscope~PSTM! with a bright con-
trast when the surface wave wasp polarized and with a dark
contrast when it wass polarized.18 In this particular case,
where the NFO image was recorded using a purely dielec
detector, precise theoretical modelings established a d
relation between the NFO image and the electric near-fi
intensity map computed a few nanometers away from
sample.16,17

On the other hand, when the detector extremity is eit
completely or partially covered with a thin metallic coatin
both theoretical modelings and experimental measurem
supply NFO images that do not follow the optical elect
intensity anymore.19,20,14The contrast appears to be signi
cantly modified by the presence of the metallic coating a
the information contained in the images must be reexami
by considering other optical effects. These results raise o
again a fundamental problem in NFO, namely, the prec
understanding of the tip-sample coupling in the near-fi
zone. Some time ago, Barchiesi and Van Labeke pointed
this serious problem using a reciprocal space perturba
method specially developed for NFO computations.21 In this
paper, the possible role played by the optical magnetic fi
was brought to the fore. More recently, the consequence
metal coatings deposited on NFO probes was also discu
by Courjonet al.22

In order to provide more insight into this complicate
problem and thereby to get a better control of the imag
process in NFO, three important questions should be con
ered.~1! what kind of optical magnetic near-field maps c
we expect around dielectric surface structures of subwa
length sizes?~2! How can one explain these nanometer-sc
optical magnetic near fields?~3! How is it possible to detec
them?

The main purpose of this paper is to address the two
questions theoretically. By using the same three-dimensio
16 487 © 1997 The American Physical Society
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16 488 55GIRARD, WEEBER, DEREUX, MARTIN, AND GOUDONNET
test objects that were used in Refs. 16, 18, and 20 we
compare the optical magnetic near-field intensities iss
from two accurate Maxwell’s equation solvers:~a! the direct
space integral equation method16,17,23 ~DSIEM! and ~b! the
differential theory of gratings~DTG!.24–28

This paper is organized as follows: In Sec. II, we pres
a brief overview of thefield susceptibilityor Green’s dyadic
technique, which allows us to obtain general solutions
both electric and magnetic fields through two different vec
Lippmann-Schwinger equations. In Sec. III, these integ
equations will be solved by using the DSIEM already d
cussed in the NFO literature.23 In particular two generalized
field propagators, independent of the illumination mode, w
be introduced and applied in Sec. IV to systems of exp
mental interest. Finally, we shall conclude our study by co
paring the DSIEM numerical results with those issued fr
the DTG Maxwell’s equation solver.

II. INTEGRAL EQUATION FORMALISM

In this section, we present a brief overview of the co
cepts of both electric and magnetic field susceptibilities
the presence of a three-dimensional~3D! system of arbitrary
shape and size. Starting from the microscopic Maxwe
equations expressed in terms of both charge and current
sities, we express the response of a localized physical sy
submitted to an external electromagnetic excitation.

A. Basic equations

We begin now our detailed study of these optical fields
considering a spatially localized dielectric system of ar
trary shape characterized by its charge densityr(r ,t) and its
current densityj (r ,t).29,30,23 In NFO experimental circum-
stances, we can assume a monochromatic field with a
dependence of the forme2 ivt. Anyway, because Maxwell’s
equations are linear equations, the response of a given
tem to an arbitrary wave packet can be obtained from
superposition of the responses of this system to the i
vidual plane waves forming the original wave packet. W
this assumption, Maxwell’s equations read in cgs units

¹`E~r ,v!5
iv

c
B~r ,v!, ~1!

¹•B~r ,v!50, ~2!

¹•E~r ,v!54pr~r ,v!, ~3!

¹`B~r ,v!52
iv

c
E~r ,v!1

4p

c
j ~r ,v!. ~4!

It is well known that all far- and near-field optical phenom
ena are contained in these four equations. Neverthe
when dealing with the complex optical geometries curren
investigated in NFO, the solution of these universal eq
tions needs some specific care. Recently, we have dem
strated how the numerical difficulties inherent to the lo
symmetry of the subwavelength objects may be overcome
solving directly the integral equation associated with th
equations in direct space.11,31,12,15,13In the following subsec-
tion, we give a short survey of this technique.
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B. Integral equation for the optical electric field

The vectorial wave equation for the electric field
readily obtained by taking the curl of Eq.~1!. After some
straightforward algebra, one gets the well-known result

DE~r ,v!1k0
2E~r ,v!54p¹r~r ,v!2 ik0

4p

c
j ~r ,v!,

~5!

wherek0 5 v/c represents the wave vector associated to
frequencyv.

We express now both charge and current densities
terms of the local polarizationP(r ,v) of the material system

r~r ,v!52¹•P~r ,v! ~6!

and

j ~r ,v!52 ivP~r ,v!. ~7!

We now rewrite the nonhomogeneous equation~5! as

DE~r ,v!1k0
2E~r ,v!524p$¹@¹•P~r ,v!#1k0

2P~r ,v!%.
~8!

This differential equation can be converted into its integ
form by using the standard Green’s-function technique a
the usual constitutive relation between the electric polari
tion inside the surface defect and the local electric fi
E(r ,v). This leads to

E~r ,v!5E0~r ,v!1E
v
S0~r ,r 8,v!x~r 8,v!E~r 8,v!dr 8,

~9!

where the integral runs over the volume occupied by
surface defect. In Eq.~9! E0(r ,v) represents the solution o
the homogeneous equation~for example, the incident optica
electric field! andx(r 8,v) is the linear electric susceptibility
of the surface defect.

S0(r ,r 8,v) is the free-space dyadic propagator~also
called electric field susceptibility!, which can be found to be

S0~r ,r 8,v!5~k0
21¹¹!G0~r ,r 8,v!, ~10!

where the scalar Green’s functionG0(r ,r 8,v) has the form
of a spherical wave:

G0~r ,r 8,v!5
eik0ur2r8u

ur2r 8u
. ~11!

The integral equation~9! is very general. Indeed, if we in
troduce an additional perturbation due to, for example,
presence of a semi-infinite surface supporting the locali
defect @characterized here by its optical responsex(r ,v)#,
we only need to replace the free-space dyadicS0(r ,r 8,v) by
the following one

S~r ,r 8,v!5S0~r ,r 8,v!1Ss~r ,r 8,v!, ~12!

where the additional contributionSs(r ,r 8,v) accounts for the
dynamical response of the plane surface.

Before extending this procedure to the calculation of
magnetic near field and discussing various efficient num
cal procedures to solve the resulting integral equation, le
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55 16 489OPTICAL MAGNETIC NEAR-FIELD INTENSITIES . . .
recall that such response functions reveal how adipolar
source field is modified at the proximity of the surface lim
iting this system. This dyadic tensor has already been defi
in the literature. For example, its retarded form is given
the Appendix of Ref. 16.

C. Integral equation for the optical magnetic field

Applying the same steps for the magnetic field equat
~4!, we can write

¹`@¹`B~r ,v!#52 ik0¹`E~r ,v!1
4p

c
¹` j ~r ,v!.

~13!

Using then some standard vector analysis procedure, we
progress further,

¹@¹•B~r ,v!#2DB~r ,v!5k0
2B~r ,v!1

4p

c
¹` j ~r ,v!,

~14!

which leads to

DB~r ,v!1k0
2B~r ,v!52

4p

c
¹` j ~r ,v!. ~15!

Let us note that, in the absence of any optical magnetic
ceptibilities inside the perturbation, the source term occ
ring in this last equation is just proportional to the electric
polarizationP(r ,v). Substituting Eq.~7! into Eq.~15!, leads
to

DB~r ,v!1k0
2B~r ,v!54p ik0¹`P~r ,v!. ~16!
ed
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l

According to a standard procedure in mathematical te
books, we can solve this partial differential equation by ad
ing to the solution of the homogeneous equation

DB0~r ,v!1k0
2B0~r ,v!50, ~17!

a particular solutionBm(r ,v) of the complete equation
Thanks to the Green’s-functions technique already used
solve the electric field, one finds that this additional con
bution originates from the current density source term. Af
some algebra, ones obtains

Bm~r ,v!52 ik0E
v
¹ rG0~r ,r 8,v!`P~r 8,v!dr 8. ~18!

We now have all the ingredients needed to write the gen
solution

B~r ,v!5B0~r ,v!2 ik0E
v
¹ rG0~r ,r 8,v!`P~r 8,v!dr 8.

~19!

At this stage, in the same way as it was done with the elec
field, it is worthwhile to rewrite this equation in terms of th
field propagator. Moreover, by applying the usual linear
lation betweenelectric polarizationandelectric field, we get
the following general result:

B~r ,v!5B0~r ,v!1E
v
Q0~r ,r 8,v!x~r 8,v!E~r 8,v!dr 8,

~20!

with
Q0~r ,r 8,v!5S 0 2¹zG0~r ,r 8,v! ¹yG0~r ,r 8,v!

¹zG0~r ,r 8,v! 0 ¹xG0~r ,r 8,v!

2¹yG0~r ,r 8,v! ¹xG0~r ,r 8,v! 0
D . ~21!

This tensor can be elaborated further by using the free-space Green’s function@cf. Eq. ~11!#. In fact, after derivation,
Q0(r ,r 8,v) can be split into two contributions: a far-field termQ0

(far)(r ,r 8,v) and a near-field termQ0
(near)(r ,r 8,v).

The first contribution with a global spatial variation proportional tor21 is given by

Q0
~ far!~r ,r 8,v!5

eik0ur2r8u

ur2r 8u2S 0 2k0
2~z2z8! k0

2~y2y8!

k0
2~z2z8! 0 2k0

2~x2x8!

2k0
2~y2y8! k0

2~x2x8! 0
D . ~22!

The near-field contribution varies withr22. It may be deduced from Eq.~21!:
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Q0
~near!~r ,r 8,v!5

eik0ur2r8u

ur2r 8u3 S 0 2 ik0~z2z8! ik0~y2y8!

ik0~z2z8! 0 2 ik0~x2x8!

2 ik0~y2y8! ik0~x2x8! 0
D . ~23!
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The two different powersr21 and r22 explain that
Q0
(far)(r ,r 8,v) is dominating in the far field. This first contri

bution is thus related to the energy radiated far away fr
the sample, whileQ0

(near)(r ,r 8,v) is responsible for most o
the confinement of the optical magnetic field around s
wavelength dielectric structures.

Before discussing some numerical strategies able to s
simultaneously the two integral equations~9! and ~20!, it is
important to comment on these first analytical results.

~i! First, it is obvious from Eqs.~20! and~23! that even a
free magnetic susceptibility dielectric structure is able
deeply modify the optical magnetic field distribution in th
near-field zone.

~ii ! Second, the magnitude of this effect depends linea
on the self-consistent optical electric-field distribution exi
ing inside the dielectric material@cf. Eq. ~20!#. Conse-
quently, from a computational point of view, very stable s
lutions for thevector fieldsB(r ,v) can be deduced from th
knowledge of thevector fieldsE(r ,v) inside the surface de
fect.

~iii ! Third, in the near-field region the optical magne
topography will be governed mainly by the symmetry pro
erties of the propagatorQ0

(near)(r ,r 8,v). This dyadic tensor,
with its simple analytical form, will then be a precious to
to properly interpret numerical outputs.

~iv! Finally, we have to mention that in the same mann
as for the electric field equation it is a simple matter to e
large the application range of Eq.~20! by introducing a ref-
erence system different from vacuum. Indeed, if we wan
introduce a somewhat more complicated surrounding loca
in the vicinity of the surface defect under study, we just ne
to replace the tensorQ0(r ,r 8,v) by

Q~r ,r 8,v!5Q0~r ,r 8,v!1Qs~r ,r 8,v!, ~24!

where the additional contributionQs(r ,r 8,v) accounts for
the dynamical response of the dielectric surrounding. An
ample is detailed in the Appendix.

III. GENERALIZED PROPAGATOR AND REAL-SPACE
VOLUME DISCRETIZATION SCHEME

A. Analytical solution procedure

As demonstrated in Sec. II, solving Eq.~20! requires the
solution of Eq.~9! inside the surface defect. To realize th
first step, we can use the generalized field propagator t
nique described in Ref. 15. This method enables us to tr
form the implicit Lippmann-Schwinger equation~9! into the
following explicit integral relation:

E~r ,v!5E
v
K~r ,r 8,v!•E0~r 8,v!dr 8. ~25!
-
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As detailed in Ref. 15, the dyadicK(r ,r 8,v), also called
generalized electric field propagator, can be expressed in
terms of the optical field susceptibility tensorS(r ,r 8,v) as-
sociated with the entire system~localized surface defect plu
surrounding!:

K~r ,r 8,v!5d~r2r 8!1S~r ,r 8,v!x~r 8,v!. ~26!

The dyadic tensorS(r ,r 8,v) in this equation can be derive
numerically by using the Dyson’s equation

S~r ,r 8,v!5S~r ,r 8,v!1E
v
S~r ,r 8,v!x~r 8,v!S~r ,r 8,v!dr 8.

~27!

As already discussed in previous published works,31,11,12,15

such developments performed in the real space instead o
reciprocal space, for both low-symmetry and low
dimensional systems, are well suited to cope with comp
geometries. Furthermore, the numerical procedure der
from this methodology~see Ref. 15! has proven to be very
stable even with large-scale computational systems. Ba
substitution of Eq.~25! into Eq. ~20! then yields a genera
solution for the optical magnetic field. In a consistent w
with the linear response hypothesis introduced above,
solution is linearly related to both incident electricE0(r ,v)
and magnetic fieldsB0(r ,v):

B~r ,v!5B0~r ,v!1E E
v
Q~r ,r 8,v!x~r 8,v!

3K~r 8,r 9,v!E0~r 9,v!dr 8dr 9. ~28!

At this stage it may be worthwhile to note that, in the sam
manner as we have done with the optical electric field@cf.
Eq. ~25!#, we have also the opportunity to define from E
~28! amixed generalized propagatorable to couple electric
and magnetic field distribution. Using Eq.~4!, we can write

B~r ,v!5E
v
L~r ,r 8,v!•E0~r 8,v!dr 8. ~29!

The dyadic operatorL(r ,r 8,v) is defined by

L~r ,r 8,v!5
d~r2r 8!

ik0
L r8

1E
v
Q~r ,r 8,v!x~r 9,v!K~r 9,r 8,v!dr 9,

~30!

whereL r8 labels the matrix form of thecurl operator. The
useful property ofL(r ,r 8,v) is that it only depends on the
geometry of the scattering system; it does not depend on
incident electric field.
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B. Numerical method

Although Eq. ~29! establishes a direct relation betwe
B(r ,v) andE0(r ,v), for computational purpose, we prefe
starting with the less elaborate Eq.~28!. In scattering theory,
the first termB0(r ,v) is referred to as the incident fiel
while the second term is called the scattered field obtai
from the integration over the domainv wherex(r 8,v) is
nonzero. In the present study,v defines the volume of the
localized surface defect supported by a plane dielec
sample~an example is depicted in Fig. 1!. Electromagnetic
theory traditionally qualifiesv as the source region.32 We
will discuss in this subsection how the discretization of E
~28! allows one to obtain the numerical outputs for the ma
netic field outside the source region. For an isotropic a
homogeneous surface defect of dielectric constante(v),
such a procedure leads to

FIG. 1. Perspective drawing of a square-shaped subwavele
surface defect lying on a flat surface. Defect and support have
same optical index (n51.458). The system is illuminated in tota
internal reflection and the incident wavelength in vacuum is eq
to 633 nm. The object height ish540 nm and the side of its squar
sectiond15100 nm;kuu represents the surface wave vector asso
ated with the excitation field.
d

ic

.
-
d

B~r ,v!5B0~r ,v!1
e~v!21

4p (
i51

m

(
j51

m

WiQ~r ,r i ,v!

3K~r i ,r j ,v!E0~r j ,v!, ~31!

whereWi represents the volume of thei th discretized ele-
ment andm is the total number of volume element constitu
ing the surface defect. The numerical precision of the d
supplied by this method is directly related to the density
the discretization grid. As recently established in Ref. 17
convergence is particularly rapid for subwavelength surfa
structures. We have now all the ingredients to investig
some specific systems of experimental interest.

IV. OPTICAL MAGNETIC NEAR FIELDS AROUND
NANOMETER-SCALE STRUCTURES EXCITED

BY SURFACE EVANESCENT WAVES

The surface waves generated by total internal reflection
the surface of a transparent material may be viewed as qu
two-dimensional, because they decay exponentially in
direction normal to the sample surface. These waves are
propriate to analyze polarization effects associated with li
confinement phenomena.33–39 Indeed, the polarization state
of such surface optical waves can be controlled and tu
with high precision. The surface defects scatter these wa
parallel to the surface and significantly distort the initial
spatially homogeneous electromagnetic near field.

In this section, applying the numerical scheme describ
above, we will investigate this problem with two classes
localized surface defects lying on a flat transparent surfa
Our first example considers a 3D glass defect of parallele
pedic shape lying on a perfectly flat surface~cf. Fig. 1!. The
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FIG. 2. Gray scale of both field intensities dis
tributionsuE(X,Y,Z0)u2 anduB(X,Y,Z0)u2 calcu-
lated above the topographic object described
Fig. 1. The intensity is computed in a plane pa
allel to the surface bearing the defect and loca
at a heightZ0550 nm. The scanned area
108031080 nm2 and the incident wavelength
633 nm. The two maps, labeled (E1) and (E2),
describe the optical electric intensities
uE(X,Y,Z0)u2 computed respectively for thes
and p polarized modes. The maps (B1) and
(B2) represent the opticalmagnetic intensities
uB(X,Y,Z0)u2 calculated respectively fors and
p polarized modes.
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16 492 55GIRARD, WEEBER, DEREUX, MARTIN, AND GOUDONNET
optical indexes of both the protrusion and the support
surface are equal to that of glass (n51.458), and all the
numerical applications have been made with an incid
angleu inc 5 60°.

Figure 2 presents four different near-field maps of
object depicted in Fig. 1. The intensities are computed i
plane parallel to the surface bearing the surface defect
located at a heightZ0550 nm. The scanned area
108031080 nm2 and the incident wavelength 633 nm. Th
analysis of these results raises the following comments.

~i! The two first maps, labeled (E1) and (E2), describe
the opticalelectric intensitiesuE2(X,Y,Z0)u computed in the
s andp polarized modes, respectively. As already predic
from previous numerical simulations, whilep-polarized sur-
face waves lead to a strong confinement of the total elec
field intensity above the surface defects,s polarization gives
rise to large electric field intensity gradients at the vicinity
the pads with the well-known dark contrast phenomena
cently observed in near-field optical microscopy.18 These ef-
fects are consistent with previous calculations perform
near 3D surface protrusions.16

~ii ! The two last maps (B1) and (B2) gathered in Fig. 2
represent the opticalmagneticintensitiesuB(X,Y,Z0)u2 cal-
culated with the same polarization states (s and p). In this
case we observe a drastic change of the near-field image
most impressive effect is the occurrence of a bright cont
when working with ans-polarized wave and an obvious da
contrast in thep-polarized case, always accompanied of tw
enhancements of the magnetic field just above the two ed
perpendicular to the direction propagation (OX axis!. As was
done in the case of the electric field,16,18 the phenomenon o
contrast reversal observed in Fig. 2~B2! can be simply ex-
plained by examining the structure of the dominating sho
range termQ0

(near)(ra ,r0) composing the free space mixe
propagatorQ0 @cf. Eq. ~23!#. For this purpose, let us replac
our isolated pad by a single system of polarizabilityaa(v)
located at the positionra 5 (0,0,za). Applying then the first
th
v
rfa
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Born approximation to Eq.~20!, the magnetic near field
spawned by the object reduces to

B~r ,v!.B0~r ,v!1aa~v!Q0
near~r2ra ,v!E0~ra ,v!,

~32!

where for thep-polarized mode we have

E0x~r ,v!50,

E0y~r ,v!5A0Tpdc , ~33!

E0z~r ,v!5A0Tpds ,

and

B0x~r ,v!52A0Tpsin~uc!,

B0y~r ,v!50, ~34!

B0z~r ,v!50,

with

ds5
sin~u inc!

sin~uc!
,

dc5
i @sin2~u inc!2sin2~uc!#

1/2

sin~uc!
. ~35!

In Eqs.~33! and ~34!, A0 is a scalar parameter proportion
to exp$2ikuuy2@sin2(uinc)2sin2(uc)#

1/2z%, whereuc represents
the critical angle for total reflection of the material, and t
factorTp is the usual transmission coefficient forp polariza-
tion. Finally from Eqs.~23!, ~32!, ~33!, and ~34!, we can
easily verify that when the observation pointr passes just
above the surface protrusion@i.e., when r5(0,0,Z0)#, Eq.
~32! produces a total magnetic field directed along theOX
axis
B~r ,v!.H 2A0Tpsin~uc!1
A0Tpk0aa~v!

~Z2za!
2

@sin2~u inc!2sin2~uc!#
1/2

sin~uc!
J ux , ~36!
e
con-
the
etic
ow
face
we
d the
nd-
the
n
work
-
the
whereux labels the unit vector associated with theOX axis.
The first term of this relation represents the value of
magnetic excitation field associated with the surface wa
while the second one accounts for the presence of the su
defect. When the incident angleu inc is greater thanuc , this
additional contribution due the intrinsic form of the mixe
propagatorQ0

(near) is always in the opposite direction wit
respect to the magnetic excitation fieldB0. Consequently,
when the observation point is located on the top of the s
face protrusion, we observe in this polarization mode a s
nificant decrease of the total magnetic field intensity as p
dicted by the self-consistent calculation described in Fig
Moreover, Eq.~36! indicates thatB(R,v) depends critically
on the angle of incidenceu inc . In the example reported in
Fig. 2(B2), the magnetic intensity decreases by about 1
e
e,
ce

r-
-
-
.

of the total intensity for an incident angleu inc 5 60°.
With this first simulation, we have proven that, first, th

dielectric structures on a surface can produce a specific
finement of the optical magnetic field and, second, that
relation between the object profile and the resulting magn
map depends strongly on the illumination mode. Let us n
see what happens with the more elaborate localized sur
structure described in Fig. 3. In this second application
have considered seven identical square-shaped pads an
four typical electric and magnetic intensity maps correspo
ing to this object are gathered in Figs. 4 and 5. Note that
electric maps~Fig. 4! are just given here for compariso
purposes, because they were already discussed in a
published previously.16 In this application where each dielec
tric structure displays subwavelength lateral dimensions,
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magnetic intensity patterns display variations that are lo
ized around the tops of the protrusions and slightly mo
lated by fringes due to a surface wave. Figure 6 shows
scan lines of these two magnetic maps, calculated alon
line passing over the middle of three lined up pads. In
p-polarized mode~dashed line! we observed once again th
contrast reversal phenomena predicted by the analytical
~36!.

V. COMPARISON WITH NUMERICAL RESULTS ISSUED
FROM THE DTG METHOD

In this section, in order to assess the reliability of o
numerical analysis, we report a careful comparison betw
magnetic field calculations performed with the DSIEM d
scribed above and with those issued from the DTG M
well’s equation solver. By starting from the test object d
picted in Fig. 1, we will discuss and compare the numeri
solutions for different polarizations of the incident wave a
different scan lines directions.

A. The differential theory of gratings

The complex problem related to the field distribution c
culations near complex surface profiles or inside N
devices28 can also be investigated with theories based
diffraction gratings.24–26 The DTG method was originally
developed twenty years ago to predict the efficiencies of o
and two-dimensional diffracting gratings. Based on a rig
ous treatment of Maxwell’s equations, this method can
also efficiently used to determine the optical near-field sc
tered by three-dimensional periodic samples. In the follo
ing subsection, in order to avoid a complete presentation

FIG. 3. Top view of a spatially localized dielectric system co
posed by seven identical square shaped protrusions lying on a
fectly plane surface. The center of each pad is located at the n
of a hexagon with sided2. The dimension of each individual pro
trusion isd1 andkuu represents the projection of the incident wa
vector on the surface (XOY). For the applications of Figs. 4, 5, an
6, the following input parameters are used:d1590 nm, d25375
nm, and the pads’ height is 45 nm.
l-
-
o
a
e

q.

r
n
-
-
-
l

-

n

e-
-
e
t-
-
of

this well-established technique, we will only summarize t
essential steps of the computational procedure.

Basically, as exposed in previous sections, we are in
ested by the electromagnetic near-field diffracted above
object engraved on a flat glass-air interface illuminated
total internal reflection. When using the DTG method,24 a
nonperiodic isolated scattering object is viewed as an infin
diffracting grating built with a very large periodic spacin
between each surface structure. Consequently, the first
in the calculation of the field diffracted by a nonperiod
sample is related to the choice of a period sufficiently la
to prevent all overlapping effects between the near fi
spawned by each indivual pattern of the grating. The elec
magnetic field diffracted above the grating can then be
panded in Fourier series

er-
es

FIG. 4. Gray scale field distributionsuE(X,Y,Z0)u2 describing
the evolution of the optical electric field around the topograp
objects described in Fig. 3~intensity growing from black to white!.
The same incident wavelengthl5633 nm is considered for the two
successive images and the observation plane is located at 58
from the pads’ top. Two polarizations are considered:~a!
s-polarized mode and~b! p-polarized mode.
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A~ l,z!5 (
r52`

1`

(
s52`

1`

A~r ,s!eig~r ,s!zeiki~r ,s!• l, ~37!

where l 5 (x,y), A( l,z) represents either the electric fie
E( l,z) and the magnetic fieldB( l,z). The 3D wave vectors
k(r ,s)5@ki(r ,s),g(r ,s)#, associated with the harmoni
(r ,s) obey the well-known dispersion equation

ki
2~r ,s!1g2~r ,s!5n2k0

2. ~38!

The set of wave vectorki(r ,s) parallel to the surface ar
simply defined for each couple of integer numbers (r ,s) by

ki~r ,s!5S nk0x1r
2p

dx
Dux1S nk0y1s

2p

dy
Duy , ~39!

wheredx anddy denote, respectively, the period of the gra
ing along theOX andOY directions. From Eq.~38!, it may
be seen that the coefficientg(r ,s) may be either real or
purely imaginary. The real values ofg(r ,s) correspond to

FIG. 5. Same situation as in Fig. 4, but for the optical magne
field distributionuB(X,Y,Z0)u2.
radiative harmonics while imaginary values introduce e
nescent components in expansion~37!.

In a general way, the six components of the electrom
netic fieldA( l,z) can be deduced from a couple of indepe
dent parameters usually namedthe principal components.
Let us choose, for example, theY componentsEy( l,z) and

c

FIG. 6. Variation of the magnetic field intensityuB(X 5 750
nm, Y,Z0)u2 along a scan line parallel to theOY axis over the
middle of three lined up dielectric pads. These cross sections, is
from the maps of Fig. 5, have been calculated for the same
proach distanceZ0558 nm. The solid and the dashed lines rep
sent, respectively,s- andp-polarized modes.

FIG. 7. Comparison of relative magnetic field intensityB2/B0
2

scans obtained with the DSIEM~continuous line! and the DTG
~dashed line! in the s-polarized mode. The scans are perform
along the center of the square-shaped surface protrusion depict
Fig. 1: ~a! The calculation is performed along theOX axis;~b! same
calculation along theOY axis.
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FIG. 8. Same as Fig. 7, but inp-polarized mode:~a! The calcu-
lation is performed along theOX axis; ~b! Same calculation along
theOY axis.

FIG. 9. Top view of the 3D dielectric pattern used in the sim
lation presented in Fig. 10. We have considered a letterE with a 40-
nm thickness and an index of refractionn51.458 identical to that
of the substrate. The other geometrical parameters areW550 nm,
L5200 nm, andLy5350 nm. The projection of the incident wav
vector on the (XOY) surface is represented bykuu .
By( l,z) asprincipal components. It is then a simple matter to
show that their Fourier coefficients can be expressed a
linear combination of theY component of the incident field

Ey~r ,s!5T EE~r ,s!E0y1T BE~r ,s!B0y ,
~40!

By~r ,s!5T EB~r ,s!E0y1T BB~r ,s!B0y .

The transmission coefficientsT EE , T BE , T EB , andT BB describe
the coupling between the electric and magnetic harmon
composing the scattered and the incident field. These co
cients depend both on the geometry of the sample and on
angular conditions of incidence but not on the polarization
the incident light. The polarization of the incident plan
wave is controlled by the values ofB0y andE0y . From a
numerical point of view, the computation of the transmissi

-

FIG. 10. Gray scale optical magnetic images calculated ab
the 3D object described in Fig. 9 from the DTG Maxwell’s equati
solver. The scanned area is 125031250 nm2, the incident wave-
length 633 nm, and the calculation is performed at 50 nm from
flat sample. Two polarizations are considered:~a! s-polarized mode
and ~b! p-polarized mode.
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coefficients begins with the inversion of a complex squ
matrix whose dimensions are 2NT 3 2NT @whereNT is the
total number of harmonics used to describe the scattered
in Eq. ~37!#. A detailed description of the calculation of th
matrix elements can be found in Refs. 24–26. If all the F
rier components ofEy(r ,s) andBy(r ,s) are known, then all
the components of the electromagnetic field can be ca
lated at each point located above the object. In a second
the values of the field above the object can be used as in
conditions to integrate numerically Maxwell’s equations
order to obtain the field inside the diffracting object. T
propagation of this field outside the object provides simu
neously the numerical values of the electric and magn
optical field anywhere.

B. Comparison of the numerical solutions

The cross check of the results obtained with different
proaches is important because many fundamental near-
optical phenomena are extremely subtle and difficult
model. Therefore, in order to strengthen the reliability of o
numerical analysis we propose in Figs. 7 and 8~a! a compari-
son of the relative total magnetic field intensityuBu2/uB0u2
obtained with the DSIEM~continuous line! and the DTG
~dashed line!. The scans are performed along the center
the structure sketched in Fig. 1, at a heightZ0550 nm and
normalized to the valueuB0u2 of the magnetic field intensity
computed for a perfectly flat surface~without protrusions!.
We note the extremely good quantitative agreement betw
both methods. The small differences in the solution ori
nates from residual collective effects generated by the i
nite array of localized surface defects investigated with
DTG method.

For s polarization, the increase of intensity occurrin
above the single pad is well restored by both methods~Fig.
7!. For p polarization, the magnetic field depletion is al
well reproduced~Fig. 8!. These last results emphasize t
ability of these two methods to accurately reproduce su
phenomena associated with optical magnetic confined fie
To conclude this section, we have tested the numerical
bility of the DTG method on the very low symmetry obje
depicted in Fig. 9. For this last simulation, we have cons
ered a letterE of 40 nm in thickness with an optical index o
refractionn51.458, identical to that of the substrate. T
other geometrical parameters areW550 nm,Lx5200 nm,
Ly5350 nm.

The optical magnetic field maps resulting from the int
action of this object with a polarized surface wave is repor
in Fig. 10. This figure emphasizes once again the influe
of the illumination conditions on the imaging properties
such subwavelength objects.

VI. CONCLUSION

Using scattering theory, we have investigated the dis
bution of the optical magnetic field around nanoscopic
electric objects. Inspection of the analytical expression of
electromagnetic propagator shows that the magnetic fi
scattered by a dielectric object depends on the self-consis
e
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electric field inside the object. It results that, in well-defin
conditions of illumination that have been quantitatively an
lyzed in this paper, ananoscopicdielectric structure without
any magnetic property perturbs strongly the incident opti
magnetic field.

Numerical simulations using two different computation
methods indicate that a surface wave incident on a na
scopic surface defect is scattered differently according to
incident polarization. The map of the optical magnetic ne
field intensity computed at constant height close above
surface defect exhibit a bright contrast in thes polarization
and a dark one in thep polarization. These contrasts appe
to be reversed compared to the ones observed for the op
electric near field.18

These results not only illustrate the properties of elect
magnetic near field, but also may help to interpret near-fi
optical images that cannot be understood from the map of
electric near-field intensity. By these, we mean particula
many NFO experiments performed with dielectric prob
coated with metal. For this aim, one should search the p
sible detection mechanism of optical magnetic near fi
with such a local probe.
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APPENDIX: RETARDED ELECTRIC-MAGNETIC
MIXED SUSCEPTIBILITY „EMMS … ASSOCIATED
WITH A BARE PLANE DIELECTRIC SURFACE

This mixed surface propagator converts the retarded
sponse electric field of a fluctuating dipole moment into
magnetic response field. Consequently, it can be simply
rived by taking the curl of the electric surface propaga
Ss(r ,r 8,v) available in the literature. In the case of a pla
semi-infinite dielectric surface, such a calculation leads t

Qs~r ,r 8,v!5
i

2pE E dkF~r ,r 8,v!Q~k,v!, ~A1!

where F(r ,r 8,v) is a spatial function that connects tw
points r and r 8 above the surface:

F~r ,r 8,v!5exp@ ik•~ l2 l8!1 iw0~z1z0!#, ~A2!

with r 5 ( l,z), r 8 5 ( l8,z8), k 5 (kx ,ky), andw0
2 5 k0

22
k2 @with Im(w0)>0#. The factorQ(k,v) is a second rank
tensor directly related to the optical response properties
the surface:
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Q~k,v!5S 2kxkyk0
k2

$Dp1Ds%
2k0
k2

$Dpky
22Dskx

2%
2kyk0
w0

Dp

k0
k2

$Dpkx
22Dsky

2%
kxkyk0
k2

$Dp1Ds%
kxk0
w0

Dp

kyk0
w0

Ds

2kxk0
w0

Ds 0

D . ~A3!

In this equation, the two refection coefficientsDp andDs are functions of the optical dielectric constantes(v) of the surface

Dp5
w2es~v!w0

w1es~v!w0
~A4!

and

Ds5
w2w0

w1w0
, ~A5!

with
w5@esk0

22k2#1/2. ~A6!

Note that the retarded character of the information is implicitly contained in the two factorsw andw0, via the wave vector
k0. When such effects are assumed to play a minor role, i.e., for example, in the electrostatic approximation, thenQ(k,v)
vanishes, as expected.
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