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We present a new technique for computing the electromagnetic field that propagates and is scattered in three-
dimensional structures formed by bodies embedded in a stratified background. This fully vectorial technique
is based on the Green’s tensor associated with the stratified background. Its advantage lies in the fact that
only the scatterers must be discretized, the stratified background being accounted for in the Green’s tensor.
Further, the boundary conditions at the different material interfaces as well as at the edges of the computation
window are perfectly and automatically fulfilled. Several examples illustrate the utilization of the technique
for the modeling of photonic circuits (integrated optical waveguides), the study of the optics of metal (surface
plasmons), and the development of new optical lithography techniques. © 2001 Optical Society of America
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1. INTRODUCTION
Vertical-cavity surface-emitting laser diodes with Bragg
mirrors, complex lens systems with antireflecting coat-
ings, optical amplifiers with multiple quantum wells, and
structured masks for optical nanolithography are all ex-
amples of optical systems that rely on stratified media
formed by stacks of material layers with different permit-
tivities. Light propagation and scattering in stratified
media therefore cover an extremely broad spectrum of ap-
plications.

When the system is a bare stratified structure formed
only by different material layers stacked together, the
propagation of light can be investigated by simple tech-
niques such as the use of a transmission matrix.1–4 How-
ever, most practical applications do not rely on a bare,
stratified medium but rather also incorporate active ele-
ments in the stratified background: for example, a Bragg
grating on the top of a multilayered waveguide, a metallic
profile on a glass mask for optical lithography, a ridge at
the surface of a semiconductor laser, and a trench to de-
fine a cavity in a semiconductor substrate.

The objective of this paper is to present a general tech-
nique for light propagation and scattering in such a sys-
tem formed by a stratified background with embedded el-
ements. The techniques available for the study of these
systems depend on the particular geometry under
study.4–6 They include, for example, beam propagation
methods,7–10 discrete sources,11,12 eigenmode
expansions,13–15 finite differences,16 finite-difference time
domain,17–19 finite elements,20,21 the method of lines,22,23

ray tracing,24,25 and transfer matrix.26

Our approach is related to the coupled dipole approxi-
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mation (also known as the discrete dipole approximation).
This powerful technique has been used extensively for
scattering calculations in systems in an infinite homoge-
neous background.27–30 It has also been applied to scat-
ters on a surface, the simplest form of a stratified
background.31–33

In the present paper we introduce a technique that can
accommodate scatterers in a stratified background
formed by an arbitrary number of layers. This method is
described in Section 2. In Section 3 we discuss several
application examples that illustrate the utilization of the
technique in different domains of modern optics. We
summarize our results in Section 4.

2. FORMALISM
A. Electric Field Integral Equation
The typical system that we want to study is depicted in
Fig. 1. Several three-dimensional (3D) scatterers de-
scribed by the permittivity «(r) are distributed in a 3D
stratified background composed of L layers with different
relative permittivities « i , i 5 1, . . . , L. Throughout the
paper we consider nonmagnetic materials with relative
permeability m 5 1 and harmonic fields with time depen-
dence exp(2ivt).

When this system is illuminated with an incident elec-
tric field E0(r) propagating in the stratified background,
the total field E(r) is given by the integral equation30,34

E~r! 5 E~0 !~r! 1 E
V

dr8G~r, r8! • k0
2D«~r8!E~r8!, (1)

where G(r, r8) is the Green’s tensor associated with the
stratified background, k0 is the wave number in vacuum,
and D«(r) is the dielectric contrast:
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D«~r! 5 «~r! 2 «k for r P layer k. (2)

The integration in Eq. (1) runs on the volume of all the
different scatterers «(r) in the structure.

It is important to note that the scatterers do not have
to be embedded inside a background layer but can extend
over several layers (Fig. 1). Further, these scatterers
need not be homogeneous: «(r) can vary inside each
scatterer. Finally, the permittivity of the scatterers does
not necessarily have to be higher than that of their sur-
roundings, and, for example, holes in a dielectric layer
can be accounted for by use of a negative dielectric con-
trast D«(r).

B. Green’s Tensor for a Stratified Medium
The Green’s tensor represents the response of a point
source in the background. More precisely, each column b
of the 3 3 3 matrix Gab(r, r8) gives the three components
a 5 x,y,z of the electric field radiated at position r by a
dipole located at position r8 and oriented in the b direc-
tion (b 5 x,y,z).

For an infinite homogeneous background, this dyadic is
just the field radiated directly from r8 to r [Fig. 2(a)] and
has a simple analytical form [see, e.g., Eq. (15) in Ref. 30].

Such is not the case for a stratified background. As il-
lustrated in Fig. 2(b), the field radiated at r by a dipole
located at r8 now also includes the field reflected and re-
fracted at all the interfaces. No analytical expressions
exist in this case, and the Green’s tensor must be com-
puted numerically. This is quite a complicated task,
which is best achieved by expressing the Green’s tensor in
reciprocal space (Fourier space) and using the symmetry
properties of the background in that space. The Green’s
tensor is then obtained in direct space by means of in-
verse Fourier transform, i.e., by means of a numerical

Fig. 1. Typical geometry under study: Several scatterers with
permittivity «(r) are embedded in a stratified background com-
posed of L layers with respective permittivity « i . Note that the
first and last layers are semi-infinite media.

Fig. 2. The Green’s tensor gives the electric field radiated at r
by a dipole located at r8, which (a) corresponds in an infinite ho-
mogeneous background to only direct radiation from r8 to r and
(b) further includes in a stratified medium all possible reflections
at the L –1 interfaces.
quadrature. This quadrature, which represents the core
of the computation, is intricate because it involves several
poles and branch cuts associated with the different elec-
tromagnetic modes that can be excited in the stratified
background.

We recently developed an efficient computation tech-
nique for the evaluation of the Green’s tensor in a strati-
fied medium and refer the reader to Ref. 35, where the
practical implementation of this technique is discussed in
great detail. In the present paper we shall concentrate
on the utilization of the Green’s tensor for 3D scattering
calculations in stratified media.

In that context, let us first discuss the evaluation of the
integral in Eq. (1). For clarity, we use the following no-
tation for the Green’s tensor:

G~r, r8!

5 H GD~r, r8! 1 GI~r, r8! r,r8 in same layer k

GI~r, r8! r,r8 in different layers
, (3)

where GD is the direct contribution and GI accounts for
the field reflected and refracted by all the interfaces [Fig.
2(b)]. Note that the direct tensor GD is simply the
Green’s tensor associated with an infinite homogeneous
polarizable background with permittivity «k .30

When r → r8, only the direct contribution GD diverges
because the direct interaction path vanishes while all the
indirect interaction paths remain finite [the forthcoming
discretization scheme will impose that the points where
G(r, r8) is computed are not on a boundary between two
layers]. We can therefore handle the singularity of the
Green’s tensor in a similar manner as for an infinite ho-
mogeneous medium. Introducing Eq. (3) into Eq. (1) and
taking the principal value as for Eq. (7) in Ref. 30, we ob-
tain

E~r! 5 E0~r! 1 E
V

dr8GI~r, r8! • k0
2D«~r8!E~r8!

1 lim
dV→0

E
V2dV

dr8GD~r,r8! • k0
2D«~r8!E~r8!

2 L •

D«~r!

«k

E~r!, (4)

where the infinitesimal volume dV centered at point r is
used to exclude the singularity. The source dyadic L,
which depends on the shape of this exclusion volume dV,
was derived in detail by Yaghjian.36 Note in the last
term of Eq. (4) the permittivity «k of the layer where r is
located. Note also that Eq. (4) is implicit for the un-
known field E(r).

C. Discretized Equation
To solve Eq. (4) numerically, we define a mesh on the sys-
tem with N discretized elements centered at ri with per-
mittivity « i 5 «(ri) and volume Vi . The only constraint
for this discretization is that a given mesh must be en-
tirely inside a layer and cannot sit astride a boundary be-
tween two layers (Fig. 3). The discretization volume Vi
need not be constant. To achieve a given accuracy, it is
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actually necessary to use a smaller mesh when the dielec-
tric contrast is larger. To that extent, one can expect
that the convergence of this scheme will be similar to that
observed for scattering calculations in a homogeneous
background. We refer the reader to Ref. 37, where this
point was discussed in detail.

Keeping in mind that the discrete dielectric contrast
D« i 5 « i 2 «k depends on the permittivity of the layer k
where mesh i is located, we can write the discretized sys-
tem of equations that correspond to Eq. (4):

Ei 5 Ei
0 1 (

j51

N

Gi,j
I

• k0
2D« jEjVj

1 (
jPlayer k

jÞi

Gi,j
D

• k0
2D« jEjVj 1 Mi • k0

2D« iEi

2 L •

D« i

«k

Ei , i 5 1 ,..., N. (5)

The self-term Mi is obtained in a similar manner as for an
infinite homogeneous background:30

Mi 5 lim
dV→0

E
Vi2dV

dr8GD~ri , r8!

5
2

3kk
2 @~1 2 ikk Ri

eff!exp~ikk Ri
eff! 2 1#1, (6)

where Ri
eff is the effective radius of mesh i:

Ri
eff 5 S 3

4p
ViD 1/3

. (7)

For the integration in Eq. (6) we assumed a spherical ex-
clusion volume dV. The corresponding source dyadic is36

L 5
1

3
1. (8)

Note in Eq. (6) the effective wave number kk 5 k0A«k in
layer k.

The system of Eq. (5) represents the self-consistent in-
teraction of N dipoles. Unlike for the coupled dipole ap-
proximation in vacuum, each dipole is now a dipole em-
bedded in a stratified background, and the interaction
includes all possible reflections and refractions at the L
2 1 interfaces.

This system of equations is best solved numerically
with an iterative solver.29,38 Let us mention that, in a
stratified medium, the Green’s tensor does not have the
same symmetry properties as in an infinite homogeneous
background. In particular,

G~r, r8! Þ G~r 2 r8!. (9)

It is therefore not possible to rewrite Eq. (1) as a convolu-
tion and to use a 3D fast Fourier transform to perform the
integration.39 It is, however, possible to use reduced
symmetry properties in the x,y plane to expedite the
computation.33

One of the advantages of the technique presented in
this paper lies in the fact that only the scatterers must be
discretized, the background being accounted for in the
Green’s tensor. Similarly, the interaction of scatterers
located at large distances from one another does not re-
quire the discretization of the stratified background be-
tween them. Further, the complex boundary conditions
at the edges of the computational window are automati-
cally fulfilled, since they are included in the Green’s ten-
sor.

We mentioned that Eq. (1) is an implicit equation for
the field E(r). Actually, this is the case only when r is
located inside a scatterer. When r is located in the
stratified background, Eq. (1) gives the field explicitly by
integration on the scatterers’ volume [D«(r8) 5 0 when r8
is in the background]. From a physical point of view, this
means that knowledge of the field inside all the scatterers
allows one to compute the field at any point in the strati-
fied background. This can be used to expedite the calcu-
lation by first computing and storing the solution of Eq.
(5) only for the discretized points inside the scatterers and
then using this solution at a later stage to obtain the field
in the background. Note that the last step does not ne-
cessitate the solution of a system of equations but re-
quires only simple vector matrix multiplications.

Fig. 3. Solving the scattering problem numerically requires that
only the scatterers in the structure must be discretized. The
sole constraint on the discretization is that a mesh cannot sit
astride a boundary between two layers.

Fig. 4. The incident field must be a solution of the wave equa-
tion for the stratified background. It can correspond, for ex-
ample, (a) to a plane wave impinging on the system or (b) to a
waveguide mode propagating in the stratified background.
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D. Incident Field
The incident field E0(r) in Eq. (1) must be a solution of
the wave equation in the stratified background. For a
given geometry, this solution is not unique, as illustrated
in Fig. 4. For example, the incident field can be a plane-
wave excitation impinging on the stratified system [Fig.
4(a)]. In that case it must include all the multiple reflec-
tions inside the different layers. For the same geometry,
E0(r) could also be a waveguide mode propagating inside
the structure [Fig. 4(b)] or even the field of a dipolar
source embedded in the system. The latter can be used
to investigate the radiation properties of a two-level mol-
ecule interacting with the system.40

3. APPLICATION EXAMPLES
In this section we present several examples that illustrate
the application of our technique in domains as diverse as
integrated optics, surface plasmons, and optical lithogra-
phy.

A. Three-Dimensional Notch on a Planar Waveguide
As a first example, we consider a 3D notch of varying
depth d in a planar InP/InGaAsP waveguide (Fig. 5).41

The notch has a finite extension (1 mm) in both the x and
the y directions. For this geometry, only the air notch
must be discretized, the associated polarizability D« being
negative, since the scatterer permittivity (air; « 5 1) is
lower than the permittivity of the surrounding semicon-
ductor. For the results presented in this section we use a
Dx 5 Dy 5 Dz 5 100 nm discretization mesh.

At a wavelength l 5 1.55 mm, this waveguide supports
a transverse electric mode (TE0, electric field polarized in
the y direction) and a transverse magnetic mode (TM0,
electric field polarized in the z direction).

We illustrate in Fig. 6 the electric field amplitude when
this system is illuminated with a TE0 mode propagating
in the x direction (the mode is normalized so that the
maximum electric field amplitude is unity). Some of the
incident field is reflected by the notch, leading to an inter-
ference pattern caused by the interaction of the incident
field with the reflected field. The incident mode is also
scattered into the substrate and, to a lesser extent, into
the air notch. These effects increase with the depth d of
the notch (note the different amplitude scales in Fig. 6).
For the largest perturbation, the propagation of the mode
in the forward direction is strongly disrupted [Fig. 6(c)].

In Fig. 7 we show the field amplitude distribution in
the InGaAsP layer for the two mode excitations. Again
the interference between incident and reflected fields is
visible on the left-hand sides of the figures. The interac-
tion of the incident field with the scatterer depends on the
mode polarization. It is stronger for the TM0 mode than
for the TE0 mode (note the different amplitude scales in
Fig. 7). The disruption of the mode propagation in the
forward direction, which leads to a dark shadow behind
the notch, is clearly visible in Fig. 7. In spite of the finite
lateral notch extension, it takes a large number of propa-
gation wavelengths before the mode is reestablished in
the waveguide (not shown).

Since our approach is fully vectorial and takes into ac-
count all the different field components, subtle effects
such as polarization coupling can also be investigated.42,43

Figures 6 and 7 also illustrate how perfectly the bound-
ary conditions at the edges of the computational window
and at the different material interfaces in the stratified
background are fulfilled. In particular, Fig. 6 shows the
field scattered into the substrate and reflected backward
to the incident direction; in Fig. 7 some of the field is scat-
tered from the notch and escapes on the lateral sides of
the computational window. In every case, the edges of
the computational window remain perfectly transparent.
This does not require any special treatment since these
boundary conditions are already included in the Green’s
tensor.

B. Scattering of Surface Plasmons
Since our technique is not restricted to dielectric materi-
als with a positive real part of the dielectric constant, we
can also investigate the scattering of surface plasmons
propagating along a metal–vacuum interface.44

Fig. 5. A notch with a depth d is etched in an InP/InGaAsP pla-
nar waveguide (permittivities «InP 5 10.05 and «InGaAsP511.42;
wavelength l 5 1.55 mm). The layer thicknesses are given in
the figure. The notch has a finite extension (1 mm) in both the x
and the y directions.

Fig. 6. Field amplitude at y 5 0 in the structure depicted
in Fig. 5 illuminated with a TE0 mode propagating in the
x direction. Three notch thicknesses are investigated:
(a) d 5 200 nm, (b) d 5 400 nm, (c) d 5 600 nm.
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In this example we excite a surface plasmon with the
method of attenuated total reflection:45 A p-polarized
plane wave is incident on a planar glass–metal interface
with an angle larger than the critical angle of total inter-
nal reflection (Fig. 8). Hence an exponentially decaying

Fig. 7. Field amplitude in the InGaAsP layer (z 5 2550 nm)
for the geometry depicted in Fig. 6(c) (d 5 600-nm notch). The
system is illuminated with two different modes, (a) TE0 and (b)
TM0, propagating in the x direction. The maximum amplitude
of each incident mode is normalized to unity.

Fig. 8. Attenuated total reflection excitation of a surface plas-
mon. An incident field propagating in the glass substrate («
5 2.25, l 5 633 nm) impinges at a 40.03° angle onto a 100-nm-
thick silver film (« 5 218.32 1 i0.5). This generates a surface
plasmon propagating along the metal–vacuum interface. A
100 3 100 3 50-nm3 glass protrusion is deposited onto the silver
surface. The electric field amplitude is shown. Note the scat-
tering of the surface plasmon by the protrusion.
evanescent field is created in the metal layer. When the
component of the wave vector parallel to the interface ful-
fills the eigenvalue equation for the surface mode, a plas-
mon is excited at the metal–vacuum interface (Fig. 8).

This plasmon propagates along the metal surface and
interacts with any defect on it. As an example, we use
the technique presented in Section 2 to investigate the
scattering of such a plasmon with a dielectric protrusion

Fig. 9. Field amplitude along the two dashed lines in Fig. 8 (y
5 0). Note the standing wave in the glass substrate and the
localized plasmon field at the metal–vacuum, metal–glass, and
glass–vacuum interfaces.

Fig. 10. Field amplitude in a constant-height plane in vacuum
(z 5 2155 nm) below the glass protrusion (Fig. 8). Both the
scattering and the confinement of the surface plasmon by the
protrusion are visible.
Fig. 11. LCM for optical nanolithography. (a) The structures to be written in the photoresist are defined as protrusions on a soft poly-
mer substrate. This structure can easily be decomposed into (b) a stratified background with (c) embedded scatterers of various per-
mittivities. A bottom antireflection coating (BARC) is deposited between the substrate and the photoresist.
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deposited on the silver surface (the protrusion is dis-
cretized with Dx 5 Dy 5 Dz 5 10 nm).

The resulting field amplitude is illustrated in Fig. 8. A
stationary wave is visible on the left side of the protru-
sion. It results from the interaction of the plasmon
propagating in the positive x direction with the plasmon
reflected by the protrusion.

In Fig. 8 the electric field appears to vanish inside the
metal. Actually, the field amplitude profiles in Fig. 9
show that the electric field is strongly localized at the sur-
face of the metal, which is characteristic of a plasmon.
The stationary wave in the glass substrate resulting from
the interaction of the incident field with the reflected field
is also visible in this figure.

Notice in Fig. 9 that, because of the higher index, the
field decays more rapidly in the glass than in vacuum.45

The second peak that appears at the glass–vacuum inter-
face is merely related to the continuity of the displace-

Fig. 12. LCM with a 120 3 480 3 75 nm3 protrusion. An iso-
surface of the field intensity distribution transmitted in the pho-
toresist is shown. Such an isosurface corresponds to the profile
of the structure that will be developed in the photoresist.
ment field D 5 «E. As a matter of fact, because the field
associated with the plasmon is predominantly polarized
in the z direction, i.e., normal to the glass–vacuum inter-
face, it is the displacement field (not the electric field)
that must be continuous.46 The amplitude difference ob-
served in Fig. 9 actually corresponds to the dielectric con-
trast between glass and vacuum. This depolarization ef-
fect has been discussed in detail in Ref. 47.

The strong field enhancement is evidenced in Fig. 10,
where we show the field distribution in a plane parallel to
the surface immediately below the protrusion. This fig-
ure clearly illustrates how the surface plasmon interacts
with the glass protrusion.

C. Optical Nanolithography
As last example, we consider a light-coupling mask (LCM)
for optical lithography. This polymer mask has proved to
be an efficient alternative for high-resolution lithography:
Using 248-nm light, it allows one to define structures in
the sub-100-nm range.48,49

The structures to be written in the photoresist are de-
fined as protrusions on the mask, which will guide and fo-
cus the light into the photoresist (Fig. 11). To increase
contrast, a thin gold layer is deposited inside the mask.
The mask is illuminated from the top by circularly polar-
ized light [Fig. 11(a)].

With our approach, only the protrusions must be dis-
cretized, as illustrated in Figs. 11(b) and 11(c). Note
that, although the protrusions are made entirely of poly-
mer, the discretized polarizability D« i that enters into the
system of Eq. (5) is different for the meshes located in the
gold absorber and those in the air layer [Fig. 11(c)]. For
this example we use a Dx 5 Dy 5 Dz 5 15 nm mesh.

Typical structures to be written on an integrated cir-
cuit are formed by so-called linelets with width d and
length 4d. Figure 12 shows an isosurface of the electric
Fig. 13. (a) In a practical nanolithography experiment, reflections at the photoresist–substrate interface lead to a disturbing interfer-
ence pattern in the photoresist. (b) To suppress this effect a 60-nm-thick BARC is deposited on the substrate. The electric field in-
tensity is shown.
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field intensity in the photoresist, below the LCM, for such
an isolated linelet with d 5 120 nm. This isosurface cor-
responds to the volume that will be exposed in the
photoresist.48 Such calculations are therefore useful for
optimizing the exposition and assessing the ultimate
resolution that can be achieved with this new lithography
technique.

To avoid reflections at the resist–substrate interface,
one usually includes an absorbing layer on top of the sub-
strate before spinning the photoresist (Fig. 11).50 The in-
fluence of such a 60-nm-thick bottom antireflection coat-
ing (BARC; « 5 1.98 1 i1.23) is investigated in Fig. 13.
Without the BARC we observe strong reflections from the
substrate, leading to an interference pattern in the pho-
toresist [Fig. 13(a)]. These disturbing interferences are
suppressed by adding the BARC [Fig. 13(b)]. Note again
in this figure how perfectly the boundary conditions are
fulfilled at each medium interface as well as at the edges
of the computation window.

4. CONCLUSION
It should be straightforward to implement in a computer
the technique described in Section 2, together with the
computation of the Green’s tensor for a stratified medium
detailed in Ref. 35.

The different examples presented in Section 3 illus-
trate the versatility of this new approach for propagation
and scattering calculations in stratified media. This
technique can be applied to a broad spectrum of problems
ranging from classical optics to integrated optics and
nanotechnology. Further, it can also be used to study the
optics of metals.
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