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Abstract

The surface integral formulation is a flexible, multiscale and accurate tool to simulate light scattering on nanostructures. Its

generalization to periodic arrays is introduced in this paper. The general electromagnetic scattering problem is reduced to a

discretizated model using the Method of Moments on the surface of the scatterers in the unit cell. The study of the resonances of an

array of bowtie antennas illustrates the main features of the method. When placed into an array, the bowtie antennas show additional

resonances compared to those of an individual antenna. Using the surface integral formulation, we are able to investigate both near-

field and far-field properties of these resonances, with a high level of accuracy.
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1. Introduction

Single metal nanoparticles exhibit characteristic

localized surface plasmon modes which depend on

different parameters such as their size, composition,

shape and surrounding medium [1]. When placed into

periodic arrays, their resonant properties are strongly

affected, since the resonances of the individual

nanoparticles couple with the periodicity. This observa-

tion has paved the road to the design of novel materials

with tailored optical properties: negative index of

refraction metamaterials [2], photonic band-gap mate-

rials [3], plasmon-enhanced aperture [4,5] and sub-

wavelength optical structures [6,7]. Plasmonic systems

involve high index contrasts and strong electromagnetic

resonances with high field variations, two conditions
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very challenging for numerical modeling. There is

therefore an increasing demand for a modeling tool

accurate even in these extreme conditions. A wide

variety of methods is available for modeling the

interaction of electromagnetic radiation with matter:

couple-mode theory [8], finite-difference time-domain

[9], plane-wave expansion [10], finite elements method

[11] (FEM). The FEM is proven very accurate, flexible

to handle realistic structures [12], and produces sparse

matrices efficiently solved with specific algorithms.

However, it suffers from the need to impose boundary

conditions at the edges of the computation window [11].

State of the art optical measurement techniques offer

the possibility to study optical far-field properties as

well as to give a deep insight into the corresponding

near-field physics [13]. Integral equations are multi-

scale methods that only discretize the scatterer, but the

matrices describing the scattering system are dense and

require high memory for large systems [14,15]. With

surface integral equation (SIE) methods [16,17] only

https://core.ac.uk/display/147971077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.photonics.2010.05.003
mailto:benjamin.gallinet@epfl.ch
http://dx.doi.org/10.1016/j.photonics.2010.05.003


B. Gallinet, O.J.F. Martin / Photonics and Nanostructures – Fundamentals and Applications 8 (2010) 278–284 279

Fig. 1. Space division into regions Vn with dielectric permittivity en

and magnetic permeability mn. The system has the symmetry of a two-

dimensional lattice with unit cell V and primitive lattice vectors a1 and

a2. The regions VV
n are the intersection of the regions Vn with the unit

cell.
the scatterer surface is discretized. Since SIE methods

also generate dense matrices, the fact that they scale

with only the second power of the lateral dimension of

homogeneous scatterers greatly improves their effi-

ciency. For non-homogeneous scatterers hybrid Finite-

Element-Boundary Integral methods are proven effi-

cient and very popular for microwaves [18,11]. In the

SIE developed in Ref. [17] the Method of Moments

(MoM) [11] has been successfully applied to plasmonic

scatterers and guarantees a high precision and flexibility

of the discretization. In Ref. [19], a MoM-based SIE

method is applied to periodic nanostructures from

microwave regime studies (see e.g. [20,21]). This SIE

formulation can be derived and discretized for an

arbitrary number of materials and can handle a wide

variety of scatterers (e.g. composite or embedded in

multilayered media). The purpose of this paper is to

focus on its application to plasmonics.

Section 2 gives an overview of the SIE formulation

for periodic systems (for a more detailed approach see

Ref. [19]). In Section 3, as an illustration of one of the

possible applications of this method, the case of an

array of realistic gold bowtie nanoantennas is

investigated. Their complex shape and metallic

properties make them a good example of the versatility

and accuracy of the method. A comparative study of

light scattering at normal incidence on a single antenna

and on an infinite array of antennas illustrates different

resonance properties.

2. Surface integral formulation for

electromagnetic scattering on periodic structures

The purpose of this section is to give an overview of

the numerical method. The simulation of electromag-

netic scattering is reduced to the computation of

equivalent surface currents on the boundaries between

the different media in the unit cell. These currents are

the solution of the Electric Field Integral Equation

(EFIE) and the Magnetic Field Integral Equation

(MFIE). The first part of this section generalizes this

formulation to periodic systems, and shows that the

EFIE and MFIE are restricted to the unit cell with

periodic boundary conditions. The EFIE and MFIE

involve the pseudo-periodic dyadic Green’s function,

whose evaluation can be accelerated with Ewald’s

method [19,22–24]. The MoM is used to discretize and

solve the integral equations for the equivalent surface

currents. The scattered electric and magnetic fields are

calculated from the equivalent surface currents during

post-processing at any point of space. The singularity

subtraction technique for the Green’s function provides
a high precision of the surface currents and enables the

field sampling arbitrarily close to the surface.

2.1. Electric and magnetic integral equations

The three-dimensional space is divided into N

different regions Vn; n ¼ 1; . . . N with dielectric per-

mittivity en and magnetic permeability mn (Fig. 1). A

harmonic time-dependence of the fields Uðr; tÞ ¼
U0ðrÞe�ivt is assumed throughout this paper. The

electric field E in each region must satisfy the equation:

r�r� EðrÞ � k2
nEðrÞ ¼ ivmnjðrÞ; r2Vn; (1)

where k2
n ¼ v2enmn is the wavenumber for electromag-

netic waves in region n and j denotes the volume current

density. A dyadic Green’s function G
n

for region Vn is

introduced:

r�r� G
n
ðr; r0Þ � k2

nG
n
ðr; r0Þ ¼ 1dðr� r0Þ: (2)

Combining Eqs. (1) and (2), integrating over r and

applying Green–Gauss theorem, leads to a surface

integral on the boundary @Vn of region Vn:Z
@Vn

dSn̂nðrÞ

� ð½r � EðrÞ� � G
n
ðr; r0Þ þ EðrÞ

� ½r � G
n
ðr; r0Þ�Þ

¼ Einc
n ðr0Þ �

Eðr0Þ : r0 2Vn

0 : otherwise

�
; (3)

where n̂n is the outward oriented normal vector on the

boundary @Vn. Taking the second case in the right-hand

side of Eq. (3), the continuity of the tangential compo-

nent of the fields E and H allows one to take the limit

r0 ! @Vn. Hence, introducing the equivalent surface
[(Fig._1)TD$FIG]
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current densities Jn ¼ n̂n �H and Mn ¼ �n̂n � E de-

fined on @Vn, one can write the Electric Field Integral

Equation (EFIE):

ivmn

R
@Vn

dS0G
n
ðr; r0Þ � Jnðr0Þ

þ
R

@Vn
dS0½r0 � G

n
ðr; r0Þ� �Mnðr0Þ

 !
tan

¼ ðEinc
n ðrÞÞtan; r! @Vn; r =2Vn;

(4)

where the subscript tan denotes the tangential compo-

nent of the fields and

Einc
n ðr0Þ ¼ ivmn

Z
Vn

dVG
n
ðr0; rÞ � jðrÞ (5)

is the incident electric field generated by source currents

j in region Vn.

Although the method can be applied for lattices in 1,

2 or 3 dimensions, we shall now focus on the most

common physical situation and assume that the regions

Vn carry the symmetry of a two-dimensional lattice

(Fig. 1). A lattice translation vector t is a linear

combination t ¼
P

iciai with ci 2Z and ai; i ¼ 1; 2 the

primitive lattice vectors. The symmetry assumption is

then written as r2Vn) rþ t2Vn, 8 t. The unit cell is

called V. The irreducible representations of the

translation group are associated to a Bloch wavevector

k in the first Brillouin zone. Bloch waves Uk are

characterized by their transformation properties under

translations t, also known as periodic boundary

conditions:

Ukðr� tÞ ¼ e�ik�tUkðrÞ: (6)

The periodic dyadic Green’s function G
n;k

is the pro-

jection of G
n

onto the Bloch component k:

G
n;k
ðr; r0Þ ¼

X
t

eik�tG
n
ðr� t; r0Þ: (7)

It satisfies G
n;k
ðr� t; r0Þ ¼ e�ik�tG

n;k
ðr; r0Þ and G

n;k

ðr; r0Þy ¼ G
n;k
ðr0; rÞ where G

n;k
ðr; r0Þy is the conjugate

transposed of G
n;k
ðr; r0Þ. The periodicity yields a re-

duction of the EFIE to @Vn \V� @VV
n (Fig. 1):

ivmn

R
@VV

n
dS0G

n;k
ðr; r0Þ � Jn;kðr0Þ

þ
R

@VV
n

dS0½r0 � G
n;k
ðr; r0Þ� �Mn;kðr0Þ

0
@

1
A

tan

�ðEinc
n;kðrÞÞtan

:

(8)

Starting from the magnetic field equivalent of Eq. (1)

and defining Hinc
n as the incident magnetic field equiva-

lent to Eq. (5), we can similarly derive the MFIE in the
unit cell:

iven

R
@VV

n
dS0G

n;k
ðr; r0Þ �Mn;kðr0Þ

�
R

@VV
n

dS0½r0 � G
n;k
ðr; r0Þ� � Jn;kðr0Þ

0
@

1
A

tan

¼ ðHinc
n;kðrÞÞtan

: (9)

The fields Jn;k, Mn;k, Einc
n;k and Hinc

n;k denote the projection

of the fields Jn, Mn, Einc
n and Hinc

n to Bloch waves with

corresponding wavevector k and satisfying the periodic

boundary conditions (6). If the source currents j do not

satisfy these conditions, they should be expressed as a

linear combination of Bloch waves. The total problem

should then be decomposed and solved independently

for each incident Bloch wave condition. In this paper,

the surfaces @VV
n do not touch the boundaries of the unit

cell. For simplicity, the indexes k and V are omitted in

the following.

2.2. Solution by Method of Moments

A technique for solving the EFIE (8) and the MFIE

(9) is the Method of Moments (MoM). A two regions

problem is considered as an illustration, the general case

of N regions is detailed in Ref. [19]. The boundary

surface between V1 and V2 is called S. The equivalent

surface currents are expended in terms of Rao–Wilton–

Glisson basis functions fn
i [25] forming a triangular

mesh approximating S:

JnðrÞ ¼
X

i

aif
n
i ðrÞ (10)

MnðrÞ ¼
X

i

bif
n
i ðrÞ: (11)

where the index i labels the different edges on S. The

conservation of current on S requires J1 ¼ �J2 and

M1 ¼ �M2, implying f1
i ¼ �f2

i [26]. Similarly to the

FEM, the Galerkin method is applied, multiplying

Eqs. (8) and (9) by the basis functions and integrating

over S. We define the sets fag and fbg of expansion

coefficients ai and bi. The EFIE (8) can be rewritten as a

matrix equation:

ivm1D1 K1

ivm2D2 K2

� �
� fagfbg

� �
¼ qðEÞ;1

qðEÞ;2

� �
; (12)

with submatrices

Dn
i j ¼

Z
S

dS fn
i ðrÞ �

Z
S

dS0 G
n
ðr; r0Þ � fn

jðr0Þ (13)
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Kn
i j ¼

Z
S

dS fn
i ðrÞ �

Z
S

dS0½r0 � G
n
ðr; r0Þ� � fn

jðr0Þ;

(14)

and

q
ðEÞ;n
i ¼

Z
S

dS fn
i ðrÞ � Einc

n ðrÞ: (15)

A similar matrix equation can be found for the MFIE

(9):

K1 �ive1D1

K2 �ive2D2

� �
� fagfbg

� �
¼ qðHÞ;1

qðHÞ;2

� �
; (16)

with

q
ðHÞ;n
i ¼ �

Z
S

dS fn
i ðrÞ �Hinc

n ðrÞ: (17)

In some cases, solving for fag and fbgwith the EFIE or

the MFIE do not result in the same values. In fact,

especially in resonant conditions, these solutions may

also exhibit large errors due to poor testing. The

PMCHW formulation [27] which combines EFIE

(12) and MFIE (16) to solve them simultaneously has

proven to give stable and accurate results:

ivðm1D1 þ m2D2Þ K1 þK2

K1 þK2 �ivðe1D1 þ e2D2Þ

� �
� fagfbg

� �

¼ qðEÞ;1 þ qðEÞ;2

qðHÞ;1 þ qðHÞ;2

� �
:

(18)

Eq. (18) is solved for fag and fbg to obtain the values of

the equivalent surface currents flowing on S.

2.3. Singularity subtraction

The integral Eqs. (8) and (9) require an evaluation of

the periodic dyadic Green’s function (7):

G
n
ðr; r0Þ ¼ 1þrr

k2
n

� �
Gnðr; r0Þ; (19)

where

Gnðr; r0Þ ¼
X

t

eiknjr�r0�tj

4pjr� r0 � tj e
ik�t: (20)

The matrix elements in Eqs. (12) and (16) require an

integration of the periodic Green’s function and its

gradient over all possible couples of triangular ele-

ments. In the unit cell, the lattice sum (20) has a

singularity for jr� r0j! 0. When calculating the matrix

elements relative to neighboring triangle areas, the

B. Gallinet, O.J.F. Martin / Photonics and Nanostruc
integrand is divergent, yielding inaccurate results in

their numerical evaluation. An elegant way to compute

these integrals and to improve numerical accuracy is to

separate the Green’s function into a singular part that

can be integrated in a closed form and a smooth slowly

varying part that can be accurately integrated numeri-

cally:

Gnðr; r0Þ ¼ Gs
nðr; r0Þ þ

1

4p

1

jr� r0j �
k2

njr� r0j
2

� �
;

(21)

where Gs
nðr� r0Þ is non-singular and differentiable for

jr� r0j! 0.

2.4. Field evaluation

The surface currents Jn and Mn as solutions of the

EFIE and MFIE are not the actual currents flowing on

the surfaces @Vn, but they produce the same electro-

magnetic field inside the regions Vn. Taking the first

choice in Eq. (3) and in its magnetic equivalent, the

electric and magnetic fields scattered by the objects are

given by

Escat
n ðrÞ ¼ �ivmn

Z
@Vn

dS0G
n
ðr; r0Þ � Jnðr0Þ

�
Z

@Vn

dS0½r0 � G
n
ðr; r0Þ� �Mnðr0Þ; (22)

Hscat
n ðrÞ ¼ �iven

Z
@Vn

dS0G
n
ðr; r0Þ �Mnðr0Þ

þ
Z

@Vn

dS0½r0 � G
n
ðr; r0Þ� � Jnðr0Þ: (23)

Hence, the scattered fields can be calculated at any point

of space using the Green’s tensor. The singularity

subtraction technique guarantees a very high accuracy

at close vicinity of the scatterer surface.

3. Numerical example: scattering on arrays of
gold bowtie antennas

This section provides an illustration of the technique

in the case of plane-wave excitation of an array of gold

bowtie antennas. The antenna is designed in order to

ensure the best intensity enhancement in the antenna

gap according to Ref. [28] [see Fig. 2(a)]. The

discretization with MoM allows a great flexibility in

the scatterer’s shape: here the corners of the antenna are

rounded, which makes it more realistic with respect to

the nanofabrication procedures. Experimental data for

the frequency-dependant refractive index of gold are
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Fig. 2. (a) Design of the bowtie antenna with length l ¼ 110 nm, width w ¼ 30 nm, bow angle a ¼ 90� and gap size g ¼ 30 nm. The center of the

gap is the origin of coordinates. (b) Total scattering cross-section for a x-polarized and y-polarized plane-wave normal incidence. The real part of the

instantaneous electric field is plotted for the following incidence conditions: (c) x-polarized at wavelength 550 nm and (d) y-polarized at wavelength

600 nm. Scale: short arrows for low amplitudes, long arrows for high amplitudes.
taken from Ref. [29]. The simulation are performed

with 5274 degrees of freedom (i.e. the number of mesh

edges times two, since two variables are associated to

each edge) ensuring a good convergence of the

resonance according to Ref. [17]. The matrix elements

are evaluated with a first order Gaussian quadrature

[30], resulting in a full matrix. The linear system of

equations is solved with a direct solver. Computation

time scales with the cube of the number of degrees of

freedom. The resonance properties of a single antenna

are first investigated, and then compared to the

resonances arising in an array.

3.1. Resonance of a single bowtie antenna

For the resonance properties of a single bowtie

antenna, we used a SIE-based program designed for

single object scattering [17].

The scattering cross-section of the antenna has been

computed for incidence wavelengths l ranging from
400 to 900 nm:

CscatðlÞ ¼ R2

Z
ds
jEscat

l ðR; u;fÞj
2

jEinc
l j

2
; (24)

where R ¼ 5 mm is the radius of the surface on which

the electric field is sampled (Section 2.4), and s is the

solid angle. The problem geometry is given in Fig. 2(a).

Fig. 2(b) shows that for a plane-wave polarized in x-

direction, the scattering cross-section has a resonance

with a peak wavelength at 550 nm, corresponding to a

mode of the antenna. From Fig. 2(c), we see that for this

mode the electric field is confined between the two arms

of the antenna. The y-polarized mode of Fig. 2(d) has a

higher cross section at resonance [600 nm from

Fig. 2(b)] since the two arms do not interact with each

other and behave as two isolated scatterers. The y-

polarized resonance is red-shifted as compared to the

x-polarized resonance because the arms are larger along

y-direction than along x-direction. High intensity is
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Fig. 3. (a) Transmission through the array of antennas for x-polarized and y-polarized plane-wave incidence. The real part of the instantaneous

electric field is plotted for the following incidence conditions: (b) x-polarized at wavelength 560 nm and (c) y-polarized at wavelength 650 nm.

Scale: short arrows for low amplitudes, long arrows for high amplitudes.
found at the four corners of the antenna in this case. For

the mode at 600 nm, the intensity enhancement is in the

order of 80 at position (50,45,0) nm (i.e. 5 nm away

from a corner of the antenna).

3.2. Array of bowtie antennas

A periodicity of 120 nm along x-direction and 90 nm

along y-direction is now considered. The transmittance

TðlÞ of the antennas is calculated at 5 mm from the

array and shown in Fig. 3(a):

TðlÞ ¼ 1

jVj

Z
V

d2r
jEscat

l ðrÞj
2

jEinc
l j

2
: (25)

For a x-polarized incidence, the resonance is slightly

red-shifted to 560 nm, and the intensity enhancement in

the antenna gap is comparable to Section 3.1. Since the

field is mostly confined in each antenna gap, the fact that

the antennas are placed in close vicinity to each other

does not play a strong role [Fig. 3(b)]. However for a y-

polarized incidence, the strong coupling between the
corners of the antennas results in a red-shift of the

resonance from 600 to 650 nm [Fig. 3(a)]. Higher

intensity enhancement is also found in the gap between

the antennas [Fig. 3(c)]: it has doubled to 160 at

(50,45,0) nm. As can be seen in this example the

periodicity strongly affects the optical properties of

the plasmonic system. The SIE formulation is able to

retrieve both the near-field and far-field properties of

such a complex system.

4. Summary

The surface integral formulation developed in Ref.

[19] has been outlined in the first part of this paper. This

method is a flexible, multiscale and accurate tool to

simulate light scattering on three-dimensional periodic

nanostructures. It reduces the general electromagnetic

scattering problem to a discretizated model using the

Method of Moments on the surface of the scatterers in

the unit cell. The study of the resonances of an array of

bowtie antennas has been used to illustrate the

applicability of the method to plasmonic systems.
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When placed into arrays, the bowtie antennas reso-

nances are strongly affected when compared to those of

an individual antenna. Using the surface integral

formulation, we have been able to investigate both

near-field and far-field properties of these resonances

with a high level of accuracy.
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