-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Optical and Quantum Electronics 33: 315-325, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands. 315

A fully vectorial technique for scattering and
propagation in three-dimensional

stratified photonic structures

MICHAEL PAULUS!'>?AND OLIVIER J.F. MARTIN '*

! Electromagnetic Fields and Microwave Electronics Laboratory, Swiss Federal Institute of Technology,
ETH-Zentrum ETZ, CH-8092 Zurich, Switzerland

2IBM Research Division, Zurich Research Laboratory, CH-8803 Riischlikon, Switzerland

(*author for correspondence.: E-mail: martin@ifh.ee.ethz.ch)

Abstract. We present a three-dimensional (3D) technique for computing light scattering and propagation
in complex structures formed by scatterers embedded in a stratified background. This approach relies on
the Green’s tensor associated with the background and requires only the discretization of the scatterers,
the entire stratified background being accounted for in the Green’s tensor. Further, the boundary con-
ditions at the edges of the computation window and at the different material interfaces in the stratified
background are automatically fulfilled. Different examples illustrate the application of the technique to the
modeling of photonic integrated circuits: waveguides with protrusions (single element ‘grating’) and
notches. Subtle effects, like polarization crosstalks in an integrated optics device are also investigated.
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1. Introduction

Most photonic integrated circuits (PICs) are built on a stratified background.
This background, formed by a stack of layers with different permittivities, is
used to confine and guide the light. The particular functions in the circuit
(light source, switch, coupler, modulator, detector, etc.) are then incorpo-
rated as distinct components in this background (e.g., a quantum well in a
stratified laser structure or a grating on top of a waveguide).

Different approaches can be used for the simulation of such PICs,
for example eigenmode expansions (Herzinger et al. 1993; Willems et al.
1995; Derudder et al. 1998), finite difference time domain algorithms (Lee
et al. 1992; Hayes et al. 1999), finite element methods (Davies 1993; Noble
et al. 1998), beam propagation methods (Huang and Xu 1993; Hsueh e al.
1999; El-Refaei et al. 2000) or the method of lines (Helfert and Pregla 1999;
Huang and Syms 1999). For a recent review, see e.g., Scarmozzino et al.
(2000).

We recently proposed a new approach to this problem, based on the
Green’s tensor technique (Paulus and Martin 2001). It is a fully vectorial
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model for three-dimensional (3D) structures based on the solution of the
electric field integral equation. We will briefly outline this technique in
Section 2 and illustrate in Section 3 its application to several 3D integrated
optics systems. We will summarize our results in Section 4.

2. The Green’s tensor technique

We consider a system formed by distinct 3D scatterers with permittivity &(r)
embedded in a stratified background made up of L material layers with
permittivities ¢;,i = 1,...,L (Fig. 1(a)). Throughout this paper, we consider
non-magnetic materials (¢ = 1) and assume a harmonic time dependence
exp(—iwt) for the fields.

The core of our technique is the integral equation for the electric field,

E(r) =E°(r) + / dr'G(r,v') - k} Ae(Y)E(r), (1)

vV

which gives the total scattered field E(r) when the system is illuminated with
an incident field E°(r) propagating in the stratified background (Tai 1994;
Martin and Piller 1998).

In Equation (1), kp = w/c is the wave number in vacuum; the dielectric
contrast Ag(r) represents the polarizability of the scatterer compared to that
of the background and is defined by

Ae(r) = ¢(r) — ¢ forr € layer k. (2)
The tensor G(r,r’) is the Green’s tensor associated with the stratified back-
ground. It contains the entire response of the stratified background and
includes all reflections/refractions at any interface, as well as the radiation
conditions at infinity.

(b)

€

Fig. 1. (a) Typical structure under study: a stratified background formed by L layers of materials with
different permittivities ¢; contains several scatterers &(r). The structure is illuminated with an incident field
E’(r) and our objective is to compute the total field E(r) in the system. Note that the first and last
background layers represent semi-infinite media. (b) Only the scatterers must be discretized to solve the
scattering problem numerically using the Green’s tensor technique. A non-regular mesh, with higher
refinement in the regions of high contrast is used.
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This dyadic cannot be obtained analytically and must be computed
numerically. This is best achieved by expressing G(r,r’) in Fourier space and
using the symmetry properties of the stratified background in that space. We
recently detailed this procedure in Paulus ez a/. (2000) and refer the reader to
this publication. In the present article, we will simply use G(r,r’) to perform
scattering calculations with Equation (1).

However, before doing so, we would like to illustrate the physical
signification of the Green’s tensor for a stratified background: for a given
source—observer 1’ r pair, the 3 x 3 matrix representing the Green’s tensor,

G ny Gy
Gr,r)=| Gx G, G|, (3)
sz Gzy Gzz

gives the electric field radiated at r by three orthogonal dipoles located at r'.

For example, Fig. 2 illustrates the first column of G(r,r’), corresponding to
the three components of the electric field radiated by an x-oriented dipolar
source. The source point is located at ¥ = (0,0,250nm) in the stratified
background corresponding to Fig. 3. The wavelength is 4 = 633 nm (note
that in Section 3 we consider a wavelength 4 = 1.55 um). The three compo-
nents of the Green’s tensor are computed along a vertical line in the stratified
background, at a one wavelength lateral distance from the source point. One
notices in Fig. 2 that both in the cap InP layer and in the InGaAsP layer, the
electric field oscillates in a manner that corresponds to a stationary wave

-2 -1.5 -1 -0.5 0 0.5 1
z [um]

Fig. 2. Three components of the Green’s tensor for the stratified background corresponding to the
structure depicted in Fig. 3.
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Fig. 3. Geometry and permittivity of the system: a notch is etched in, or a protrusion deposited on top of
an InP/InGaAsP structure. The structure is illuminated with a TEy or a TM;, mode propagating in x-
direction and the scattered field is computed.

excited in the corresponding layer, with a shorter effective wavelength in the
layer with the highest index (InGaAsP). The x and y electric field components
are parallel to the interfaces and therefore continuous. On the other hand, the
z component is normal to the material interfaces and therefore discontinuous,
as is visible in Fig. 2. This figure illustrates the significant physical infor-
mation contained in the Green’s tensor.

To solve Equation (1) numerically, we define a mesh on the system with N
discretized elements centered at r; with permittivity & = &(r;) and volume V;
(Fig. 1(b)). The discretization volume ¥; need not be constant and, in order to
achieve a given accuracy, it is actually necessary to use a smaller mesh where
the dielectric contrast is larger (Piller and Martin 1998). Each mesh must be
entirely inside a layer and cannot sit astride a boundary between two layers
(Fig. 2(b)).

We can formally write the discretized system of equations corresponding to
Equation (1):

N
Ei=E+) G-k AgE;Vj, i=1,...,N. (4)
J=1

It should be noted that a special treatment must be applied to the case j =i
since the Green’s tensor diverges in that case. This procedure, which is
detailed in Paulus and Martin (2001), leads to additional terms in Equation (4).

The system of Equations (4) is then solved numerically, e.g. with an
iterative solver, to obtain the unknown discretized field E; for a given illu-
mination E°.

Let us finally note that Equation (1) can also be used for scattering
calculations in an infinite homogeneous background (instead of a stratified
background) by simply using the corresponding Green’s tensor. In that case,
G(r,r’) takes a very simple analytical form (Martin and Piller 1998).
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3. Results

To illustrate this technique, we consider the InP/InGaAsP waveguide struc-
ture depicted in Fig. 3. At the wavelength of 1.55 um, the InGaAsP guide can
support two different modes: a transverse electric TEy mode, with the electric
field polarized in the y-direction, and a transverse magnetic TMy mode, with
the electric field in the (x,z)-plane.

Fig. 4 gives the total electric field amplitude (square root of E - E*) when
the system is illuminated with a TE, mode propagating in the x-direction.
An InP protrusion has been deposited on the structure. This single step
‘grating’ somewhat disturbs the propagation of the mode, leading to light
scattered into the substrate. The interaction of this scattered light with the
incident field produces an interference pattern on the left-hand side of the
protrusion in Fig. 4(a). The diffraction of the incoming mode is particularly
visible in the middle of the InGaAsP layer, where a depletion in the field
amplitude appears just behind the protrusion (Fig. 4(b), note that the gray-
scale is chosen to emphasize the structure of the field distributions, leading to
different saturation values for the distribution in a (x,z)- or a (x,y)-plane).
However, due to the limited lateral extension of the protrusion, this scat-
tering effect remains localized and, quite rapidly, the incident mode is re-
established in the structure. A similar behavior is observed when a TM,
illumination is used (not shown).

Let us point out how perfectly the boundary conditions at the edges of the
computation window and at the interface between the different layers are
fulfilled. This at no additional computational costs, since these complex
boundary conditions are already included in the Green’s tensor G(r,r’).

0.9

X [um]

x [um]

Fig. 4. Total field amplitude when a x = 500 nm,y = 1 pm and z = 400 nm InP protrusion is deposited on
the structure. TE, illumination. (a) Side view (y = 0), (b) top view (z = —550 nm, the projection of the
protrusion is shown).
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The scattering increases when a second protrusion is deposited on the
structure (Fig. 5). The field amplitude just inside the protrusion is now
somewhat larger than in the case of a single protrusion. This field is the
forerunner of the field that will be diffracted off the structure when a longer
grating is deposited on the surface (Hunsperger 1991; Mirz 1994). The light
intensity diffused into the substrate also increases slightly, while the inter-
action of the field scattered by the two protrusions produces a more complex
pattern inside the waveguide (Fig. 5(b)).

Since our approach is fully 3D, we can position protrusions on the
structure arbitrarily, as illustrated in Fig. 6. In that case of two protrusions
with a lateral offset, a fairly complex field distribution appears inside the
waveguide. This pattern depends on the mode that is used to illuminate the
structure: for TE, illumination, the field in the waveguide reaches a maxi-
mum just after each protrusion, followed by a field minimum (Fig. 6(a)).
For TM, illumination, the diffraction pattern is broader, with a maximum
field amplitude inside the protrusion (Fig. 6(b)). The interference pattern
resulting from the interaction of the field scattered by the different elements is
particularly visible for TM, polarization (Fig. 6(b)). Striking on that figure is
the difference in the periodicity of the field in the forward direction and in the
backward direction, the former being related to the interference of the light
scattered by the protrusions and the latter being related to the ‘stationary
wave’ resulting from the interaction of the incident field with the back-
scattered field.

The difference of behavior observed in Fig. 6 for TE, and TM excitations
can be related to the different boundary conditions experienced by the electric
field, depending on its orientation relative to the protrusion boundaries
(Martin et al. 1994). A quantitative comparison of the scattering amplitudes

x [pm]

Fig. 5. Same situation as in Fig. 4 but with two similar protrusions.
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Fig. 6. Same situation as in Fig. 4 but with two protrusions offset in y-direction. The field is computed in
the guiding layer (z = —550 nm) and the projection of the protrusions is shown: (a) TE, illumination and
(b) TMj illumination.

shows that the interaction with the protrusion is stronger for the TE; mode
than for the TM; mode.

The different scatterers placed in the background do not need to be aligned
in a particular direction, as illustrated in Fig. 7, where the situation is similar
to that of Fig. 6, but with a tilted protrusion. The scatterers can also extend
over several background layers. This direct space discretization is therefore
extremely versatile and can handle a broad range of physical systems.

A more dramatic effect on the guided wave is observed when a notch is
etched inside the cap InP layer, as depicted in Fig. 8. Note that for this
simulation the dielectric contrast Ae in Equation (1) is negative since the
scatterer permittivity (air, ¢ = 1) is smaller than the permittivity of its
surrounding layer (InP).

An important part of the incident TE, field is now scattered into the
substrate (Fig. 8(b)). The back-scattered field is also larger, producing a
marked interference pattern in the waveguide and in the substrate. Further,
within the simulation window, the incident mode does not re-establish in the
forward direction with the same intensity (compare Fig. 8(b) with Fig. 4(b)).

As a last example, we would like to briefly discuss the polarization cou-
pling that can occur in the waveguide structure investigated in Fig. 8. Since
our approach is fully vectorial, the electric field computed using Equation (1)
includes all three components, even when the excitation E° is only a scalar
field. As an example, in Fig. 9(a), we consider a TE, incident field, i.e., an
incident field with only a y-component. However, during the scattering
process, a TM electric field, with x- and z-components, is generated.
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Fig. 7. Same situation as in Fig. 6, but now with one tilted protrusion. The field is computed in the
guiding layer (z = —550 nm) and the projection of the protrusions is shown: (a) TE, illumination and (b)
TM, illumination.

Its amplitude is represented in Fig. 9(a). Note the perfect symmetry of this
field, related to the fact that the scatterer is symmetrical and the incident field
propagates along one of its symmetry axis. The interference pattern in
Fig. 9(a) originates from the finite extension of the scatterer (in the order of
one wavelength). This interference pattern is similar in the forward and
backward directions. This is because no TM components were present in the

x [um]

Fig. 8. Same situation as in Fig. 4 but now a notch with similar dimensions is etched through the InP
layer.
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incident field. Therefore no interferences between incident and reflected field
can occur for this polarization component (compare with Fig. 8(a)).

A similar effect is observed when a notch is etched in the waveguide
(Fig. 9(b)). For that geometry, the interaction is stronger and the amplitude
of the TM field created during the scattering process is larger (notice the
different amplitude scales in Fig. 9(a) and (b)).

Fig. 10 shows for the case of a waveguide with a notch (Fig. 9(b)) the real
part of electric field components created during the scattering process: the
z-component for a TE, incident field and the y-component for a TM inci-
dent field.

These new field components correspond to a field generated at the loca-
tion of the notch and propagating in both directions in the waveguide.
A mode cross-polarized to the incident field is therefore established in the
waveguide. As a matter of fact, an analysis of the generated field shows that
its propagation constant is identical to the propagation constant which can
be expected for a mode of that polarization (Fig. 10). Note however that the
amplitude of this cross-polarized mode is much smaller than the amplitude
of the original incident field. For the geometry of Fig. 9(a) (protrusion) a

107!
1072
1073

104

100

-5 0 5 10
X [um]

Fig. 9. (a) Same geometry as in Fig. 4; the field in the guiding layer (z = —550nm) is shown. The
waveguide is excited with a TE; mode and the amplitude of the TM field is computed; this polarization,
which was not present in the excitation, is created during the scattering process. (b) Same situation but
with a notch (as in Fig. 8) instead of a protrusion. Note that in both figures a different logarithmic
grayscale is used.



324 M. PAULUS AND O.J.F. MARTIN

-7

10 T T
:
w4 — E,, TE excit.
, ;'E :': :': "7 Ey, TM excit.
i [l
5 ¥
S
)
S
h
-107 - :
-5 0 5 10
X [um]

Fig. 10. Real part of the electric field components created during the scattering process depicted in
Fig. 9(b) (notch): E., respectively E,, are shown for a TE,, respectively TM,, excitation of the structure.
These new field components, that were not present in the illumination field, are shown along the center of
the structure (y = 0 in Fig. 9(b)).

similar behavior could not be observed because the perturbation of the
incident field by the protrusion is not strong enough to generate a cross-
polarized mode.

4. Conclusion

We have presented a fully vectorial 3D technique, based on the Green’s
tensor, for scattering computations in stratified media. In this approach, only
the elements that differ from the stratified background must be discretized;
the response of the background being taken into account by the Green’s
tensor. Further, the boundary conditions at the edges of the computation
window, as well as at the different interfaces in the stratified background are
automatically fulfilled.

The different examples presented have illustrated the versatality of this
approach and its suitability for investigating subtle effects such as polariza-
tion crosstalks in a waveguide.

We believe that this technique can handle a broad range of complex
systems, including integrated optical circuits and photonic band gap
structures. However, since it is a fully 3D vectorial approach, the computa-
tional costs can become prohibitive for very large systems.
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