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Abstract. Location-Sharing-Based Services (LSBS) complement Location-
Based Services by using locations from a group of users, and not just in-
dividuals, to provide some contextualized service based on the locations
in the group. However, there are growing concerns about the misuse of
location data by third-parties, which fuels the need for more privacy
controls in such services. We address the relevant problem of privacy
in LSBSs by providing practical and effective solutions to the privacy
problem in one such service, namely the fair rendez-vous point (FRVP)
determination service. The privacy preserving FRVP (PPFRVP) prob-
lem is general enough and nicely captures the computations and privacy
requirements in LSBSs. In this paper, we propose two privacy-preserving
algorithms for the FRVP problem and analytically evaluate their privacy
in both passive and active adversarial scenarios. We study the practical
feasibility and performance of the proposed approaches by implementing
them on Nokia mobile devices. By means of a targeted user-study, we
attempt to gain further understanding of the popularity, the privacy and
acceptance of the proposed solutions.

1 Introduction

From Google to Facebook, online service providers are increasingly proposing
sophisticated context-aware services in order to attract new customers and im-
prove the user-experience of existing ones. Location-based services (LBS), offered
by such providers and used by millions of mobile subscribers every day [8], have
proven to be very effective in this respect.

Place check-ins and location-sharing are two popular features. By checking
into a place, users share their current location with their families or friends, and
the ones who do it frequently may also obtain special deals, provided by the
nearby businesses, as incentives for sharing their locations [9]. Facebook, for in-
stance, recently launched such a service by which users who want to check-in can
look for on-the-spot discounts and deals [7]. Services based on location-sharing,
already used by almost 20% of mobile users [18], are undoubtedly becoming
popular. For instance, one recently announced application that exploits location
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data from different users is a taxi-sharing application, offered by a global telecom
operator [19]. In order to share a taxi, users have to reveal their departure and
destination points to the server.

Determining a suitable location for a set of users is a relevant issue. Several
providers already offer variants of this service either as on-line web applications
([16,17]) or as stand-alone applications for mobile devices [17]. Not only is such
a feature desirable, but it also optimizes the trade-off between convenience and
cost for the involved parties.

However, there are growing concerns about how private information is used
and processed by these providers. We conducted a study on privacy in location-
sharing-based services (LSBS) with 35 participants (college students and non-
scientific personnel), and according to the results 88% of them believe it is im-
portant to protect their location privacy from unauthorized uses. Similar results
have been obtained in a different study on location-based services (LBS) [18].
Without effective protection, even sparse location information has been shown
to provide reliable information about a user’s private sphere, which could have
severe consequences on the users’ social, financial and private life [12]. For in-
stance, a web service [21] has shown how thieves may misuse users’ location
updates (from a popular online social network) in order to rob their residences
while they are not at home. In the taxi-sharing application, if the server is not
fully trusted by all users, revealing sensitive locations (such as users home/work
addresses) could pave the way for inference attacks by third-parties. Thus, the
disclosure of location data to potentially untrusted third-parties and peers must
be limited in any location-sharing-based service.

In this paper, we highlight the privacy issues in LSBS by studying one prac-
tical and relevant instance of such a general scenario, which is the determination
of a fair rendez-vous point (FRVP) in a privacy-preserving way, given a set of
user-provided locations. This is a novel and potentially useful problem for LSBS
applications, which captures the essence of the computations that are generally
required in any LSBS, and mitigates their inherent and important privacy issues.
Our user-study indicates that 51% of the respondents would be very interested
in such a service based on location-sharing.

Our contributions are as follows. First, we present the results of our targeted
user-study on location-sharing and privacy in mobile services. Second, motivated
by the results of this study and the need for privacy in LSBSs, we design and
analyze two practical solutions to the FRVP problem, which do not reveal any
additional information to third parties or other peers. The proposed solutions are
independent of any underlying service or network provider, and can be included
in existing location-sharing-based services. Third, we evaluate the robustness
and resilience of our schemes to both passive and active attacks through a pri-
vacy analysis of the proposed solutions. Fourth, by implementing our proposed
algorithms on a testbed of real mobile devices, we show that their performance
in computing the rendez-vous point is acceptable, and that users do not incur
in significant additional overhead due to the inherent privacy features.
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2 Background and User Study

Background Novel LSB services, such as deals and check-ins, are offered by
large service providers such as Google and Facebook. In order to assess users’
opinions about the potential and challenges of such services, we conducted a tar-
geted user study on 35 respondents, sampling a population of technology-savvy
college students (in the age group of 20-30 years) and non-scientific personnel.
The questionnaires are based on the privacy and usability guidelines from [5,13].

User-Study The entire study consisted of three phases; the goal of Phase 1,
during which respondents answered a first set of 22 questions without knowing
the subject of the study, was to assess the participants’ level of adoption of
mobile LSBS and their sensitivity to privacy issues in such services. The answers
to these questions are either “Yes” or “No”, or on a 4-point Lickert scale (where
1 means Disagree, 4 is Agree). In Phase 2, the respondents were instructed to
use our prototype mobile FRVP application. Finally, in Phase 3, the participants
answered the second set of 12 questions, choosing from a 4-point Lickert scale,
after having used our application. The goal of this phase was to obtain feedback
on the usability and privacy features of our prototype. The results of Phase 1
are described next, whereas Phase 2 and 3 are discussed in Section 7.2.

Phase 1 Results The majority of the respondents are males in the 20-25
year-age. Around 86% of them use social networks, and 74% browse the Internet
with a mobile device. Although only 14% are aware of existing LSBS, 51% would
be very or quite interested in using a LSBS such as the FRVP. However, people
are sensitive to privacy (98%) and anonymity (74%) in their online interactions,
especially with respect to the potential misuse of their private information by
non-specified third-parties (88%). Due to space constraints, we are unable to
include here the full details of the study.

These results indicate that, although rare at the moment, LSBSs are per-
ceived as interesting by the majority of the sampled population, which is also
the most likely to adopt LBS technologies [18]. With respect to privacy, people
agree that it is crucial for the acceptability of such services, and thus LSBS
should work properly by requiring a minimum amount of personal information.

In the next sections, we introduce the system architecture, the FRVP problem
and our two solutions for computing the FRVP in a privacy-preserving way.

3 System Architecture

We consider a system which is composed of two main entities: (i) a set of users4

(or mobile devices) U = {u1, . . . , uN} and (ii) a third-party service provider,
called Location Determination Server (LDS). The N users want to determine
the fair rendez-vous location that is computed by the LDS.

Each user’s mobile device is assumed to be able to establish communication
with the LDS either in a P2P fashion or through a fixed infrastructure-based

4 Throughout this paper, we use the words users and devices interchangeably. The
meaning is clear from the context, unless stated otherwise.
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Internet connection. The mobile devices are able to perform public-key cryp-
tographic operations, and each user ui has means of determining the position
Li = (xi, yi) ∈ N2 of his preferred rendez-vous location (or his own location)
by using a common coordinate system. We consider a two-dimensional position
coordinates system, but the proposed schemes are general enough and can easily
be extended to other practical coordinate systems. For instance, such definition
of Li can be made fully compliant with the UTM coordinate system [27], which
is a plane coordinate system where points are represented as a 2-tuple of positive
values (distances in meters from a given reference point).

We define the set of the preferred rendez-vous locations of all users as L =
{Li}Ni=1. For the sake of simplicity, we assume a flat-Earth model and we consider
line-of-sight Euclidian distances between preferred rendez-vous locations. Even
though the actual real-world distance (road, railway, boat, etc.) between two
locations is at least as large as their Euclidian distance, the proportion between
distances in the real world is assumed to be correlated with the proportion of
the respective Euclidian distances. Location priorities, which are not discussed
in this paper, can be used for isolated or unsuitable locations.

We assume that each of the N users has his own public/private key pair
(Kui

P ,K
ui
s ), certified by a trusted CA, which is used to digitally sign the messages

that are sent to the LDS. Moreover, we assume that the N users share a common
secret that is utilized to generate a shared public/private key pair (KMv

P ,KMv
s )

in an online fashion for each meeting setup instance v. The private key KMv
s

generated in this way is known only to all meeting participants, whereas the
public key KMv

P is known to everyone including the LDS. This could be achieved
through a secure credential establishment protocol such as in [3,4,15].

The LDS executes the FRVP algorithm on the inputs it receives by the users
in order to compute the FRV location. The LDS is also able to perform public-
key cryptographic functions. For instance, a common public-key infrastructure
using the RSA cryptosystem [22] could be employed. LetKLDS

P be the public key,
certified by a trusted CA, and KLDS

s the corresponding private key of the LDS.
KLDS
P is publicly known and users encrypt their input to the FRVP algorithm

using this key; the encrypted input can be decrypted by the LDS using its
private key KLDS

s . This ensures message confidentiality and integrity for all the
messages exchanged between users and the LDS. For simplicity of exposition, in
our protocols we do not explicitly show these cryptographic operations involving
LDS’s public/private key.

3.1 Threat Model

Location Determination Server The LDS is assumed to execute the algo-
rithms correctly, i.e., take all the inputs and produce the output according to the
algorithm. However, the LDS may try to learn information about users’ location
preferences from the received inputs, the intermediate results and the produced
outputs. This type of adversarial behavior is usually referred to as honest-but-
curious adversary (or semi-honest) [11]. In most practical settings, where service
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providers have a commercial interest in providing a faithful service to their cus-
tomers, the assumption of a semi-honest LDS is generally sufficient.

Users The participating users also want to learn the private location pref-
erences of other users from the output of the algorithm they receive from the
LDS. We refer to such attacks as passive attacks. As user inputs are encrypted
with the LDS’s public key KLDS

P , there is a confidentiality guarantee against
basic eavesdropping by participants and non participants. In addition to these
attacks, participating users may also attempt to actively attack the protocol by
colluding with other users or manipulating their own inputs to learn the output.

4 The Rendez-vous Problem

In this work, we consider the problem of finding, in a privacy-preserving way,
the rendez-vous point among a set of user-proposed locations, such that (i) the
rendez-vous point is a point that is fair (as defined in Section 5.1) with respect
to the given locations, (ii) each of the users gets to know only the final rendez-
vous location and (iii) no participating user or third-party server learns private
location information about any other user involved in the computations. We refer
to an algorithm that solves this problem as Privacy-Preserving Fair Rendez-Vous
Point (PPFRVP) algorithm. In general, any PPFRVP algorithm A should accept
the inputs and produce the outputs, as described below.

– Input : a transformation f of private locations Li: f(L1)||f(L2)|| . . . ||f(LN ).
where f is a one-way public function (based on secret key) such that it is
hard (success with only a negligible probability) to determine the input Li
without knowing the secret key, by just observing f(Li).

– Output : an output f(Lfair) = g(f(L1), . . . , f(LN )), where g is a fairness
function and Lfair = (xl, yl) ∈ N2 is the fair rendez-vous location that has
been selected for this particular set of users, such that it is hard for the LDS
to determine Lfair by just observing f(Lfair). Given f(Lfair), each user is
able to compute Lfair = f−1(f(Lfair)) using his local data.

The fairness function g can be defined in several ways, depending on the pref-
erences of users or policies. For instance, users might prefer to meet in locations
that are close to their offices, and their employers might prefer a place that is
closest to their clients. In Section 5.1 we describe one such fairness function that
minimizes the maximum displacement of any user to all other locations. Such
function is globally fair and general enough, as it captures the essential compu-
tations required for optimization It can be extended to include more complex
constraints and parameters.

5 Proposed Solutions and Analysis

In this section, we present our solution to the PPFRVP. First, we discuss the
mathematical tools that we use in order to model the fairness function g and the
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transformation functions f . In order to achieve the integration between resource-
constrained mobile devices and the client-server network paradigm, our solutions
have to be efficient in terms of computations and communication complexities.

In order to separate the optimization part of the PPFRVP algorithm A from
its implementation using cryptographic primitives, we first discuss the fairness
function g and then the transformation function f .

5.1 Fairness Function g

In this work, we consider the fairness criterion that has been widely used in
operations research to solve the k-center problem. In the k-center problem, the
goal is to find L1, . . . , Lk locations among N given possible places, in order to
optimally place k facilities, such that the maximum distance from any place to
its closest facility is minimized. For a two dimensional coordinate system, the
Euclidian distance metric is usually employed.

As the PPFRVP problem consists in determining the fair rendez-vous loca-
tion from a set of user-desired locations, we focus on the k-center formulation
of the problem with k = 1. This choice is also grounded on the fact that not
choosing Lfair from one of the location preferences L1, . . . , LN might poten-
tially result in a location Lfair that is not suited for the kind of meeting that
the participants require. The solution can easily be extended or integrated with
mapping applications (on the users’ devices) so that POIs around Lfair are
automatically suggested for the meeting. Figure 1 shows an example PPFRVP
scenario modeled as a k-center problem, where four users want to determine the
fair rendez-vous location Lfair.

The k-center formulation considers the Euclidian distances, but it does not
encompass other fairness parameters, such as accessibility of a place and the
means of transportation. In this work, we focus on the pure k-center formulation
as the essential building block of a more complete model, which can be extended
when such an application is to be deployed in existing services.

Let dij ≥ 0 be the Euclidian distance between two points Li, Lj ∈ N2, and
DM
i = maxj 6=i dij be the maximum distance from Li to any other point Lj .

Then, the PPFRVP problem can be formally defined as follows.

Definition 1. The PPFRVP problem is to determine a location Lfair ∈ L =
{L1, . . . , LN}, where fair = argminiD

M
i

A solution for the PPFRVP problem finds, in a privacy-preserving way, the fair
rendez-vous location among the set of proposed (and user-desired) locations, such
that the distance of the furthest desired location to the fair one is minimized.

There are two important steps involved in the computation of the fair location
Lfair. The first step is to compute the pairwise distances dij among all users i, j ∈
{1, . . . , N} participating in the PPFRVP algorithm. The second step requires the
computations of the maximum and minimum values of such distances.
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Fig. 1. PPFRVP scenario, where the fairness function is g = argmini(D
M
i ). The dashed

arrows represent the maximum distance DM
i from each user ui to any user j 6= i,

whereas the solid line is the minimum of all such maximum distances. The fair rendez-
vous location is Lfair = L2 = (x2, y2).

5.2 Transformation Functions f

The fairness function g requires the computation of two functions on the private
user-desired locations Li: (i) the distance between any two locations Li 6= Lj
and (ii) the minimum of the maximum of these distances. In order to achieve
the final result and to preserve the privacy of the personal information, we rely
on computationally secure cryptographic functions. In our protocol, we consider
three such schemes: the Boneh-Goh-Nissim (BGN) [2], the ElGamal [6] and the
Paillier [20] public-key encryption schemes.

What makes these schemes useful are their homomorphic encryption proper-
ties. Given two plaintextsm1,m2 with their respective encryptions E(m1), E(m2),
the multiplicative property (possessed by the ElGamal and partially by the BGN
schemes) states that E(m1)�E(m2) = E(m1 ·m2), where � is an arithmetic op-
eration in the encrypted domain that is equivalent to the usual multiplication op-
eration in the plaintext domain. The additive homomorphic property (possessed
by the BGN and the Paillier schemes) states that E(m1)⊕E(m2) = E(m1+m2),
where ⊕ is an arithmetic operation in the encrypted domain which is equivalent
to the usual sum operation in the plaintext domain. Details about the initializa-
tion, operation and security of the encryption schemes can be found in [6,2,20].

Based on the three aforementioned encryption schemes, we now describe the
distance computation algorithms that are used in our solution.

5.3 Distance Computations

In order to determine the fair rendez-vous location, we need to find the location
Lfair, where fair ∈ {1, . . . , N}, that minimizes the maximum distance between
any user-desired location and Lfair. In our algorithms, we work with the square
of the distances, as they are much easier to compute in an oblivious fashion using
the homomorphic properties of the cryptographic schemes. The problem of find-
ing the argument that minimizes the maximum distance is equivalent to finding
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the argument that minimizes the maximum distance squared (provided that all
distances are greater than 1). Moreover, as squaring maintains the relative order,
the algorithm is still correct.

BGN-distance Our first distance computation algorithm is based on the BGN
encryption scheme. This novel protocol requires only one round of communica-
tion between each user and the LDS, and it works as follows. In Step 1, each
user ui, ∀i ∈ {1, . . . , N}, creates the vectors

Ei(a) =< ai1| . . . |ai6 >=< E(x2i )|E(T − 2xi)|E(1)|E(T − 2yi)|E(y2i )|E(1) >

Ei(b) =< bi1| . . . |bi6 >=< E(1)|E(xi)|E(x2i )|E(yi)|E(1)|E(y2i ) >

where E(.) is the encryption of (.) using the BGN scheme and Li = (xi, yi) is the
desired rendez-vous location of user ui. Afterwards, each user sends the two vec-
tors Ei(a), Ei(b) over a secure channel to the LDS. In Step 2, the LDS computes
the scalar product of the received vectors by first applying the multiplicative
and then the additive homomorphic property of the BGN scheme.

Paillier-ElGamal-distance An alternative scheme for the distance computa-
tion is based on both the Paillier and ElGamal encryption schemes, as shown in
Figure 2. As neither Paillier or ElGamal possess both multiplicative and additive
properties, the resulting algorithm requires one extra step in order to achieve the
same result as the BGN-based scheme, i.e., obliviously computing the pairwise
distances d2ij . The distances are computed as follows. In Step 1, each user ui,
∀i ∈ {1, . . . , N}, creates the vector

Ei(a) =< ai1| . . . |ai4 >=< Pai(x2i )|ElG(xi)|Pai(y2i )|ElG(yi) >

where Pai(.) and ElG(.) refer to the encryption of (.) using the Paillier or
ElGamal encryption schemes, respectively. Afterwards, each user ui sends the
vector Ei(a) to the LDS, encrypted with LDS’s public key. In the following steps
of the protocol, the LDS computes the scalar products of the second and fourth
elements of the received vectors (Step 2.1), randomizes (in an order-preserving
fashion) the results and send a different set of values back to each user (Step
2.2). In Step 3, the users re-encrypt the values with the Paillier scheme and send
it to the LDS, which then obliviously computes the pairwise distances (Step 4.1).

5.4 The PPFRVP Protocol

We now describe our protocol for the PPFRVP problem, as shown in Figure 3.
The protocol has three main modules: (A) the distance computation module,
(B) the MAX module and (C) the ARGMIN MAX module.

Distance computations The first module (distance computation) uses one
of the two protocols defined in the previous subsection (BGN-distance or Paillier-
ElGamal-distance). We note that modules (B) and (C) use the same encryption
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1. Each user i generates Ei(a)
= <ai1|...|ai4> = < Pai(xi

2) | ElG(xi) | Pai(yi
2) | ElG(yi) >

2.1 Server computes
For i =1...N-1, For j = i+1…N:

choose random rs, rt ϵ Zn
*, find their 

multipl. inv. rs
-1, rt

-1

rij,s = rs ; rij,sinv = rs
-1 ; rij,t = rt   ; rij,tinv = rt

-1

cij,s = ai2 · aj2 · ElG(n-2rij,s); cij,t = ai4 · aj4 · 
ElG(n-2rij,t)

end for. end for       

Ei(a)

Users LDS

User 1

User N

1 1
| ... |

N
c c  

 

( 2 ) ( 1)
| ... |

N N N N
c c  

 

3. Each user i decrypts the    
received elements cσ.. using  
the ElGamal key, obtaining
Fσ.. = DElG(cσ..)
and re-encrypts them using   
the Paillier encryption 
scheme, obtaining Pai(Fσ..) 

All users
Pai(Fσ.. )

4.  Server inverts the permutation σ with σ-1 on 
the received encrypted elements Pai(Fσ)

2.2 Chooses random element-permut. fct.
σ = (σ1,..,σN(N-1)) and selects cij,. accordingly

4.1 For i =1...N-1. For j = i+1…N: 
cij

tot = ai1·Pai(Fij,s)rij,sinv· aj1·ai3·Pai(Fij,t)rij,tinv·aj3
end for. end for

Fig. 2. Distance computation protocol based on the ElGamal and Paillier encryption
schemes.

Users LDS

User 1

User N

B.1 LDS masks pairwise encrypted distances
For i =1...N. If ElG-Pai, then w = n, Else w = T

choose random ri, si ϵ Zw
* ,find ri

-1

For j = 1…N,
end for. end for       

1 1 1

* *| ... |
N

d d    

1

* *| ... |
N N N

d d    

B. MAX computations

B.3 Each user i decrypts the received 
values dσ* , determines the MAX 
among them and stores its index 
as σi

max

B.4 LDS inverts perm. σ and θ, and removes masking 
For i = 1..N,                                               ,end for

1*max · (( )) i
max

r
ii i

E gc d s


 

For all i,
σi

max

C. ARGMIN MAX computations C.1 LDS masks MAX values
For i =1...N, choose random ri ,si  ϵ Zw

*

end for    

max · (( ) )irmax
i i iEd c s

* ( · () )irtot
ij ij id c E s

For all i, di
maxC.2 Each user i decrypts the received values di

max

and determines the min among them

User 2 2 1 2

* *| ... |
N

d d    

A. Distance computations using any of the two described protocols

C.3 The user with the min di
max  informs  all participants of the final 

meeting place Lopt

B.2 LDS chooses private element-permut. fcts.
σ =(σ1,..,σN) and θ = (θ1,..,θN). LDS permutes dij

*

with respect to i with σ, and with respect to j 
with θ 

Fig. 3. Privacy-Preserving Fair Rendez-Vous Point (PPFRVP) protocol.
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scheme as the one used in module (A). In other words, E(.) of Figure 3 refers
to the encryption of (.) using either the BGN or the Paillier encryption scheme.

MAX computations In Step B.1, the LDS needs to obliviously hide the val-
ues within the encrypted elements (i.e., the pairwise distances computed earlier),
before sending them to the users, in order to avoid leaking any kind of private
information such as the pairwise distance or desired locations to any user.5 In
order to obliviously mask such values, for each index i the LDS generates two
random values ri, si that are used to scale and shift the ctotij (the encrypted
square distance between Li, Lj) for all j, obtaining d∗ij . This is done in order to
(i) ensure privacy of real pairwise distances, (ii) be resilient in case of collusion
among users and (iii) preserve the internal order (the inequalities) among the
pairwise distance from each user to all other users. Afterwards, in Step B.2 the
LDS chooses two private element-permutation functions σ (for i) and θ (for j)
and permutes d∗ij , obtaining the permuted values d∗σiθj

, where i, j ∈ {1, . . . , N}.
The LDS sends N such distinct elements to each user. In Step B.3, each user
decrypts the received values, determines their maximum and sends the index
σmaxi of the maximum value to the LDS. In Step B.4 of the MAX module (B),
the LDS inverts the permutation functions σ, θ and removes the masking from
the received indexes corresponding to the maximum distance values.

ARGMIN MAX computations In Step C.1, the LDS masks the true
maximum distances by scaling and shifting them by the same random amount,
such that their order (the inequalities among them) is preserved. Then the LDS
sends to each user all the masked maximum distances. In Step C.2 each user
decrypts the received masked (randomly scaled and shifted) maximum values,
and determines the minimum among all maxima. In Step C.3, each user knows
which identifier corresponds to himself, and the user with the minimum distance
sends to all other users his desired rendez-vous location in an anonymous way.

After the last step, each user receives the final fair rendez-vous location, but
no other information regarding non-fair locations or distances is leaked.

6 Analytical Evaluation

6.1 Privacy Analysis

We define the privacy of a PPFRVP protocol as follows.

Definition 2. A PPFRVP protocol A is execution privacy-preserving if a par-
ticipating user cannot determine (with a non-negligible probability) (i) the pre-
ferred rendez-vous locations Li (except Lfair), (ii) the mutual distances and (iii)

5 After the distance computation module (A), the LDS possesses all encrypted pairwise
distances. This encryption is made with the public key of the participants and thus
the LDS cannot decrypt the distances without the corresponding private key. The
oblivious (and order-preserving) masking performed by the LDS at Step B.1 is used
in order to hide the pairwise distances from the users themselves, as otherwise they
would be able to obtain these distances and violate the privacy of the users.
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coordinate relations of any user, after an execution of A. Moreover, the LDS (or
any third-party) should not be able to infer any information about Lfair.

In our analysis, we consider two types of adversaries: Passive (honest-but-curious)
and active adversaries. The passive try to learn as much information as possible
from their inputs, the execution of the PPFRVP protocol and its output, without
maliciously injecting or modifying data. The active adversaries, on the contrary,
try on purpose to manipulate the data in order to obtain private information.

The aforementioned definition captures the privacy requirements of a single
execution of a PPFRVP algorithm. By repeated interactions among a stable set
of users, Lfair could be used to infer possible Li of other users. The issue of
learning from repeated interaction is inherent to any algorithm that, based on a
set of private inputs, chooses one of them in particular, based on some criterion.
For this reason, in this work we consider privacy for a single execution of the
PPFRVP algorithm, or for repeated executions but with different sets of users.

Passive Adversary Under the passive adversary model, we have the following.

Proposition 1. The BGN and ElGamal-Paillier based PPFRVP protocols are
execution privacy-preserving.

In simple words, Proposition 1 states that both proposed algorithms correctly
compute the fair rendez-vous location, given the received inputs, and that they
do not reveal any users’ preferred rendez-vous locations to any other user, ex-
cept the fair rendez-vous location Lfair. Moreover, the LDS does not learn any
information about any user-preferred locations. In the Appendix we prove the
proposition by considering a standard challenger-adversary game methodology
that is usually employed for privacy proofs in cryptographic schemes.

Active Adversary We consider three main categories of active attacks against
PPFRVP protocols, namely (i) the collusion among users and/or LDS, (ii) the
fake user generation and/or replay attacks and (iii) unfair rendez-vous location.

Collusion Regardless of the protocol used or the encryption methods, in
the case when users collude among themselves the published fair result (to-
gether with the additional information malicious users may get from colluders)
can be used to construct exclusion zones, based on the set of equations and
known parameters. An exclusion zone is a region that does not contain any lo-
cation preferences, and the number of such exclusion zones increases with the
number of colluders. We are currently working on quantifying this impact on
our optimization and encryption methods. However, in the unlikely case of col-
lusion between the LDS and the participants, the latter will be able to obtain
other participants’ preferences. In order to mitigate such a threat, the invited
participants could agree on establishing a shared secret by using techniques from
threshold cryptography [25]. The LDS should then collude with at least a given
number of participants in order to obtain the shared secret and learn Li.

Fake Users In case the LDS generates fake users, it would not be able to
obtain the secret that is shared among the honest users and which is used to
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derive the secret key KMv
s for each session v. This attack is more dangerous if a

legitimate participant creates a fake, because the legitimate participant knows
the shared secret. In this scenario, however, the LDS knows the list of meeting
participants (as it computes the fair rendez-vous location) and therefore it would
accept only messages digitally signed by each one of them. Here we rely on the
fact that fake users will not be able to get their public keys signed by a CA.
Replay attacks could be thwarted by adding and verifying an individually signed
nonce, derived using the shared secret, in each user’s meeting message.

Unfair RV The last type of active attack could lead to the determination of
an unfair rendez-vous location. Maliciously modifying or untruthfully reporting
the maximum masked values (Step B.3 of Figure 3) could deceive the LDS to
accept the false received index as the maximum value, and therefore potentially
lead to the determination of a subfair rendez-vous location. However, this is
rather unlikely to happen in practice. For instance, even if in Step B.3 a user
falsely reports one of his values to be the maximum when actually it is not, this
would cause the algorithm to select a subfair rendez-vous location if and only if
no other user selected a smaller value as the maximum distance.

6.2 Complexity Analysis

Table 1 summarizes the complexity results for our two protocols, both for the
client devices and for the LDS. As it can be seen, the client complexity is in
general O(N), where N is the number of users. However, there is a notable
exception for the BGN-based scheme; the number of exponentiation required for
a single decryption is O(

√
T ) [2], where T is the order of the plaintext domain.

In Section 7 we show how this charateristic impacts the decryption performance.

Table 1. Asymptotic complexity of the proposed PPFRVP protocols, where N is the
number of participants. The Distance protocol is the one used in the module A of
Figure 3, whereas PPFRVP includes modules A,B and C.

CLIENT PROTOCOL 
BGN 

(mod n) 

ELGAMAL- 
PAILLIER 
(mod n2) 

LDS 
BGN 

(mod n) 
ELGAMAL- 
PAILLIER 
(mod n2) 

Mult. 
Distance 

O(1) O(N) 
Mult. 

O(N2) O(N2) 
PPFRVP Exp. 

Exp. 
Distance O(1) 

O(N) 
Bilinear 

O(N2) ------- 
PPFRVP O(N√ ) mapping 

Memory 
Distance O(1) 

O(N) Memory O(N2) O(N2) 
PPFRVP O(N) 

Comm. 
Distance O(1) 

O(N) Comm. 
O(N) O(N2) 

PPFRVP O(N) O(N2)  
 

The LDS complexity for both protocols is in general O(N2), with the notable
exception of BGN, where in addition to multiplications and exponentiations
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the schemes requires additional O(N2) bilinear mappings. These operations are
required in order to support the multiplicative property of the BGN scheme.

7 Implementation Performance and User-Experience

In this section, we discuss the results of the performance measurements using
implementations of the proposed algorithms on Nokia devices, and we present
the related results of Phase 3 of our user-study on the prototype application.

7.1 Performance Measurements

The tests were conducted on a testbed of Nokia N810 mobile devices (ARM
400 MHz CPU, Figure 4), and the LDS on a Linux machine (2 GHz CPU, 3
GB RAM). For the elliptic curve BGN-based PPFRVP protocol, we measured
the performance using both a 160-bit and a 256-bit secret key, whereas for the
ElGamal-Paillier-based one we used 1024-bit secret keys. As BGN is an ellip-
tic curve-based scheme, much shorter keys can be used compared to ElGamal
and RSA. A 160-bit key in elliptic curve cryptosystems is generally believed to
provide equivalent security as a 1024-bit key in RSA and ElGamal [23].

Lfair Li

Fig. 4. Prototype PPFRVP application running on a Nokia N810 mobile device. The
image on the left is the main window, where users add the desired meeting participants.
The image on the right is the map that shows the fair rendez-vous location (green pin)
and the user-desired rendez-vous location (red pin).

LDS performance Figure 5(a), 5(b) and 5(c) show the computation time
required by the LDS. We can see that such time increases with the number
of users, and that the ElGamal-Paillier algorithm is the most efficient across
all computations, requiring 4 seconds to execute the PPFRVP protocol with
10 participants. The two BGN-based algorithms are less efficient, but are still
practical enough (9 seconds). The CPU-intensive bilinear mappings in BGN are
certainly one important reason for such delays.

Client performance Figure 5(d) and 5(e) show the different computation
times on the Nokia N810 mobile device. As it can be seen, thanks to the efficient
use of the homomorphic properties of our BGN-based algorithm, this protocol
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Fig. 5. Performance measurements.

is the most efficient for the distance computations, requiring only 0.3 seconds,
independently of the number of users. On the contrary, the alternative protocol
needs 4 seconds with 10 participants. However, the subsequent phases reverse
such results, as the BGN protocol makes intensive use of bilinear mappings.

Overall, we can see that the ElGamal-Paillier protocol has a better perfor-
mance than the BGN-based one, both on the client and on the LDS. Neverthe-
less, both schemes are practical enough and have acceptable time requirements
in order to be implemented on current generations of mobile devices.

7.2 User-Experience

We present the PPFRVP application-related results of our user study introduced
in Section 2. After using our application, all participants tend to agree (34%) or
agree (66%) that our application was easy to use, and that they could quickly
compute the task (97%). More than 71% appreciated that their preferred rendez-
vous point was not revealed to other participants, and only 8% do not care about
the privacy of their rendez-vous location preference. 26% of the respondents were
able to identify to whom the FRVP location belonged to, which is expected.
The users run our application in groups of 5 during the experimentation, and
therefore there was always one person out of five that knew that the FRVP
location was his preferred location.
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From a software developer standpoint, this means that both ease of use and
privacy need to be taken into account from the beginning of the application
development process. In particular, the privacy mechanisms should be imple-
mented in a way that does not significantly affect the usability or performance.
The acceptance of LSBS applications is highly influenced by the availability of
effective and intuitive privacy features.

8 Related Work

Hereafter, we present some works in the literature that address, without pro-
tecting privacy, strategies to determine the fair rendez-vous location. To the
best of our knowledge, this is the first work to address such a problem in a
privacy-preserving way.

Santos and Vaughn [24] present a survey of existing literature on meeting-
location algorithms, and propose a more comprehensive solution for such a prob-
lem. Although considering aspects such as user preferences and constraints, their
work (or the surveyed papers) does not address any security or privacy issues.
Similarly, Berger et. al [1] propose an efficient meeting-location algorithm that
considers the time in-between two consecutive meetings. However, all private
information about users is public.

In the domain of Secure Multiparty Computation (SMC), several authors
have addressed privacy issues related to the computation of the distance be-
tween two routes [10] or points [14,26]. Frikken and Atallah [10] propose SMC
protocols for securely computing the distance between a point and a line seg-
ment, the distance between two moving points and the distance between two
line segments. Zhong et al. [28] design and implement three distributed privacy-
preserving protocols for nearby friend discovery, and they show how to crypto-
graphically compute the distance between a pair of users. However, due to the
fully distributed nature of the aforementioned approaches, the computational
and communication complexities increase significantly with the size of the par-
ticipants and inputs. Moreover, all parties involved in the computations need to
be online and synchronized.

As both our protocols are centralized, most of the cryptographic operations
are performed by the LDS and not by the mobile devices. Additionally, the
proposed solutions do not require all users to be online at the same time, and
they necessitate only minimal synchronization among the mobile devices.

9 Conclusion and Future Work

In this work, we address the problem of privacy in LSBS by providing practi-
cal and effective solutions to one such popular and relevant service. The PPFRVP
problem captures the essential computational and privacy building blocks present
in any LSBS offered on mobile devices. We designed, implemented on real mo-
bile devices and evaluated the performance of our privacy-preserving protocols



16

for the fair rendez-vous problem. Our solutions are effective in terms of pri-
vacy, have acceptable performance, and do not create additional overhead for
the users. Moreover, our user-study showed that the proposed privacy features
are crucial for the adoption of any such application, which reinforces the need
for further exploration in privacy of LSB services. To the best of our knowledge,
this is the first such effort in this direction.
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Proof of Proposition 1

We express the privacy in terms of three probabilistic advantages that an ad-
versary ua (a user or a third-party) gains after an execution of a PPFRVP
algorithm A. First, we measure the identifiability advantage, which is the prob-
abilistic advantage of ua in correctly guessing the preferred location Li of any
user ui 6= ua. We denote it as AdvIDTa (A). Second, the distance-linkability ad-
vantage is the probabilistic advantage of ua in correctly guessing whether the
distance dij between any two users ui 6= uj is greater than a given parameter s,
without necessarily knowing any users’ preferred locations Li, Lj . We denote it
as Advd−LNKa . Finally, the coordinate-linkability advantage is the probabilistic
advantage of ua in correctly guessing whether a given coordinate xi (or yi) of a
user ui is greater than the corresponding coordinate(s) of another user uj 6= ui,
i.e., xj (or yj), without necessarily knowing any users’ preferred locations Li, Lj .
We denote it as Advc−LNKa .

Challenger-Adversary Games

We describe hereafter the challenger-adversary game for the identifiability ad-
vantage AdvIDTa (A) of any user ua, a ∈ {1, . . . , N}, after executing the PPFRVP
algorithm A:

1. Initialization: Challenger privately collects L = {Li}Ni=1, where Li = (xi, yi)
is the preferred rendez-vous location of user ui, and f(Li), ∀i ∈ {1, . . . , N}.

2. PPFRVP algorithm: Challenger executes the PPFRVP algorithm A and
computes f(Lfair) = g(f(L1), . . . , f(LN )). It then sends f(Lfair) to each
user ui,∀i ∈ {1, . . . , N}.

3. Challenger randomly chooses a user ua, a ∈ {1, . . . , N}, as the adversary.
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4. ua chooses uj 6= ua and sends j to the challenger.

5. Challenge: Challenger chooses a random k ∈ {1, . . . , N} and sends Lk to the
adversary. The challenge is to correctly guess whether Lk = Lj .

6. The adversary sends L∗j to the challenger. If the adversary thinks that Lk
is the preferred rendez-vous location of user uj , i.e., if Lk = Lj then the
adversary sets L∗j = 1. If the adversary thinks that Lk is not the preferred
rendez-vous location of user uj , then he sets L∗j = 0. If L∗j = Lk the adversary
wins the game, otherwise he loses.

The challenger-adversary game for the distance-linkability advantageAdvd−LNKa (A)
of any user ua is defined as follows.

1. Initialization: Challenger privately collects L = {Li}Ni=1, where Li = (xi, yi)
is the preferred rendez-vous location of user ui, and f(Li), ∀i ∈ {1, . . . , N}.

2. PPFRVP algorithm: Challenger executes the PPFRVP algorithm A and
computes f(Lfair) = g(f(L1), . . . , f(LN )). It then sends f(Lfair) to each
user ui,∀i ∈ {1, . . . , N}.

3. Challenger randomly chooses a user ua, a ∈ {1, . . . , N}, as the adversary.

4. ua chooses uj , uk 6= ua and sends (j, k) to the challenger.

5. Challenge: Challenger computes a value s, such as the average Euclidian
distance d =

∑N−1
n=1

∑N
m=n+1 dnm/(2N(N −1)) between any two users un 6=

um, and sends (j, k, s) to the adversary. The challenge is to correctly guess
whether djk < s.

6. The adversary sends d∗ to the challenger. If the adversary thinks that djk < s
then he sets d∗ = 1, otherwise d∗ = 0. The adversary wins the game if: (i)
d∗ = 1 ∧ djk < s or (ii) d∗ = 0 ∧ djk ≥ s. Otherwise, the adversary loses.

The challenger-adversary game for the coordinate-linkability advantageAdvc−LNKa (A)
of any user ua is defined as follows.

1. Initialization: Challenger privately collects L = {Li}Ni=1, where Li = (xi, yi)
is the preferred rendez-vous location of user ui, and f(Li), ∀i ∈ {1, . . . , N}.

2. PPFRVP algorithm: Challenger executes the PPFRVP algorithm A and
computes f(Lfair) = g(f(L1), . . . , f(LN )). It then sends f(Lfair) to each
user ui,∀i ∈ {1, . . . , N}.

3. Challenger randomly chooses a user ua, a ∈ {1, . . . , N}, as the adversary.

4. ua chooses uj , uk 6= ui and sends (j, k) to the challenger.

5. Challenge: Challenger chooses a coordinate axis c ∈ {x, y} and sends (j, k, c)
to the adversary. The challenge is to correctly guess whether cj < ck.

6. The adversary sends c∗ to the challenger. If the adversary thinks that cj < ck
then he sets c∗ = 1, otherwise c∗ = 0. The adversary wins the game if: (i)
c∗ = 1 ∧ cj < ck or (ii) c∗ = 0 ∧ cj ≥ ck. Otherwise, the adversary loses.

For the third-party (LDS) adversary, the game definitions are similar to those
of the user adversary. However, as mentioned, the third-party shall not be able
to infer (with a non-negligible probability) the Lfair, in addition to any Li.
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Proofs

Correctness Given the encrypted set of user-preferred locations f(L1), . . . , f(LN ),
the proposed PPFRVP algorithms compute the pairwise distance between each
pair of users dij , ∀i, j ∈ {1, . . . , N}, according to the schemes of the respec-
tive distance computation algorithms. Following the sequence of steps for such
computation, one can easily verify that the ElGamal-Paillier based distance com-
putation algorithm computes

Pai(d2ij) = Pai(x2i ) · Pai(−2xixj) · Pai(y2j ) · Pai(y2i ) · Pai(−2yiyj) · Pai(y2j )

= Pai(x2i − 2xixj + x2j + y2i − 2yiyj + y2j )

which is the same result that is achieved by the BGN-based distance algorithm.

After the pairwise distance computations, the PPFRVP algorithm computes
the masking of these pairwise distances by scaling and shifting operations. The
scaling operation is achieved by exponentiating the encrypted element to the
power of ri, where ri ∈ Z∗w is a random integer and r−1i is its multiplicative
inverse. The shifting operation is done by multiplying the encrypted element with
the encryption (using the public key of the users) of another random integer si
privately chosen by the LDS. These two algebraic operations mask the values d2ij
(within the encrypted elements), such that the true d2ij are hidden from the users.
Nevertheless, thanks to the homomorphic properties of the encryption schemes,
the LDS is still able to remove the masking (after the users have identified the
maximum value) and correctly re-mask all maxima, such that each user is able
to correctly find the minimum of all maxima.

In the end, each user is able to determine Lfair where fair = argmini maxj d
2
ij

from the outputs of the PPFRVP algorithm, and therefore the PPFRVP algo-
rithms are correct.

User Identifiability Advantage Using the previously defined challenger-
adversary games, we define the identifiability advantage of an attacker ua as

AdvIDTa (A) =
∣∣Pr[L∗j = Lk]− 1/N

∣∣
where Pr[L∗j = Lk] is the probability of user ua winning the game by correctly
answering the challenge, computed over the coin tosses of the challenger, and
R(1/N is the probability of a random guess over the N possible user-preferred
locations. Now, at the end of the PPFRVP protocol, the attacker knows Lfair
and its own preferred location La = (xa, ya) ∈ N2. Assuming that all users other
than ua have executed the protocol correctly, ua does not know any preferred
location Li, for i 6= a. Hence, the probability Pr[L∗j = Lk] of him making a
correct guess j∗ about the preferred rendez-vous location Lk of user uk equals
the probability of a random guess, which in this case is 1/N − 1. Thus, the
identifiability advantage of the attacker ua is negligible.
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User Distance-Linkability Advantage The distance-linkability of an at-
tacker ua is defined as

Advd−LNKa (A) = |Pr[(d∗ = 1] ∧ djk < s) ∨ (d∗ = 0 ∧ djk ≥ s)]−
1

2
|

where Pr[.] is the probability of the adversary ua winning the game by correctly
answering the challenge, computed over the coin tosses of the challenger, d∗ is the
guess of the adversary, djk is the distance between Lj , Lk and s is a parameter
chosen by the challenger. In this case, the attacker has to guess whether the
distance djk between two users j, k is greater than s, and clearly if he at some
point in the protocol obtains any pairwise distance djk, his advantage is non-
negligible. However, as explained in the correctness proof, each user gets to know
only N masked (and anonymized) values of the squares of pairwise distances.
Thus, the attacker wants to solve the following system of linear equations:

Cσa,θ1 = ra · d2σ1,θ1
+ sa

...

Cσa,θN = ra · d2σ1,θN
+ sa

where Cij is the received masked value of the pairwise distances and ra, sa are
random integers privately chosen by the LDS. Hence, possessing only the knowl-
edge of his own preferred location and the fair fair rendez-vous location, the
attacker cannot uniquely solve this system of equation, because it is still under-
determined. Therefore, the distance-linkability advantage of ua is negligible.

User Coordinate-Linkability Advantage In order to have non-negligible
coordinate-linkability advantage, an attacker ua needs to have additional infor-
mation regarding at least one of the two coordinates of any other user’s preferred
rendez-vous location. As discussed in the identifiability and distance linkability
advantage proofs, after a private execution of the PPFRVP algorithm A, the at-
tacker does not gain any additional information about any other user’s locations.
Therefore, not knowing any other user’s coordinate, an attacker does not gain
any probabilistic advantage on correctly guessing the relationship between their
spatial coordinates. Hence, the coordinate-linkability advantage is negligible.

Third-party Advantages All elements that are received and processed by the
LDS have previously been encrypted by the users with their common public
key. In order to efficiently decrypt such elements, the LDS would need to have
access to the private key that has been generated with the public key used
for the encryption. As explained in Section 3, in most practical settings, where
service providers have a commercial interest in providing a faithful service to
their customers, the LDS would not try to maliciously obtain the secret key.
Therefore, all the LDS does in the PPFRVP algorithm is to obliviously execute
algebraic operation on encrypted elements, without knowing the values within
the encrypted elements. Hence, the PPFRVP algorithms do not disclose any
information the a third-party, such as the LDS, during or after its execution.


