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We address the general issue of resolving the wave vector in complex electromagnetic media including nega-
tive refractive media. This requires us to make a physical choice of the sign of a square root imposed merely
by conditions of causality. By considering the analytic behavior of the wave vector in the complex plane, it is
shown that there are a total of eight physically distinct cases in the four quadrants of two Riemann sheets.
© 2005 Optical Society of America
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The electromagnetic response of a homogeneous me-
dium is usually charecterized by the dielectric con-
stant ��� and the magnetic permeability ���. The re-
fractive index �n� first arises in the context of the
wave equation and is defined by n2=��. For most op-
tical media, �=1 and n is taken to be ��. These are in
general complex functions (i.e., �=��+i�� and �=��
+i��) of the frequency ��� of the applied radiation.
For media at thermodynamic equilibrium, it is usu-
ally demanded that the imaginary parts of ���� and
���� be positive so that the total energy dissipated by
the electromagnetic fields in a volume �V�,

�
V

d3r�
−�

�

��������E�r,���2 + ������H�r,���2�
d�

2�
,

�1�

is positive.1 However, the signs of the real parts of �
and � are not subject to any such restriction.1

Veselago2 concluded that a material with real and si-
multaneously negative � and � at a given frequency
would have a negative refractive index n=−���. This
result remained an academic curiosity until recently,
when it became possible to fabricate structured
metamaterials with negative � and �.3–7 The possibil-
ity that a negative refractive index may open a door
to perfect lenses8 that are not subject to the diffrac-
tion limit has given a great impetus to the study of
these materials.

The sign of the refractive index in these media has
been the subject of some debate. Smith and Kroll9

analyzed the problem of a current sheet radiating
into a medium with negative � and negative � and
concluded that n�0 for power to flow away from the
source. This has been criticized by some authors10,11

and supported by others.12 However, there exists a
real problem of choosing the sign of the square root to
determine the wave vector of a wave transmitted into
a negative medium. For the case of normally incident

propagating waves with no tranverse components,
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this sign of the wave vector directly corresponds to
the sign of the refractive index.

Here we consider this problem of choosing the cor-
rect wave vector in media with complex � and �. Us-
ing the theory of analytic functions we show that
there is, indeed, a physical choice of the sign to be
made. We include the cases of propagating and eva-
nescent waves and that where both the real and the
imaginary parts of � and � can be positive or nega-
tive. Negative imaginary parts are possible in an am-
plifying medium (as in a laser). Even for the case of
passive metamaterials that are overall only dissipa-
tive, it appears possible to have a negative imaginary
part of � when the real part of � is negative13 and a
negative imaginary part of � when the real part of �
is negative.14 We show that there are a total of eight
distinct physical cases in two Riemann sheets for the
square root operation. Our results support the case
that when a medium has predominantly real and si-
multaneously negative � and � at a given frequency,
it must be considered to have a negative refractive
index.

Let us examine the choice of the wave vector in ho-
mogeneous media. The propagation of light in a me-
dium is governed by Maxwell’s equations. For a time-
harmonic plane wave, exp�i�k ·r−�t��, with an
angular frequency � and a wave vector k, these re-
duce to

k � E =
�

c
�H, k � H = −

�

c
�E, �2�

where E and H are the electric and magnetic fields
associated with the wave, respectively. For complex �,
�, and k, the wave becomes inhomogeneous. Writing
�=��+ i��, and �=��+ i��, we note that the medium is
absorbing if ���0, ���0, and amplifying if ���0,
���0. The mechanism for the absorption or amplifi-
cation, of course, lies in the underlying electric or
magnetic polarizabilities. We should mention here
that a metamaterial can exhibit resonances unre-

lated to the underlying material polarization, for ex-
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ample, an LC resonance for split-ring resonators.3,13

But these resonances can also be subsumed into an
effective macroscopic � and � when the wavelength of
the radiation is much larger than the underlying
structure. Then the structure appears homogeneous.
In an isotropic medium, Maxwell’s equations require
that

�k�2 = kx
2 + ky

2 + kz
2 = ��

�2

c2 , �3�

which describes the dispersion in the medium. To de-
termine the wave vector k in the medium, we have to
carry out a square root operation. Obviously the
choice of the sign of the square root will have to be
made consistent with the Maxwell’s equations and
causality.

Without loss of generality, we consider an electro-
magnetic wave with a wave vector �kx ,0 ,kz� to be
incident from vacuum on the left �−��z�0� on a
semi-infinite medium ���z�0� with arbitrary val-
ues of � and �. Due to x invariance, kx is preserved
across the interface. The z component of the wave
vector, kz, however, has to be obtained from the dis-
persion relation

kz = ±���
�2

c2 − kx
2, �4�

where a physical choice of the sign of the square root
has to be made. Now the waves in medium 2 could be
propagating �kx

2�Re����2 /c2�� or evanescent �kx
2

�Re����2 /c2��. Further, the media could be absorb-
ing or amplifying, depending on the sign of Im���� in
Eq. (4). This enables us to divide the complex plane
for Z=kz

2 into the four quadrants shown in Fig. 1. The
waves corresponding to quadrants 1 and 4 have a
propagating nature, and the waves corresponding to
quadrants 2 and 3 are evanescent. Crucially, we note
that there is a branch cut in the complex plane for
�Z=kz, and one cannot analytically continue the be-
havior of the waves across this branch cut. This
branch cut divides the Riemann surface into two
sheets in which the two different signs for the square
root will have to be taken.15 The different regions in
the Z=kz

2 plane are mapped into the different physi-
cal regions of the �Z plane depending on kx, �, and �.
For absorbing media, the wave amplitude at the in-
finities obviously has to disappear. For amplifying
media, one has to be more careful. The only condi-
tions are that evanescently decaying waves remain
decaying, propagating ones remain propagating, and
no information can flow in from the infinities. This
ensures that the near-field features of a source can-
not be probed at large distances merely by embed-
ding the source in an amplifying medium. Due to the
above reasons we will choose the branch cut along
the negative imaginary axis as shown in Fig. 1. This
proves to be a convenient choice. This choice corre-
sponds to our conventional listing of the different me-
dia as we move around the complex kz

2 plane (Fig. 1)

in the counterclockwise direction. Hence our range
for the argument 	 of kz
2 becomes −� /2�	�3� /2 for

the first Riemann sheet and 3� /2�	�7� /2 for the
second Riemann sheet, corresponding to the two
signs of the square root kz= ±�Z= �Z�1/2ei	/2 and
�Z�1/2ei�+i	/2. The complex plane for kz=�Z with the
corresponding eight regions in the two Riemann
sheets is shown in Fig. 2. We now consider the behav-
ior of the waves individually in each of these regions.

Region 1: 0�Arg�kz��� /4 corresponding to 0
�Arg�kz

2��� /2. This is the conventional case of a
propagating wave in a positively refracting absorbing
medium. Here ����+�����0 implying absorption.
The wave decays in amplitude as it propagates in the
medium. We also have ���0 and ���0 and choose
the positive sign of the square root.

Region 2: � /4�Arg�kz��� /2 corresponding to
� /2�Arg�kz

2���. This is a case of evanescently de-
caying waves. We have ����+�����0, which implies
overall absorption, for example, ����0,���0� if ��
�0, ���0 (positive refractive index) or amplification
����0,���0� if ���0, ���0 (negative refractive in-
dex). Note that it is the overall sign of ����+���� that
matters.16 In either case we have an evanescent wave
that decays into the medium to zero as z→�.

Region 3: � /2�Arg�kz��3� /4 corresponding to �

�Arg�kz
2��3� /2. This is similiar to region 2 and cor-

responds to evanescently decaying waves, although

Fig. 1. Complex plane for kz
2, showing the different regions

for the propagating and evanescent waves. The branch cut
along the negative imaginary axis for the square root is
shown.

Fig. 2. Complex plane for kz=�Z with the corresponding
eight regions in the two Riemann sheets for kz

2. The evanes-
cent regions could be absorbing or amplifying as explained
in the text, depending on the signs of �� and ��. The sign of
the square root for each region is shown enclosed in a small
circle.
we now have ����+�����0, implying absorption for
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negative refractive media and amplification for posi-
tive refractive media. Again we choose the positive
square root, and we have only evanescently decaying
waves in the semi-infinite medium.

Region 4: 3� /4�Arg�kz��� corresponding to
3� /2�Arg�kz

2��2�. Now we move into the second
Riemann sheet and choose the negative sign for the
square root. This region corresponds to negatively re-
fracting media ����0,���0� and absorbing media
�����+�����0� (Ref. 16) and hence, for example, ��
�0, ���0. We have propagating waves (albeit left-
handed) that decay in amplitude as the wave propa-
gates into the medium. Note that the negative sign is
crucial to ensure this decaying nature of the waves in
absorbing media.

Region 5. ��Arg�kz��5� /4 corresponding to 2�

�Arg�kz
2��5� /2. We again have the negative sign for

the square root and propagating waves in negative
index media. But note that ����+�����0, implying,
for example, that ���0, ���0. In general, overall
there is amplification and the waves grow exponen-
tially with propagation distance.

Region 6. 5� /4�Arg�kz��3� /2 corresponding to
5� /2�Arg�kz

2��3�. This corresponds to exponen-
tially growing evanescent waves that are not physi-
cally accessible in semi-infinite media. For finite me-
dia (slabs) these solutions are permissible and are
responsible for the perfect lens effect.8

Region 7. 3� /2�Arg�kz��7� /4 corresponding to
3��Arg�kz

2��7� /2. This also corresponds to expo-
nentially growing evanescent waves and are not
physically accessible in semi-infinite media.

Region 8. −� /4�Arg�kz��0 corresponding to
−� /2�Arg�kz

2��0. Now we are back on the first Rie-
mann sheet and choose the positive sign for the
square root. This is the conventional case of propa-
gating waves in amplifying positive refractive media,
which grow exponentially in amplitude into the me-
dium.

Note that in all these cases it is not � or � that in-
dividually determines the nature of the waves but a
combination of them determined by Re�kz

2� and
Im�kz

2�. For evanescent waves in a semi-infinite me-
dium, we always choose the positive square root so
that Im�kz�
0. In the case of evanescent waves in
amplifying media, our choice results in a Poynting
vector in the medium that points toward the source
(interface in this case). This, however, does not vio-
late causality as the Poynting vector–energy flow de-
cays exponentially to zero at infinity and no informa-
tion flows in from the infinities. This counterintuitive
behavior does not imply that source has turned into a
sink, rather it indicates that there would be a large
(infinitely large for unsaturated linear gain) accumu-
lation of energy density (intense local field enhance-
ments) near a source. This behavior can also be un-

derstood in terms of the fundamental bosonic
property of light: photons in the localized mode
stimulate the amplifying medium to emit more pho-
tons into the same localized mode. In other words,
the near-field modes of a source remain evanescent
even inside an amplifying medium and do not affect
the far field. Also note that �� and �� (as in a metal)
could have opposite signs, in which case the waves
are evanescent and fall into regions 2 or 3 depending
on the overall sign of ����+����. The importance of
the sign of this quantity to determine the energy flow
has also been noted by Depine and Lakhtakia.16

In summary, the problem of choosing a wave vector
in complex media can be analyzed using the proper-
ties of analytic functions. The branch cut for the
square root in the complex plane of Z=kz

2 has to be
chosen along the negative imaginary axis. This re-
sults in eight distinct cases for the quadrants in two
Riemann sheets corresponding variously to propagat-
ing or evanescent waves in absorbing or amplifying
media, with positive or negative real parts of � and �.
The positive sign of the square root has to be taken
for the cases in one sheet and the negative sign in the
other. The case of propagating waves in absorbing
media with ���0 and ���0 lies in the second sheet,
which justifies calling them negative refractive index
media.

S. A. Ramakrishna’s e-mail address is
sar@iitk.ac.in.
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