THE NUMBER FIELD SIEVE
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ABSTRACT. The number field sieve is an algorithm to factor integers of the form
r¢ — s for small positive r and |s|. The algorithm depends on arithmetic in an
algebraic number field. We describe the algorithm, discuss several aspects of its
implementation, and present some of the factorizations obtained. A heuristic run
time analysis indicates that the number field sieve is asymptotically substantially
faster than any other known factoring method, for the integers that it applies to.
The number field sieve can be modified to handle arbitrary integers. This variant
is slower, but asymptotically it is still expected to beat all older factoring methods.

1. INTRODUCTION

In this paper we present a novel algorithm to factor integers of the form r® — s,
where r and |s| are small positive integers, r > 1, and e is large. The algorithm
has become known as the number field sieve, because it depends on arithmetic
in an algebraic number field combined with more traditional sieving techniques.
It has proved to be quite practical, its most notable success being the factor-
ization of the ninth Fermat number. We refer to our account [26] of the latter
factorization for an introduction to the number field sieve.

Let N be an integer of the form r® — s as above. It should be thought of
as an integer that we want to factor into prime factors. Examples of such N
can be found in the Cunningham tables [3]. In many cases, one already knows
some prime factors of N, so that it is the cofactor n that remains to be factored.
Applying the number field sieve for this purpose is not recommended if n is much
smaller than N, since the conjectured run time of the algorithm depends on the
size of N rather than on the size of n.

To express the conjectured run time, we define

L:[v,A] = exp(A(log z)"(log log z)' )

for real numbers z, v and A with z > e. In the discussion below we will, for
simplicity, abbreviate the expression Lz[v, A+ o(1)] to Lz[v, A]; here the o(1) is
for ¢ — 0o. With this notation, we expect that for r and |s| below a fixed upper
bound the number field sieve takes time Ly (%, ¢], where ¢ = (32/9)'/® = 1.5263,
irrespectively of the size of the factors of N. We are not able to prove this run
time rigorously, and even our heuristic argument has a weak spot (see 6.4).
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Buhler and Pomerance observed that the idea of the number field sieve can
be applied to general integers as well, i.e., to integers n that do not necessarily
have a small multiple of the form r® — s as above. The generalized version of the
number field sieve is also conjectured to take time Ln[3, c], but with a larger value
for ¢ than above. Due to additional contributions by Adleman and Coppersmith,
the smallest value for ¢ that can currently conjecturally be achieved is given by

.= (92+26V13)1/3

3 = 1.9019,

see Section 9, and [1; 7; 11]. This makes the number field sieve, conjecturally
and asymptotically, into the fastest currently known integer factoring algorithm;
only the elliptic curve method [29] is, for a special class of numbers, supposed
to be faster.

The function L, v, A], which plays an important role in the analysis of modern
factoring algorithms, interpolates between powers of n and powers of log n. More
specifically, we have

La[1,2] = n?, L,[0,] = (logn)?,
loglog Lna[v, ] = v - loglog L[1, A] + (1 — v) - loglog L[0, A].

The most significant parameter is v. Traditional algorithms such as trial division
have v = 1, in the sense that they run in time L[1, )] for some A > 0. These
algorithms are said to run in exponential time. A polynomial time algorithm
would have v = 0. Thus, the many algorithms that run in time L,[3, A] (see
below) are in this sense halfway between the exponential time and polynomial
time ones. The number field sieve, which has v = }, represents an additional
step in the direction of polynomial time algorithms. The notation L,[v, A] was
introduced in [25], following the notation L(n)* that Pomerance introduced for
Lp(3, 2] in 1983 (see [34]).

The first person to realize that the function L,[%, A] can be used to express
conjectural run times of factoring algorithms was Schroeppel, in 1975 (see [21,
Section 4.5.4]). In 1978 Dixon obtained a rigorous result of this nature (see [16]).
The study of the precise value of A was initiated by Pomerance (see [34]). It is now
conjectured that many factoring algorithms, including the continued fraction
method, the quadratic sieve, and the elliptic curve method, run in expected
time at most L,[3,1], and for the class group relations method this has been
proved (see [31]). Accounts of these developments can be found in [25] and [36].
The cubic sieve algorithm (see [14, Section 7; 25, Section 4.E]) is conjectured to
be faster and to run in time Ln[%,c’], with 1/2/3 < ¢’ < 1; however, it applies
only to numbers of a special form, including Cunningham numbers, and it has
never proved to be of more than theoretical interest.

In 1981 the function L,[4, A] made its appearance in the analysis of factor-
ing algorithms, when Schnorr [38] showed, under plausible assumptions, that
an integer n can be factored in time L,[},2] provided that suitable lists of
smooth numbers are available. Here we call a number smooth—the term is due



to Rivest—il its prime factors are small; more precisely, 1t 1s B-smooth if its
prime factors are at most B.

The importance of the function Ly (v, A] for analyzing factoring algorithms is
due to its connection with smooth numbers. Many factoring algorithms proceed
by generating a sequence of integers, in a more or less random fashion, of which
only the smooth ones are useful. For all algorithms before the number field sieve,
the integers that are inspected for smoothness have order of magnitude n%“, for
some constant w that depends on the algorithm. For instance, all algorithms
with expected run time L,,[%, 1] have w = % The cubic sieve algorithm was the
first to break through the w = % barrier with w = % for n of a special form,
and thus achieved run time Ln[%,c'] with ¢/ < 1 for such n. A more dramatic
improvement is realized by the number field sieve: the integers that it inspects
for smoothness are only n°!), if n is not too much smaller than N. This makes
it the first factoring algorithm with conjectured run time essentially faster than
L [%, A], for any positive constant A. We refer to [7, Section 10] for a discussion
of the relation between the run time of a factoring algorithm and the size of
the numbers that it inspects for smoothness, and for an explanation of the role
played by the function Ly [v, A].

From an algorithmic point of view, the problem of factoring integers is closely
related to the discrete logarithm problem, see [25; 36]. The conjectural run time
of many discrete logarithm algorithms for a finite field of n elements is of the
form L, [v, A] withv = % Coppersmith was the first to achieve v = %, for the case
that n is a power of 2 (see [10; 25, Section 3.17; 19]). His bimodal polynomials
method shares a few formal features with Schnorr’s work [38]: the appearance
of v = %, and the requirement that two expressions are simultaneously smooth.
It is interesting to observe that the number field sieve has these features as well.
In addition, both the number field sieve and the bimodal polynomials method
start by looking for a good auxiliary polynomial.

The algorithm in the present paper was inspired by the discrete logarithm
algorithm for prime n using Gaussian integers that was presented by Copper-
smith, Odlyzko, and Schroeppel (see [14, Section 7; 23]). This algorithm, which
has v = 1, was in turn inspired by work of ElGamal [17]. The main change
that we made, which is crucial for obtaining v = %, is that we use rings of al-
gebraic integers in higher degree number fields, and that we optimize the choice
of the degree as a function of the number to be factored (see 6.3). Gordon [18]
showed that the same technique can be used for the discrete logarithm problem
for prime n. The conjectural run time estimate of his algorithm is Ln[%,gl-’a],
where 9'/3 = 2.0801. Schirokauer [39] improved this to L[4, (64/9)!/3], where
(64/9)*/3 = 1.9230.

In Section 2 of the present paper we describe the number field sieve, as it
applies to integers of the form r® — s for small positive r and |s|. Details that are
left out from this description are explained in Sections 3, 4, and 5. A conjectural
analysis of the run time of the number field sieve is given in Section 6. In Section 7
we discuss a few modifications to the algorithm. Examples of factorizations that
have been obtained by means of the number field sieve are presented in Section 8.



Section 9 1s devoted to possible generalizations of the number fiela sieve to
arbitrary integers.

In our description of the number field sieve we will make a few simplifying and
not always realistic assumptions about the number fields that we are using, cf. 2.5
and 3.1. We refer to 3.4-3.8, Section 9, and [2; 7] for variations of the number
field sieve that make no simplifying assumptions about the fields involved.

We shall denote by Z the ring of integers, and by Q, R, and C the fields of
rational, real, and complex numbers, respectively.

2. THE ALGORITHM

Let n be an odd integer, n > 1, and assume that n is not a prime number or
a power of a prime number. We assume that n itself or a small multiple of n is
of the form r¢ — s, for a small integer » > 1 and a non-zero integer s of small
absolute value, and with e an integer that is possibly much larger. It is assumed
that r, e, and s are given along with n. Numbers of this form often appear on the
‘wanted’ lists from [3]. The fact that n is not a prime number can usually easily
be proved by means of a probabilistic compositeness test, see [25, Section 5.1].
If we use the variation of the probabilistic compositeness test described in [26,
Section 2.5] we can also easily check that n is not a prime power. We describe a
factoring algorithm, the number field sieve, that makes use of the special form of
the multiple 7 — s of n, to factor n. For background on the elementary algebraic
number theory used by the algorithm we refer to [40] and to [26, Section 4].

2.1. Qutline of the algorithm. For a random integer z satisfying
(2.2) z?=1modn

there is a probability of at least ; that ged(n,z — 1) is a non-trivial factor of n.
To factor n it therefore suffices to construct several solutions z to (2.2) in an
apparently random manner. Many factoring algorithms, including the number
field sieve, achieve this by means of the following three-step approach.

Step 1. Selecting the factor base. Select a collection of non-zero elements
a; € Z/nZ, with i ranging over some finite index set I. The collection (a;)ies is
called the factor base, for a reason that will be clear from the sequel. The elements
of the factor base should not be confused with a possible list of candidate factors
of n; indeed, we may assume that all a; are units in Z/nZ, because if they are
not, then n can be factored immediately.

Step 2. Collecting relations. Collect relations between the a;, i.e., vectors
v = (v;)ier € Z' for which

(2.3) Tlef=1.

iel]

Stop as soon as the collection V' of relations that have been found contains
slightly more than #I elements.

Step 3. Finding dependencies. Find dependencies modulo 2 among the ele-
ments of V, i.e., subsets W of V such that 37 .y v = 2 (w;)ier with w; € Z.



Notice that non-trivial dependencies exist because #V > #I. For each depen-
dency W we can calculate an integer z with [lie; @ = (z mod n), and this
integer satisfies (2.2). Under conditions on the a; and V' that can usually not be
proved but that are normally satisfied, consideration of a few linearly indepen-
dent W’s leads to the complete factorization of n into powers of distinct prime
numbers; see [26, Section 2.6] for a further discussion of this point.

The remainder of this section is devoted to a description of how Steps 1 and 2
are carried out in the number field sieve. For Step 3 we refer to the literature on
large sparse matrix elimination, cf. [22; 37; 42; 12; 13], and to [26].

2.4, The idea of the number field sieve. The number field sieve is based on the
observation that it is possible to construct a number field K = Q(a) and a
ring homomorphism ¢ from the subring Z[a] of K to Z/nZ such that ¢(a) =
(m mod n), where both « and |m| are small compared to n; here the smallness
of & is measured by means of the sum of the absolute values of the coefficients of
its irreducible polynomial, which are supposed to be integers. The idea is then
to look for pairs of small coprime integers a and b such that both the algebraic
integer a + b and the integer a + bm are smooth, in a sense to be specified
below. Because ¢(a + ba) = (a + bm mod n), each pair provides an equality of
two products in Z/nZ. The factors occurring in these products form the factor
base, and each congruence leads to a relation as in (2.3).

2.5. Construction of the number field. To define the number field X and the
homomorphism ¢ as in 2.4 we proceed as follows. Given the multiple r¢ — s of n,
we first select a small positive integer d that will serve as the extension degree.
More about the choice of d can be found in Sections 6, 7, and 8. Given d, let k
be the least positive integer for which k-d > e, put ¢t = s - r¥'9=¢ and let f be
the polynomial X¢ — ¢. The number m = r* satisfies f(m) = 0 mod n, since n
divides r° — s. Our number field K is now given by K = Q(a), where f(a) = 0.

We will assume that the polynomial f is irreducible. This condition is likely
to be satisfied, since in realistic cases a non-trivial factor of f gives rise to a
non-trivial factor of n. If it is not satisfied we can replace f by a suitable factor.
The irreducibility of f is easily checked: f is reducible if and only if either there
is a prime number p dividing d such that ¢ is a pth power, or 4 divides d and
—4t is a fourth power (see [24, Chapter VI, Theorem 9.1)). For example, if r is
not a power of a smaller integer, and s = 1, then f is irreducible if and only if
ged(d,e) = 1.

The irreducibility of f implies that the degree of the number field K equals d,
and that each element of K has a unique expression of the form Ef;; gia
with ¢; € Q. The subring Z[a] of K consists of the expressions Zf;[,l sia’ with
coefficients s; € Z. The ring homomorphism ¢: Z[a] — Z/nZ is now defined by
¢(a) = (m mod n). Generally, we have (p(z:.j;; siat) = (Zf__fol sim' mod n) if
s; €EZ.

To simplify the exposition of the algorithm, we will assume that the ring
Z[a] is a unique factorization domain. As we shall see in 3.4, this is a strong
assumption, which is not always satisfied. We refer to Section 3 for a discussion



of the modifications that are necessary if Z[a] is not a unique factorization
domain.

To give an example, for 3?3?—1 (one of the numbers we factored, cf. Section 8),
we used d = 5 as extension degree, m = 3%® and « a zero of the polynomial
f = X®-3; in this case Z[a] is indeed a unique factorization domain. For another
number we factored, 2°1? + 1, we used d = 5, m = 21%3 and o a zero of X5 +8.
Because a?/2 ¢ Z[a] and because a?/2 is a zero of X® — 2 € Z[X], we find that
Z[a] is not the ring of integers of K. We simply got around that problem by
using Z[a?/2] instead of Z[a] in the algorithms described below.

It is in the construction of K and ¢, as described above, that we exploit the
special form of the multiple r* — s of n. The main difficulty with general n is
that one is led to consider much “larger” number fields, which are much harder
to control. This difficulty is discussed in Section 9.

2.6. Smoothness in the number field. An algebraic integer is called B-smooth if
every prime number dividing its norm is at most B. We shall mainly be interested
in smoothness of algebraic integers of the form a + b, where a, b are coprime
integers. The norm N(a + ba) of a + ba is equal to a? — t(—b)¢, so a + ba is
B-smooth if and only if |a? — t(—b)¢| is a product of prime numbers < B.

The norm MNa of a non-zero ideal a of Z[e] is defined by Na = #(Z[a]/a),
which is a positive integer. A first degree prime ideal of Z[a] is a non-zero ideal
p of prime norm p. For such an ideal we have Z[a]/p = Z/pZ, which is a field, so
that p is indeed a prime ideal. The set of first degree prime ideals p is in bijective
correspondence with the set of pairs (p, ¢ mod p), where p is a prime number and
¢ € Z satisfies f(c) = 0 mod p; if p corresponds to (p,c mod p), then Np = p,
the map Z[a] — Z[a]/p = Z/pZ maps a to (c mod p), and p is generated, as an
ideal, by p and ¢ — a. The map Z[a] — Z[a]/p can be used to test whether a
given element of Z[a] is contained in p: namely, one has S; sia’ € p if and only
if 3=, sic' = 0 mod p, with p, ¢ as above.

Let a, b be coprime integers. Every prime ideal of Z[a] that contains a + b is
a first degree prime ideal (see [26, Section 5, Lemma; 7, Corollary 5.5]), and as
we just saw a + ba is contained in the prime ideal corresponding to (p, c mod p)
if and only if a 4+ bc = 0 mod p. This implies that the prime ideal factorization
of a + ba corresponds to the prime factorization of its norm a¢ — t(—b)¢, as
follows. If a? — #(~b)¢ contains the prime factor p exactly k times, with k& > 0,
then a = —bc mod p for a unique ¢ mod p for which f(e) = 0 mod p, and the
first degree prime ideal corresponding to (p,¢ mod p) divides a + ba exactly to
!.l;e kth pc:iwer. So, one ideal of norm p accounts for the full exponent of p in
a® —t(=b)4.

We denote by 7, an element of Z[a] that generates p. Such an element exists
because Z[a] is assumed to be a principal ideal domain; it is unique only up to
multiplication by units. To pass from the prime ideal factorization of a + ba to
its prime factorization it suffices to replace each prime ideal factor p by mp and
to multiply the result by a suitable unit.

2.7. Step 1 of the number field sieve. The discussion above leads to the following
selection of the factor base. First select two smoothness bounds, B; and B,. In



practice these bounds are best deltermined empirically. See dection 8 for some
examples, and 6.2 and 6.3 for choices that are satisfactory from a theoretical
point of view. We will use B; as smoothness bound for the integers a + bm, and
By as smoothness bound for the algebraic integers a+ba. Now let I = PUUUG,
where P is the set of all prime numbers < By, the set U is a set of generators
for the group of units of Z[a], and G consists of the elements 7, € Z[a], where p
ranges over the set of first degree prime ideals of Z[a] of norm < Bj. The factor
base is then formed by the elements a; = ¢(i) € Z/nZ, for i € I. We assume
that ged(a;,n) = 1 for i € I; if that is not the case n can easily be factored, and
the algorithm terminates.

To complete the description of Step 1 it remains to explain how to construct
the sets U and G. This will be done in Section 3.

2.8. Step 2 of the number field sieve. We discuss how Step 2 is performed. First,
select two additional bounds B3 and By. These bounds are again best determined
empirically. See 4.6 for various considerations concerning their choice, and Sec-
tion 8 for examples. To find relations among the a;, one searches for pairs of
integers (a,b), with b > 0, satisfying the following conditions:

(i) ged(a,b) = 1;
(i1) |a + bm| is B;-smooth, except for at most one additional prime factor
p1, which should satisfy By < p; < Ba;

(iii) a+ba is Ba-smooth, except for at most one additional prime ideal factor
p2, of which the norm p; should satisfy By < ps < Bj.

We will assume that a 4+ bm > 0; in the unlikely event that a + bm < 0, replace
(a,b) by (~a, —b).

The prime number p; in (ii) is called the large prime, and the additional
prime ideal p, in (iii) the large prime ideal. Note that p, corresponds to the
pair (p2,c mod p2), where ¢ is such that @ = —bec mod p,; this enables us to
distinguish between prime ideals of the same norm. If the large prime does
not occur, then we write p; = 1. Likewise, if the large prime ideal does not
occur in (iii), we write symbolically p, = 1 and p, = 1. Pairs (a,b) for which
p1 = p2 = 1 will be called full relations, and the other pairs partial relations.

The search for pairs (a, b) satisfying (i), (i), and (iii) above can be carried out
by means of the sieving technique described in Section 4. We show how the pairs
give rise to relations between the a;. First, suppose that (a,b) is a full relation.
By (ii), there is an identity of the form

a+bm= H p‘“’},
| peP

with e(p) € Zo. From (i), (iii), and 2.6 it follows that a + ba can be written as
a product of elements 7, € G to certain powers, and a unit from Z[a]. One can
determine the contribution from G by considering the factorization of N(a +
ba) = a® — t(—b)d, as explained in 2.6. Since U generates the group of units
of Z[a], the unit contribution to the prime factorization of a + ba can be written



as a product of elements from U. In Section 5 it is explained how this is achieved.
As a result, we get an identity of the form

a+ba= [ u . T ¢,

uel JeEG

with e(u) € Z and e(g) € Zyo. Because a4 bm and a + bar have the same image
under ¢, these two factorizations lead to the identity

(2.9) IT ¢@® = [T e ] e(e)*

peEP : uel geG

in Z/nZ, from which one obtains a relation v = (v;)ier € Z' between the a; by
putting v; = e(i) for i € P, and v; = —e(i) for i ¢ P. Note that a;* exists for
i ¢ P because ged(a;,n) =1fori e I

In this way each full relation (a, b) leads to a relation between the a; as in (2.3).

2.10. Making use of partial relations. As we will see in Section 4, partial relations
can be found at little extra cost during the search for full relations. Furthermore,
they occur much more frequently than full relations, so that relatively many of
them are found; so many, in fact, that there are quite a few with the same large
prime or the same large prime ideal. If that occurs it may be possible to convert
a collection of partial relations into a relation among the a; as in (2.3), as follows.

A set C of partial relations is called a cycle if for each (a,b) € C there is a
sign s(a,b) € {—1,+1} such that

H (a + bm)*(@?) = H pe®),

(a,b)eC pEP

with e(p) € Z, and

[T (a+bay@® =TT w®. T ¢*@,

(ab)eC ueU 9€G

with e(u), e(g) € Z. Informally, this means that if a prime p; > B; occurs in
the factorization of a -+ bm for some pair (a,b) € C, then p, also occurs in the
factorization of @+ bm for some pair (@, b) € C with s(a, b) = —s(a, b). Similarly,
each occurrence of a large prime ideal in a + ba is canceled by the occurrence of
the same large prime ideal in another pair with the opposite sign.

For each cycle one can compute the exponents e(p) by adding or subtracting
the exponents occurring in the factorizations of the a + bm for the pairs (a, b) in
the cycle, according to their signs. Similarly, one computes the e(g) by adding or
subtracting the exponents in the prime ideal factorizations of the a + ba; these
exponents are found as explained in 2.6. Once the e(g) have been computed, the
e(u) are found with the method given in Section 5, ¢f. Remark 5.3.



JUSL as above, wWe Now obiadlll Lie 10UOWIINE [TelallOll DELwecdl LI Wy .

H (p(p)e(P] — H {p(u)"(") i H !,0(5')8(”.

peP uel geG

This is the same as (2.9), except that now the integers e(i) are allowed to be
negative. Since ged(a;, n) = 1 for i € I, negative powers of the a; are well defined.

In this way each cycle among partial relations leads to a relation between
the a;.

9.11. Remark. Partial relations for which p; # 1 but p, = 1 are referred to
as pf’s (for ‘partial-full’), because they would lead to an equation as in (2.9)
with a partial factorization, i.e., a factor ¢(p;), on the left hand side, and a
full factorization on the right. Similarly, partial relations for which p; = 1 and
ps # 1 are called fp’s, partial relations for which both p, # 1 and p, # 1 are
called pp’s, and full relations are f/’s. We refer to 7.3 for a more general notion
of partial relations.

The negative s(a,b) in the cycles have the effect that the large primes and
the large prime ideals in the resulting combinations are canceled. For cycles
consisting of only two pf’s (with the same p,) there is no need to make use of
the signs s(a, b), because a relation among the a; of the form

:cz-]:[a:-‘" =3l

iel

for some unit ¢ € Z/nZ (of the form ¢(p;)), is just as useful as a relation
like (2.3). However, doing the same for cycles involving fp’s or pp’s would in-
troduce factors ¢(my) for prime ideals p of norm > B into z, and would thus
require finding generators of the large prime ideals involved in the cycles. This
is avoided by means of the signs described above.

In 9.6 we shall encounter a variant of the number field sieve in which the use
of generators is avoided, and in which the signs can be discarded. At the other
extreme, 9.1 describes a variant in which all prime ideals are canceled, not just
the large ones.

2.12. Finding the cycles. Write P, for the set of all large primes occurring in
the partial relations, and P, for the set of all large prime ideals that occur.
We view the set of partial relations as the set of edges of a graph with vertex
set {1} U Py U P;; namely, each partial relation with large prime p; and large
prime ideal p» represents an edge between p; and ps. The edges incident with 1
correspond to the pf’s and fp’s; except for these edges the graph is bipartite.
Each cycle in the graph gives rise to a cycle among the partial relations. For
cycles of even length one can assign the signs +1, —1 alternately to the partial
relations corresponding to the edges. Cycles of odd length contain the vertex 1;
again onc can assign the signs alternately, but now starting with an edge incident
with 1.

It is not necessary to find all cycles in the graph. For example, if the symmetric
difference of two cycles C) and C5 is a cycle Cs, then the relation between the



a; obtained from C3 15 a hinear combination of the relations obtained from C)
and Cj. Therefore, if the cycles Cy, C> are already used, there is no point in
using C3 as well. In other words, it will suffice to find a maximal set of cycles that
is “independent” in a suitable sense. In [28] it is explained how this can be done,
and how a convenient representation for the graph can be constructed. Another
way of dealing with the partial relations is to postpone their combination into
cycles until Step 3, as discussed in 7.2.

2.13. Free relations. In addition to the relations that are based on full relations
and cycles among partial relations, there are the free relations, which are much
easier to come by. They are already valid in the ring Z[a], before ¢ is applied.
There is one such relation for each prime number p < min(By, B;) for which the
polynomial f = X% — ¢ factors completely into linear factors modulo p. Namely,
let p be such a prime, and write X¢ —t = []_(X —c¢) mod p, where ¢ ranges over
a set of integers that are pairwise distinct modulo p, and where the multiplicities
e. are positive integers (they are equal to 1 if p does not divide dt). Each ¢ is
a zero of f (modp), and therefore gives rise to a first degree prime ideal p of
norm p, as explained in 2.6; for this p we write e(p) = e.. With this notation,
the ideal generated by p is equal to the product of the ideals p*(®), so p can be

written as the product of the elements ﬁ;(p) multiplied by a unit:

p= JJ u®. H 72®  with e(u) € Z.
uel/ p, Mp=p

This gives the identity

o) = [ e T e(m)®,

uel P, Np=p

which has the form (2.9). The integers e(u) € Z can again be found by means
of the method explained in Section 5. The density of the set of primes that split
completely in this way is the inverse of the degree of the splitting field of f, which
divides d - ¢(d) and is a multiple of lem(d, ¢(d)), with ¢ the Euler ¢-function.
For example, if d = 5 then one out of every twenty primes splits completely in
this way; if By ~ By this means that one may expect approximately one fortieth
of all relations to come for free.

This completes the description of Step 2, and thereby the description of the
number field sieve.

3. FINDING GENERATORS

In this section we discuss the computation of the sets U/ and G introduced in 2.7.

An element of Z[a] is a unit if and only if it has norm 1. The structure
of the group of units can be described as follows. Let the polynomial f that
was selected in 2.5 have r; real roots and 2r, non-real complex roots, so that
ra = (d —r1)/2. Since f is of the form X? —t, we have r; = 1 if d is odd; and
if dis even, then ry = 0ift <Oand ry = 2if ¢t > 0. Let | = ry + rp — 1. With



this notation, the group of units of Z[a] is generated by a suitable root of unity
up and [ multiplicatively independent units uy, us, ..., w of infinite order; we
may take ug = —1 if r; > 0. We shall let U consist of such elements ug, ..., u;.

Before we compute G we make a list of all first degree prime ideals of norm
< B. As we saw in 2.6, this amounts to making a list of all pairs (p, ¢ mod p),
where p is a prime number < B, and ¢ € Z satisfies f(c) = 0 mod p. To find
these pairs efficiently, one can use a probabilistic root finder for polynomials over
finite fields, cf. [21, Section 4.6.2]; the number of pairs thus found, i.e., #G, can
be expected to be close to 7(B;), the number of primes up to B;. An element of
Z[a] generates p if and only if it belongs to p and has norm +p; in other words,
the conditions to be met by m, = "% ! 5;a’ are that Y4 sici =0 mod p and
N(7p) = £p. To determine G it suffices to find one such element for each pair
(p, ¢ mod p).

In practice the search for elements of U and G is best carried out simulta-
neously. This can be done as follows. Fix a multiplier bound M and a search
bound C, depending on K and B,. We refer to 3.6 for a discussion of feasible
choices of M and C. For the moment, one may think of M as a fairly small
integer—in all cases that we did M could be taken less than 10—and of C

as roughly proportional to B? The actual asymptotics are a little different,
ghly p 2

though.

For all first degree prime ideals p for which we want to find a generator, put
m(p) equal to M + 1. This number m(p) keeps track of the status of p during
the search process: if m(p) > M no generator has been found yet, otherwise an
element 7, of p has been found with N(#;) = £m(p)p, where p = 91p; then the
ideal generated by 7, is p times an ideal of norm m(p).

3.1. Search algorithm. For all y = Y.0-} s;0f € Z[a] for which T4l s2lal? < C,
compute the norm N(7), cf. Remark 3.3; here |a| denotes the real number |¢|!/4.
If N(7) is of the form kp for some prime p from the list of pairs (p, c mod p)
and some non-zero integer k with |k| < M, do the following. Identify the first
degree prime ideal p that corresponds to this p and 7, in other words, the pair
(p, ¢ mod p) for which Y27=1 s;¢' = 0 mod p, and update the data concerning p:
if m(p) > |k| then replace m(p) by |k| and put 7, equal to 7.

After all these ¥ have been processed, the m(p) are all < M if the multiplier
bound M and the search bound C have been chosen properly. For the p with
m(p) = 1, put m, equal to #p. For the other p, compute mp by dividing 7, by a
generator of the appropriate ideal of norm m(p). This requires the computation
of generators of the ideals of norm at most M, as well as the inverses of these
generators. There are only a few such ideals, and generators for them are often
easy to find; in general, one may hope to encounter them during the search Jjust
described. If this doesn’t work, one may have to appeal to one of the methods
indicated in 3.8 below.

During the same search one keeps track of the units that are encountered.
These are not only the elements y with N(y) = %1 that are found, but also
quotients of two elements that have the same norm (up to sign) and that generate
the same ideal; in the latter case a division is needed. Multiplicative dependencies



can be cast out with the help of the function v from Section 5. The set U of
units that we are left with will often be the set of { multiplicatively independent
elements that we are looking for. If later in the algorithm it is discovered that the
resulting set U does not generate the group of units of Z[a], then this discovery
leads to a new unit, which can be used to alter U; see Remark 5.4.

3.2. Remark. If ry > 0 it 1s useful to require that all elements of G and U except
ug = —1 are positive under some particular embedding of Q(a) into R. For this
purpose one fixes one particular real embedding, and one replaces z by —2 for
each z € GUU, = # —1 that is negative under this embedding.

3.3. Remark. For v = Zf;; sia’ the norm N(v) is a homogeneous dth degree

polynomial in the s; with coefficients that are integers depending on the poly-
nomial f. In our implementation of Algorithm 3.1 the norm-polynomial was
‘hard-wired’, i.e., each new f required changes in the program and thus recom-
pilation. Furthermore, the search was organized in such a way that the norm of
each v was obtained from the norm of the previous v by just a few arithmetic
operations. This greatly enhanced the speed of our searching program.

In the rest of this section we discuss a few technical difficulties related to the
search for U and G. Some of these difficulties were actually encountered during
the factorizations reported in Section 8. Some others we did not encounter, but
we can vividly imagine that this will happen to others who try the algorithm.
Finally, there are difficulties of a primarily theoretical nature, which come up
when one attempts to analyse the run time of the algorithm. We resolve these
difficulties by using the tools that have been developed in algorithmic algebraic
number theory. For general background, see [43; 8; 30; 33).

3.4. Lack of unique factorization. In the description of the algorithm we made
the assumption that Z[a] is a unique factorization domain. This is a strong
assumption, which indeed fails to hold in three of the examples given in Section 8.
The assumption implies that Z[«] is equal to the ring of integers of K, which in
turn implies that e = 0 or —1 mod d. We now discuss how to proceed if Z[a] is
not assumed to have unique factorization. We note that in general it is not easy
to check whether Z[a] has unique factorization, but if desired this can be done
along the way.

3.5. The ring of integers. One starts by replacing Z[a] by the ring A of algebraic
integers in K. Methods for determining A can be found in the references just -
given; see also [5]. The discriminant of f, which equals +d%%~!, can for bounded
r and |s| easily be factored into primes, and once this prime factorization is
available the determination of A proceeds in time (d+log |t|)°(*). A few examples
of rings of integers A are given in 2.5 and in Section 8. If Z[a] # A then Z[a] is
not a unique factorization domain.

We shall denote the absolute value of the discriminant of A by A. This number
is given by A = d%|t|4~!/[A : Z[a])?, and it is usually determined simultaneously
with A. One can show that A divides d?(r|s[)4~! and that it is at least d%/(1 +
log d)°? for some absolute positive constant c.



The replacement of Z[a] by A necessitates a few modifications to the al-
gorithm. The first is that the ring homomorphism ¢: Z[e] — Z/nZ needs to
be extended to A. This can be done if the natural condition ged(drs,n) = 1
is satisfied. Namely, any element ¥ € A can be written as ¥y = §/m, where
m € Z is built up from prime numbers dividing drs; then ¢(m) has an inverse
in Z/nZ and we can extend ¢ to a ring homomorphism A — Z/nZ by putting

= @(B)p(m)~.

Secondly, it is, for the ring A, not necessarily true that each prime ideal p
dividing an expression a+ ba, with a, b € Z coprime, is a first degree prime ideal
in the sense that #A/p is a prime number. In addition to the first degree prime
ideals, one may also encounter prime ideals p that contain a prime number p
dividing the index [A : Z[a]] of additive groups and that intersect Z[e] in a first
degree prime ideal of Z[a]; such p divide drs. In the rest of this section we call
these prime ideals exceptional. In order to compute the prime ideal factorizations
of the expressions a+ ba one needs to construct the exceptional prime ideals p as
well as the corresponding valuations. The existence of an efficient algorithm for
doing this follows from [30, Theorem 4.9, and the discussion following its proof];
often there are faster ad hoc ways to proceed than the one indicated in [30].

3.6. Searching for prime elements. Denote by wy the volume of the unit ball
in RY. We have wg = 7%/2/T(1 + %), where T'(1 + %) can be calculated from
P(1+ z) = 2I(2), I(1) = 1, and T(3) = /7. Next put vg = (4/d)¥?/wa, which
is (24 o(1))/(me))#? for d — oo, and

C=(va- VA -B)4, M =[vg- VA

With this notation, one searches among all non-zero elements v € A for which
3. lev]* < C, with o ranging over the embeddings K — C; if we write
vy = 251 gial with ¢; € Q, then LYy, loev)? = a-1 g2|t]*/4. One of the
purposes of the search is to find, for each first degree or exceptional prime ideal
p with M < MNp < By, a non-zero element 7, € p with [N(7,)| < MNp. One can
check whether a given element v can play the role of 7, for some p if one knows
the norm of v, as in 3.1.

It is a consequence of the Minkowski lattice point theorem that at the end of
the search for each p an element 7, has been found. The ideal generated by =
is then not necessarily equal to p, but it is equal to p multiplied by an ideal of
norm at most M. From 9tp > M one sees that p occurs exactly once in 7p.

The theory of sphere packings implies that the choice of vg above is not the
best one, and in practice one would do wise to experiment with smaller values
for vg. For the purposes of a complexity analysis the value given above is good
enough, since any feasible choice for v4 is outweighed by VA.

3.7. Factoring elements. We shall write G’ for the set of 7,’s found in 3.6, with
p ranging over the set of first degree or exceptional prime ideals for which M <
Np < B,. In addition, we write H for the multiplicative group of non-zero
elements v € K for which the fractional ideal A7y is built up from the prime



ideals of norm < M. All units of A clearly belong to H. The set G’ and the
group H will play the role that the set G and the group of units of Z[a] played
in Section 2. For example, the algorithm of Section 2 requires that we write
certain expressions of the form a + ba as a product of powers of elements of G
and a unit, and similarly for certain alternating products of such expressions. In
the modified algorithm, we write expressions of the same type as a product of
elements of G’ and an element of H. To determine which power of 7, € G’ occurs
in a given expression one proceeds exactly as in Section 2, using 2.6, except if
p is exceptional; in the latter case one needs to apply the valuations mentioned
in 3.5.

3.8. Generators for H. The next step is to find a multiplicative representation
for the elements of H, by means of a set U’ that plays the role of U. One can
attempt to find such a set U’ by means of the method indicated in 3.1. Namely,
during the search in 3.6 one also keeps track of elements that are entirely built
up from prime ideals of norm at most M. If one is lucky, one obtains in this
way not only a set U of generating units, but also generators for each of the
prime ideals of norm at most M, either directly or by combining a few elements
that are found. The set U’ then consists of U together with the generators of
those prime ideals, and as in 3.1 one can modify the elements 7, € G’ found
in 3.6 so as to obtain true generators for the larger prime ideals p. Altogether
this situation is very similar to what we had earlier, the main difference being
that Z[a] is replaced by A. In particular, A is a unique factorization domain in
this case.

In the examples that we tried the above is, essentially, what happened. In
general one cannot expect to be so fortunate. In the first place, the ring A
need not be a unique factorization domain, in which case there do not exist
generators for all primes of norm at most M. A more serious difficulty is caused
by the possibility that A does not have a set of “small” generating units. If
this occurs, then not only the units, but also generators of some of the prime
ideals may be hard to find. It seems likely that this difficulty may actually be
encountered in practice. Since we have no experience with it, we do not know
which of our ideas for dealing with it is to be recommended for practical use. We
shall just make a few remarks of a theoretical nature, which indicate that there
do exist satisfactory ways to solve the problem. In this discussion we make no
assumptions on unique factorization in A4 or about the units of A.

One possibility is to use an algorithm of Buchmann, see [4; 30, Theorem 5;
6, Section 6]. If properly modified and interpreted, this algorithm yields a set of
independent generators U’ for the group H, and these generators are such that
there is a fast algorithm that given v € H finds the unique expression of ¥ as a
product of powers of elements of U’. This means that U’ can in a satisfactory
way play the role of U.

A second possibility is to use Theorem 6.2 of [30] in order to find a set of
generators for H. In order to convert this set of generators into an independent
set U’ for which a fast algorithm as just indicated exists, one can apply linear
algebra over Z (see (20]) as well as basis reduction techniques (cf. [18]).



A third possibility 1s not to bother about finding a generating set for H at
all, but waiting for elements of H to produce themselves in the course of the
algorithm. For example, every Bz-smooth expression a + ba that is found gives,
upon division by an appropriate product of elements of G’, an element of H, and
likewise for the alternating products of expressions a + ba that arise from the
partial relations. The collection of all elements of H that produce themselves in
this way generates a subgroup H' of H. It is not guaranteed that H’ equals H,
but since we never encounter elements of H outside of H’ this is of no concern
to us. We do need to convert the given set of generators for H' into a set U’
of independent generators for H’. This can be done as indicated above. See
also Remark 5.4.

Once a suitable set U’ has been found, it is necessary to find, for each u € U
an element of Z/nZ that can meaningfully be called ¢(u). If U’ is contained in
A this presents no problem, since ¢ is defined on A. If U’ is not contained in
A we can proceed as we did with A itself; this can be done if n is free of prime
factors < M, a condition that can easily be checked.

It is to be remarked that the third possibility for finding U’ mentioned above
can in principle be extended to G’: do not search for elements 7, but wait for
them (or for elements that are just as good) to produce themselves in the course
of the algorithm. This approach might be feasible for number fields for which
A is much larger, and it might therefore be useful if one wants to apply the
number field sieve to arbitrary positive integers n. The resulting algorithm is,
in a somewhat different formulation, discussed in 9.1. As we shall see in 9.6,
there is also a variant of the number field sieve that dispenses with G’ and U’
altogether.

In several of the manipulations with elements of H and G’ that we just
sketched it happens that the elements u that one is interested in arise as the
product of powers of certain other elements and their inverses. In this case it
may be laborious to calculate the explicit expression u = Zf,__"ﬂl gia’ of u in
terms of the powers of a. It is good to keep in mind that this calculation can
usually be avoided. This is because the information on u that the algorithm
really needs—such as the vector v(u) defined in Section 5, the argument of u
under one particular embedding K — C, and the value of p(u) € Z/nZ—can
all be derived from the given product representation for u.

4. SIEVING

In this section we describe how the search for full and partial relations can be
carried out. In the notation of Section 2, these relations correspond to pairs of
coprime integers (a,b) such that a + bm is B)-smooth, except for at most one
prime factor < Bz, and such that a + ba is Ba-smooth, except for at most one
prime ideal of norm < Bj.

From a theoretical point of view one can solve the problem of finding these
pairs (a, b) by applying the elliptic curve smoothness test [25, Section 4.3] to each
individual pair, because smoothness of the algebraic integer a + ba is equivalent
to smoothness of the integer a?—(—b)?, cf. 2.6. In this section we present a more
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in Section 6 the two methods are equivalent.

We describe a method to find pairs (a, b) that satisfy the conditions (i), (ii),
and (iii) of 2.8 for some fixed positive value of b, and for a ranging over an
interval [@min, @max). This method is applied to all b in [1,byay] that are to be
processed. There is no particular order in which this has to be done. We shall see,
however, that one can gain some efficiency by processing the b’s in order. This
is to be kept in mind if the search for relations is carried out in parallel on many
independent processors: it is better to assign a range of consecutive b-values to
each processor than some arbitrary set of b-values. An entirely different way to
organize the sieving step is described in [2].

The values of amin and amay are best determined empirically; see Sections 6
and 8 for theoretical and practical choices. It is not necessary to make a choice
for bmax, since one can simply continue until the number of full relations plus
the number of independent cycles among the partial relations is larger than #1I,
the cardinality of the factor base. With growing b, however, the probability that
both a +bm and a + ba are smooth gets smaller, and quite noticeably so. This
means that if By and B, have been chosen too low, then one might never find
sufficiently many relations. See Section 8 for examples of b, and Section 6 for
a theoretical estimate.

4.1. Two sieves. Fix some positive value for b. Testing the numbers a + bm with
@ € [@min, @max) for Bj-smoothness can be done by means of a sieve over a,
because p divides a + bm for all a that are —bm mod p. After sieving with all
p < By, one can identify the pairs (a,b) that have a reasonable chance to sat-
isfy 2.8(ii), and one has to inspect the corresponding a+ba’s for By-smoothness,
cf. 2.8(iii). If there are only a few candidates, one can do this using trial division
of the norms N(a + ba) (after checking that 2.8(i) holds), cf. 2.6. In practice
it will be much faster to apply a second sieve, again over the entire interval of
a-values, because the number of candidates, for a proper choice of the factor
base, will be considerable. A sieve can be applied because the first degree prime
ideal corresponding to a pair (p,c mod p), as in 2.6, occurs in a + ba for all a
that are —be mod p.

Only pairs (a,b) for which both a + bm (after the first sieve) and a + ba
(after the second sieve) are likely to satisfy the smoothness conditions of 2.8(ii)
and 2.8(iii), are subjected to further gcd and trial division tests to see if the pair
indeed gives rise to a full or a partial relation. The rest of this section is devoted
to a more detailed description of a possible implementation of the sieving step.

4.2. The rational sieve. We describe how the a + bm, for some fixed b, can be
sieved for B;-smoothness. For all a € [amin, @max) initialize the sieve locations s,
as zero. Next, for all primes p < By, replace s, by s, +logp foralla € [Bminy Ginax)
that are —bm mod p.

If, after all primes p < B; have been processed, a sieve location sq 1s close to
log [a + bm]|, then it is quite likely that a + bm is By-smooth. If s, > log(a +
bm) — log Ba, then a + bm is probably B;-smooth except for a factor that is at
most Bs; if B < B, then this factor will be prime, if we assume that a + bm



is square-free. The event that s, > log(a + bm) — log Bj is called a report (but
see 4.3).

4.3. Efficiency considerations. Because we do not sieve with prime powers, not
all smooth a + bm are caught in the sieve: numbers a + bm that are smooth
and not square-free may be overlooked. This is only a first step in speeding up
the sieving without affecting its yield by too much. In practice quite a few more
smooth a + bm will be missed, because 4.2 is only an idealized version of what
actually happens. The s,, for instance, are usually represented by 8-bit (1-byte)
integers. Consequently, logp is rounded to the nearest integer, and the base of
the logarithm is chosen large enough so that overflow is avoided when 8-bit (or
7-bit, see below) integers are added. Furthermore, one often does not sieve with
the small primes below a certain small prime bound, or one replaces them by a
small power. This means that one should use log(a + bm) — log B3 — Bs instead
of log(a + bm) — log B3 while checking for reports, for some Bj that depends on
the small prime bound. The small prime bound and the corresponding Bs are
best determined empirically.

It is often a good idea to allow negative s,, i.e., T-bit integers plus one bit for
the sign. This makes it possible to initialize the s, as — log(a + bm) +log B3 + Bs
so that the report-check can be replaced by a non-negativity check, which is often
faster. In many architectures four consecutive 8-bit s,’s can be checked simul-
taneously for non-negativity by means of one 32-bit ‘and’-operation with the
proper mask. Since a will be small compared to bm, all s, can be initialized to
the same rounded value — log(bm) + log B3 + Bs. This often allows a simultane-
ous initialization of several consecutive s,’s. All these changes are intended to
decrease the cost of the sieving step, while some of them have a negative effect
on the performance. Care should be taken that the cost/performance ratio does
not increase.

The computation of —bm mod p requires a (multi-precision) division by p, un-
less —(b — 1)m mod p is known, in which case a few additions and comparisons
suffice. This makes consecutive processing of the b’s slightly faster than process-
ing them in random order. A similar remark applies to the second, algebraic
sieve.

4.4. The algebraic sieve and trial division. We describe how to process the reports
from 4.2 in order to locate the pairs (a,b) that satisfy conditions 2.8(i), (ii),
and (iii), for the same fixed b as in 4.2. The improvements of 4.3 are taken into
account.

First, check for reports: let A = {a : s, > 0} be the set of a’s at which reports
occur, replace s, for a € A by some moderately small negative number Bg, and
leave the other s, unchanged. Next use a sieve to replace, for all first degree
prime ideals p with 9p < B3, the number s, by s, +log p for all a € [amin, amax)
with @ = —bc mod p, where (p, c mod p) corresponds to p.

Finally, do the following for all a € A for which s, > 0. If ged(a,b) = 1,
then compute log |a? — ¢(—b)?|—for which a crude floating point approximation
to the integer a? — #(—b)? suffices—and check if s, > log|a? — t(—b)4| + Bs —
log By, cf. 2.6. If that turns out to be the case, attempt to factor |a + bm)|



using trial division by the primes < B;. If |a + bm| is B,-smooth, except for
at most one prime factor < Bs, compute |a? — ¢(—b)9|, and attempt to factor
this number using trial division by the primes < Bj. If |a — ¢(—b)¢| turns out
to be Bz-smooth, except for at most one prime factor < Ba, then a pair (a,b)
satisfying 2.8(i), (ii), and (iii) has been found.

We introduced Bs because |a? — t(=b)4| can vary considerably over the a-
interval. This implies that no uniform negative initialization of the s, as in 4.3
can be used, which would allow an easy non-negativity check after the sieving.
To avoid the computation of ged(a,b) (and of log|a® — t(—b)¢|) for alla € A
(with ged(a,b) = 1), we initialize the s, for a € A as Bg, and we only compute
the corresponding ged (and possibly the logarithm) if s, has at least made it
to a non-negative number after the sieving. This saves some time, but it also
introduces an extra inaccuracy, because values of a close to a zero of a? —¢(—b)¢
can be overlooked if Bg is chosen too small. The value for Bg is best determined
empirically. Notice that overflow may occur in s, for a € A, which one can avoid
by changing these s, to the smallest negative value that they can assume instead
of leaving them unchanged during the report-check.

One can also compute ged(a,b) before putting a in A. In that way fewer
locations have to be checked after the second sieve. On the other hand, many
more ged’s would have to be computed than in the version given above, because
in that version the a € A for which s, < 0 after the second sieve are cast
out. It depends on the relative speed of the various operations which version is
preferable.

4.5. Remark. If apmax —amin, the number of memory locations needed for the sieve,
is more than can be allocated, then the interval [amin, @max ) should be partitioned
into subintervals to which 4.2 and 4.4 can be applied, If the subintervals are
processed in order (of the a’s), then one can easily arrange an efficient transition
from one subinterval to the next, by remembering the last visited a-value for
each p and p.

4.6. Choice of B3 and Bs. We conclude this section with a few remarks concerning
the choice of the large prime bounds Bz and Bs. In the theoretical analysis in
Section 6 the partial relations play no role, cf. 6.2 and 6.5. This implies that the
choices B3 = B; and By = B, for which all relations are full relations, are good
enough from a theoretical point of view. In practice, however, partial relations
make the algorithm run substantially faster, as can be seen in Section 8. The
choice of B3 and B4 depends on various considerations. In the first place, one
has to choose them such that B3 < B} and By < B2 to avoid the problem
of having to factor the remaining factor of |a + bm| or |a? — t(=b)¢| after trial
division by the primes < B; or < B,, respectively. Large choices within the
respective ranges result in many reports, a slow performance of the sieving step,
but a very high yield. This may sound good, but large primes near the lower
end of the range have a higher probability to be matched in a cycle, whereas the
majority of the other partial relations will turn out to be useless, after having
slowed down the sieving step and clogged up the disks. A reasonable choice for
Bj seems to be somewhere between B}? and B}, and similarly for Bj.



5. FINDING THE UNIT CONTRIBUTION

Let the notation be as in Sections 2 and 3, and let a, b be coprime integers for
which a + ba is By-smooth. Then the ideal generated by a + ba can be written
as the product of first degree prime ideals p of norm < Bj:

(a+ba) = Hp‘(";"

In 2.6 we saw how the e(p) € Z>q can be determined. The element a + ba itself
can now be written as

(5.1) a+ba= T u® . I ¢,

uel/ JEG

where e(g) = e(p) if g = mp, and with integers e(u) that remain to be found.

Of course, one can find the unit [T, ¢, u**) by computing (a+be)-[] ¢ 974
in the number field. Given a sufficiently large table of products of elements of
U and their inverses, the e(u) can then be found by table look-up. For very
“small” fields this will probably work quite satisfactorily. However, when the
field is a bit “larger”, it will be quite slow, due to the arithmetic in the number
field, which consists of fairly expensive polynomial multiplications and divisions
modulo f. In this section we describe a faster method for determining the e(u).
The method keeps track of some extra information per generator ¢ € G, and
uses vector additions instead of arithmetic in the number field.

Let U = {up, uy,...,w} be as in Section 3. Choose | embeddings ¢, ¢2, . .-,
¢ of K into C such that no two of the ¢; are complex conjugates. This can be
done as follows. Let f have ry real roots oy, a3, ..., ar,, and 2r, = d —r; non-
real complex roots ar, 41, @r, 42, ..., @4, With @, 4r,+; the complex conjugate
of a, 4j, for 1 < j < rs. In Section 3 we saw that I=r; +r;—1. For1 <i <
let ¢; be the embedding K — C that maps f;é gjod to ):f;é q_,-af:.

Forz € K, z # 0, let v(z) be the I-dimensional real vector with ith coordinate
equal to log |@i(z)| — (log |N(z)|)/d, for 1 < i < I; if z is taken to be a unit of
Z[a] then [N(z)| = 1 so that the term —(log|[N(z)|)/d can be omitted. Note
that v(ug) = 0. Let W be the | x [ matrix having v(u;) as its ith column, for
1 < i < [. The image of the group of units of Z[a] under v is a lattice in R/, a
basis for this lattice being given by the columns of W.

To find the e(u) € Z that satisfy (5.1) we notice in the first place that v =
(a+ba) [l,eq 9709 is a unit, and that

(5.2) v(v) = v(a+ba) = Y e(g) - ¥(9).

9€G

Since v is a unit, v(v) is in the lattice spanned by the columns of W, and more
in particular v(v) = W - (e(uy),e(u2), ... ,e(u))7, so that the e(u;) for 1 < i <
are the entries of the vector W~ - »(v) and can be computed as such.

It remains to determine e(up). If f has at least one real root, then we took ug =
—1 in Section 3, and furthermore we specified some particular real embedding



such that the other u; and all g € G are positive under this embedding, see
Remark 3.2. So, we put e(ug) = 0 if a + ba is positive under this embedding,
and e(up) = 1 otherwise. If f has no real roots, then ug is some root of unity. In
this case, choose some particular complex embedding, and select e(up) in such a
way that the arguments (angles) of this complex embedding of the left and right
hand sides of (5.1) match.

In practice the mapping v and the entries of the matrix W~ are only com-
puted in limited precision, and the entries of the vector W~! . v(v) are rounded
to integers. To avoid problems with limited precision computations, it helps to
select (or to change) U such that the columns of W form a reduced basis for the
lattice that they span. It also helps to select (or to change) the elements g € G
such that the coordinates of W~! - v(g) lie between — and 3; one can achieve
this by multiplying g by an appropriate product of units (to be determined with
the help of v). In our implementation, the vectors W= - v(g), for ¢ € G, were
computed once and for all and kept in a file.

5.3. Remark. The same method can be applied to determine the unit contribution
in a cycle C, where we are dealing with [ , yec(a+ ba)*(@®) instead of a + ba
in (5.1): simply replace v(a + ba) in (5.2) by 3, syec s(a,b) - ¥(a + be). The
case of the free relations (see 2.13) is even easier, since v(p) is the zero vector.

5.4, Remark. If the set U as determined in Section 3 fails to generate the unit
group, or if one decides not to bother determining U at all (cf. 3.1 and 3.8),
then the algorithm described in this section needs to be modified in the sense
that the units must be processed as they come along. At each stage, one needs
to keep track of a set of independent generators for the group generated by the
units that have appeared so far. If a unit u is encountered for which v(u) does
not belong to the lattice spanned by the images, under v, of the current set of
generators, then this set of generators needs to be updated. This can be done by
means of lattice basis reduction techniques. It is likely that only a few of such
updates will be necessary. In the cases that we tried difficulties of this nature
did not arise, If they do arise, then the remark made at the end of Section 3 may
help to minimize the arithmetic that needs to be done with the units.

6. RUN TIME ANALYSIS

In this section we present a heuristic estimate for the run time of the number field
sieve. Currently there are several factoring algorithms that have a subexponential
expected run time, such as the continued fraction algorithm, the quadratic sieve
algorithm and its variants, the elliptic curve method, the number field sieve,
Dixon’s random squares algorithm, Vallée’s two-thirds algorithm, and the class
group relations method. Only for the last three algorithms has a rigorous analysis
of the expected run time been given [31; 35; 41]. For the other algorithms the
only available run time analysis is based on heuristic estimates, but in practice
they perform better than the rigorously analyzed ones.

Each of the algorithms mentioned generates, implicitly or explicitly, a se-
quence of integers of which only the smooth ones are useful. Depending on the



algorithm and on its implementation, these integers are constructed determinis-
tically or drawn from a certain distribution. In all cases, the expected number of
smooth integers in the sequence plays an important role in the run time analy-
sis. A satisfactory estimate for this expected number can be given if the integers
are independently drawn from the uniform distribution on the interval [1, B],
for some upper bound B. However, none of the algorithms that we mentioned
satisfies this condition. To obtain a heuristic analysis, one simply assumes that
the smoothness probabilities are the same as in the independent, uniform case.
Only for the random squares algorithm, the two-thirds algorithm, and the class
group relations method has this actually been proved, and this leads to a rigorous
analysis of their expected run times.

For the other algorithms, including the algorithm described in this paper,
nothing better can presently be given than a heuristic analysis. This is not fully
satisfactory, but it is better than having nothing at all. Such heuristic analyses
add to our understanding of algorithms that are practically useful. They enable
us to make comparisons between different algorithms, and to make predictions
about their practical performance. If one insists on having fully proved theo-
rems, then the best one can currently do is explicitly formulating all heuristic
assumptions that enter into the analysis. For examples of such theorems we re-
fer to [34]. For one factoring algorithm, the random class groups method, one
of these heuristic assumptions turned out to be incorrect, and consequently the
heuristic subexponential run time estimate for that algorithm had to be with-
drawn (see [31]).

For the number field sieve the heuristic run time analysis is unusually labo-
rious, and it is carried out in some detail in [7]. The algorithm in the present
paper is sufficiently similar to that in [7] that we may content ourselves with
indicating how the analysis in [7] needs to be modified, and what the outcome
of the modified analysis is.

Our estimates will depend on NV = r¢ — s rather than on the divisor n of N;
in most cases N will be not much larger than n. We use the notation L[v, \]
introduced in the Introduction. Also, the expression Ly[v, A + o(1)] will be ab-
breviated to Ly[v, A], here the o(1) is for N — oo, uniformly for r, s in a finite
set. We shall express our final estimates in the latter notation. We note that
this makes sense only if r, s are fixed, or range over a finite set, and e tends to
infinity.

6.1. Probability of smoothness. The result that makes the L-function useful in
estimating smoothness probabilities reads as follows (cf. [25, (3.16); 7, Section
10)). Let C C R* be a compact set such that for all (A, u, w,v) € C one has
A>0,p4>0,and 0 < w < v < 1. Then the probability that a random positive
integer < Le[v, A] is Lz[w, p]-smooth equals L.[v — w,~A(v — w)/p + o(1)] for
z — o0, uniformly for (A, u, w,v) in C.

6.2. Parameter choice as a function of the degree. We begin by indicating the
optimal choices of the parameters as a function of N and the degree d of the
number field. These are derived from 6.1 by means of the heuristic argument
that was presented in support of Conjecture 11.4 in [7]. The main change that



needs to be made is that the upper bound for |(a + bm)N(a + ba)| used in [7] is
replaced by the smaller value (amax + bmax)(aay + daxlt]), Wwhere m ~ N1/d
and where we assume apmin = —amax. Following this change through the entire
argument one finds that optimal choices of the parameters are obtained if all of
@max, bmax, B1, and B, are taken equal to

exp ((% + o(1)) (d logd + \/(d logd)? + 2log(N1/4)log log(N‘»"d))),

the o(1) being for ¢ — 0o, uniform for bounded r and s and for d in the region
1<d? <N, (The analysis in [7] assumes that amax = bmax, B1 = Bz, but this
makes no difference.) In addition, we take B3 = B and By = B, so that only
full relations are considered (see 6.5). The size of the factor base and the number
of full relations that one expects to find are given by the same expression. The
typical size of the numbers |(a + bm)N(a + ba)| that one wants to be smooth is

exp ((§+o(1)) (¢1og d-+210g(N/ 4)+dy/(dlogd)? + 2log(N1/4)log log(N1/4)) ) .

The run time for the sieving in Step 2 and for the solution of the linear system
in Step 3 each come out to be

exp((1+o(1)) (dlogd + /(@logd)? + 2log(N1/4) loglog(N1/4)) ).

The other parts of the algorithm take less time, with the possible exception of
the search for G and U in Step 1, since this search has no equivalent in the
algorithm of [7]; this point is discussed in 6.4.

6.3. Optimal parameters. The optimal choice for d as a function of N is given

by
_ ((3+0(1) log N\ '/?
d_( 2loglog N for.e:— 00

uniformly for 7, s in a finite set. With this choice for d, the choices for amax,
bmax, B1, B2, Bz, and B4 made in 6.2 are LN[%,(2/3)2"3]. The typical size
of the numbers |a + bm| and [N(a + ba)| is Ln(2,(2/3)*/%), so the numbers
|(a + bm)N(a + ba)| that one wants to be smooth are about Ly (2, (16/3)1/3);
this is N°1), as announced in the introduction. The run time of the entire

algorithm, with the possible exclusion of the search in the number field in Step 1,
is Ln[3,(32/9)1/3).

6.4. Complexity of the search in the number field. As we saw in Section 3, the
search for U and G described in the first half of Section 3 is not likely to work in
all cases. For this reason we consider instead the modifications described in 3.6
and 3.8. A routine calculation shows that the determination of G’ in 3.6 can,
for the parameter choices in 6.2 and 6.3, be performed within the same time
limit. For the methods to determine U’ that were indicated in 3.8 this is not



so clear. To illustrate the difficulty, let us consider the algorithm of Buchmann
that was mentioned in 3.8. Its run time is, according to [30, Theorem 5; 6,
Section 6], bounded by (log A)°? - v/A for some absolute constant ¢. In our case
we have A = d(1+°(1)4 for ¢ — oo (uniformly for bounded r, s), so that the
run time estimate of Buchmann’s algorithm becomes d(¢+3+°(1)4_Since the run
time in 6.3 is d(*+°(1)4  this leads to the question whether one can take ¢ < 31.
We do not know the answer to this question, but we consider it likely that at
least one of the methods suggested in 3.8 will run in time at most d(4+°(1))4 with
our choice of parameters. If this is the case, then the run time Ly(3, (32/9)'/3)
mentioned in 6.3 indeed applies to the entire number field sieve. If it is not the
case, we can still claim this run time for the algorithm of [7], when applied to
integers of our special form. In the examples that we did, the search for I/ and
G took only a very small fraction of the total run time.

It may also be possible to justify, along similar lines, the run time given in 6.2
as a function of d, though perhaps not for as wide a range of d as indicated
in 6.2.

6.5. Remark. Because of our choice B3 = By and B4 = B», partial relations and
cycles among them were not considered in the version of the algorithm analyzed
above. The use of partial relation is important for the practical performance
of the number field sieve, as we shall illustrate in Section 8. Nevertheless, it is
unlikely that the use of partial relations will affect the run time estimate by more
than a factor Ly(3,0]. For a run time analysis of the cycle finding algorithm and
a discussion of the expected number of cycles we refer to [28].

7. ADDITIONAL REMARKS

7.1. Using more number fields. Instead of using a single number field, as in 2.5,
one can consider using several fields. Because the probability of finding relations
decreases with growing b, this might be advantageous, because for each number
field one can start afresh with the small b values. If we use smoothness bounds Bj;
and By; for the ith number field K;, then we need approximately max; {#(By;)} +
2_:(F#U: + #G;) relations, where U; generates the units and G; the first degree
prime ideals of norm < By; in K;. Hence no K; should be used that contributes
fewer than #U; + #G; relations.

To give an example of this multi-field approach, suppose that we want to
factor an integer n of the form 28 + 1, with e a positive integer, using number
fields of degree 4. Direct application of the construction in 2.5 leads to the field
Q(¢?), where ¢ is a primitive 16th root of unity; ¢? is a zero of the polynomial
X*+1, and it maps to 2%¢ mod n under . Two other fourth degree fields that
can be used are the fields Q(¢ & ¢(~'), where ¢ & ¢~! satisfies the polynomial
X*F4X?+2 and is mapped to (2° +27°) mod n = (2° F 27°) mod n under ¢.
To the free relations from 2.13 one can then add the multiplicative relations that
exist between elements of different fields K;. As can be seen in [26], we did not
use this approach for ¢ = 64, and as far as we know the practical importance of
the multi-field approach is still unexplored. From a theoretical point of view the
idea has proved to be worthwhile, see [11].



7.2. Postponing the construction of cycles. The construction of cycles among the
partial relations to obtain relations among the a; can be postponed until Step 3,
as mentioned in 2.12. Here we sketch how this can be achieved. Given a collection
of partial relations, let P; and P,, asin 2.12, be the sets of large primes and large
prime ideals occurring in the partial relations, and let I = (I\U)U P, U P,. Each
partial relation can be regarded as an element ¥ = (%;);cy of z!. Fori e I\U we
have ¥; = v; as in Section 2, and for each ¥ at least 1 and at most 2 of the #;
with i € P; U P, are non-zero. Let V be the collection of ©’s, and let F be the
collection of full relations that have been found.

Given V, we attempt to find more than #I — #F linearly independent linear
combinations among its elements for which the entries corresponding to the
i € PyUP; are even. One way to do this is by means of the methods from [22; 37].
It is easy to see that such linear combinations correspond to cycles among the
partial relations. With appropriate signs, they can be turned into relations among
the a; (as in (2.3)), where the unit contribution can be determined as before.
Combined with the full relations this gives more than #1I relations among the a;,
so that Step 3 can be completed in the usual manner.

There is no obvious way to see if a collection of partial relations will indeed
give rise to more than #I — #F linear combinations as above. In practice one
could first use the cycle counter from [28], and only proceed with the matrix
step above if there are enough cycles.

7.3. Double large primes. Following the approach from [28], we can allow two
large primes exceeding B; in a + bm, or two large prime ideals of norms larger
than Bs in a + ba. This variant of the algorithm turned out to be much slower
than the version described in Section 2. This was caused by the dramatic growth
of the number of reports and trial divisions in the sieving step. Most of these
trial divisions were fruitless, partly because the large factors remaining after trial
division were often found to be prime instead of the product of two large primes.
It is possible, however, that this variant becomes preferable for larger values of
n than we tried.

8. EXAMPLES

The first factorization obtained by means of the number field sieve was the
factorization of the 39 digit number Fy = 247 4 1, which was in fact already
known (see [32]). This factorization was carried out by the fourth author in 20
hours on a Philips P2012, an 8-bit computer with 64K of memory and two 640K
disk drives. With f = X342 and a factor base consisting of 500 rational primes,
the units —1 and 1+ (—2)'/3, and 497 algebraic primes, it took 2000 values of
b and per b the integers a with |a| < 4800 to find 538 ff’s and 1133 pf’s with
p2 = 1 and B3 = 10000; no fp’s or pp’s were used. This led to 399 cycles, which
combined with the 81 free relations (cf. 2.13) sufficed to factor Fr:

2!28 41 = 5964958 91274 97217 - 57 04689 20068 51290 54721.

Several steps of this first number field sieve factorization were not carried out
as described in the previous sections. For instance, only the numbers a + bm



were sieved, prime powers were included in the sieving, and for the reports both
a + bm and N(a + ba) were tested for smoothness by trial division. The unit
contribution was found by means of a table containing uj for |i| < 8. The fourth
author was able to reduce the time needed for factoring F7 by a factor of two
by using some of the methods described in Sections 2, 4, and 5. Other numbers
factored by the fourth author are 2'4* — 3 (44 digits, in 47 hours) and 2'%° + 3
(47 digits, in 61 hours):

9144 _ 3 — 4992729991333 - 45 25956 52604 77899 16201 09802 72761,
9153 4 3 — 5.11 600696 43200 6490087537 - 3455 98297 79603 41893 82757.

Other, and more general, factoring methods should actually be preferred for the
factorization of integers in this range. We do not know for what size of numbers
the number field sieve may be expected to be faster than other, asymptotically
slower methods. We do know that for numbers of the right form that have
more than 100 decimal digits the number field sieve is faster than the multiple
polynomial quadratic sieve method. Until the appearance of the number field
sieve, the quadratic sieve was the only algorithm by which numbers in the 100+
digit range without small factors could be factored, and it still has the advantage
over the number field sieve that it applies to all numbers indiscriminately.

For our number field sieve implementation at Digital Equipment Corpora-
tion’s Systems Research Center we followed the same approach as for our imple-
mentations of the elliptic curve method and quadratic sieve as described in [27]).
In short, this means that one central processor distributes tasks among several
hundred CVAX processors, the clients, and collects their results. For a more
general set-up of the number field sieve, which also allows external sites to con-
tribute to the factoring process by means of electronic mail, we refer to [26] and
also [27). This parallelization and distribution of tasks was used only for the
second step of the algorithm, the collection of relations.

For the number field sieve tasks consist of short, non-overlapping intervals of
b-values. When a client is given an interval [b1,b1 + 1, .. ., ba], he starts sieving
all pairs a, b for b=by, by +1,..., b2in succession, and per b for |a| less than
some predetermined bound. After each b, the client reports the full and partial
relations that it found for that b to the central processor (possibly no relations at
all), and it reports that it just processed that particular value of b. The central
processor keeps track of the relations it received and the b’s that have been
processed. It also notices if a client dies or becomes unavailable, which occurs
for instance if a workstation is claimed by its owner. In that case the b’s that
are left unfinished by that client can be redistributed. In this way, all positive
b’s will be processed, without gaps, until sufficiently many relations have been
collected.

This is a more conservative approach than we use for our elliptic curve and
quadratic sieve implementations. For the latter algorithms we can afford not to
worry about inputs that have been distributed but that are never processed. For
the number field sieve the smaller b’s are noticeably better than the larger ones,
so that we decided to be careful and not to waste any of them.



1ABLE 1. l'our factorizations obtained with tne number neld sleve

323% _ 1 =2.479-17209 - 4 33019 64055 63553 33339 45745 53310 61280
44213 - pb7;

2573 11 =3 - 60427 - 694 57949 73168 94264 42566 12436 59806 37197 21883
18857 - p60;

7'4° 11 =8-10133 -4 73384 33355 18992 92791 10650 93183 78061 19829 00857
3928501623 - p66;

2457 41 =3 . 6885 35756 02053 19573 06063 38968 00918 44825 49047 29193 -
p89.

In Table 1 we list the first four factorizations that were obtained with our
implementation of the number field sieve, with pi denoting a prime of 7 decimal
digits. Additional data concerning these factorizations are found in Table 2. In
the first case Z[a] is a unique factorization domain. In the other three cases this
is not true, but we could use instead the ring of integers of Q(«), which does have
unique factorization. This ring of integers is equal to Z[a®/2], Z[e]+Z-(a+2)* /5,
and Z[a?/2] in the three respective cases.

Although the theoretical analysis indicates that the choice By = B, is asymp-
totically optimal, one can imagine that in practice there are cases in which it is
better to take B} much smaller or much larger than B;. We have no experience
with this. Introducing several fields as in 7.1 leads to an asymmetry between B;
and Bs, see for example [11].

The first two factorizations could have been obtained with much smaller factor
bases if we had used the pp’s, as we did for the other two. The first entry is the
first number we collected relations for; even with our restricted use of the partial
relations the factor base was chosen much too large. For the last two entries our
choice of factor base size turned out to be much better. This was, in particular
for the third entry, more or less a matter of luck, as we had no way to guess how
many partial relations would be needed to produce a given number of cycles.
The experience gained with these and other numbers (see [2; 26; 28]) enables us
to select the bounds B, and B; in a slightly less uncertain manner.

Before one invests a lot of computing time in the search for relations, it is
wise to check if the chosen values for B; and B are likely to work. By processing
several reasonably distanced intervals of consecutive b-values, one can get a fairly
cheap and accurate estimate of the total yield of full and partial relations, which
should help to decide if the choices are realistic. In our later experiments we
tried to select By, B, and bmayx such that the run time of Step 2 is minimized,
and such that one quarter of the final set of relations consists of full relations
and the remaining three quarters are expected to be produced by cycles among
the partials. This is probably rather conservative, but given how the number of
cycles varies, it seems to be a safe choice; in any case, we never had to start all
over again with larger bounds.

For the factorizations reported in Table 1 the first step, the determination



TABLE 2. Data on the four factorizations

n is factor of 301 9 pegg 2457 4. 1

# digits of n 107 108 122 138

o X5-3 Xe+4. X547 X548

m 348 275 730 292

B; = B, 479910 287120 287120 479910

#P 40000 25000 25000 40000

#U + #G 3 + 40067 3+25010 3+ 24880 3+ 40012
factor base size 80070 50013 49883 80015
Bs = B4 108 108 108 108

AGmax = —min 5. 10° 5-108 5.108 5108
brnax 120000 200000 1136000 2650000

# free’s 2014 1248 1222 2003

# fulls = 30000 = 20000 10688 17625

# partials not kept  not kept 1358719 1741365

# pf, pf pairs A~ 25000 = 15000 5341 not counted
# fp, fp pairs ~ 25000 = 15000 5058 not counted
# cycles with pp’s not used not used a2 28000 not counted
total # cycles > 50000 > 30000 = 38400 62842
run time Step 2 2 days 3 days 2 weeks 7 weeks
run time Step 3 2 weeks 4 days 5 days 2 weeks

# digits of factors 41 & 67 48& 60 56 & 66 49 & 89

of sets of generators, turned out to be quite easy. In all four cases the set U
consisted of —1 and two units of infinite order, which were not hard to come by.
Determination of G by means of the method described in Section 3 never took
more than fifteen minutes on a CVAX processor. In Step 2, we partitioned the
a-interval into subintervals of length 500000.

One can find the cycles of length two in a trivial manner by sorting the pf’s
(and fp’s) according to p; (and p), which is all we did to generate the cycles
for the first two factorizations. For the third entry the yield was already getting
quite low for b around 1100000, and we would never have been able to factor the
third and the fourth number had we not used cycles involving pp’s as well.

To place the run times in perspective one should keep in mind that Step 2 was
performed on a network of several hundred CVAX processors, whereas Step 3
was done on a single workstation containing six CVAX processors by means
of a fairly elementary Gaussian elimination program. Since these factorizations
were carried out we made substantial improvements in our implementation of
the third step, see [26; 28]. Other numbers we factored are a composite 115
digit factor of 3**! — 1 into a p52 and a p57, a composite 108 digit factor of
6'4° — 1 into p36-p79, and a composite 117 digit factor of 32°! — 1 into p37 - p80.
These factorizations did not produce new insights, and they were reported in
the updates to [3]. Furthermore we factored the composite 148 digit factor of
the ninth Fermat number, as reported in [26]. For more numbers we refer to [2].



9. GENERALIZATION

Following an idea of Buhler and Pomerance, we can attempt to generalize the
number field sieve to integers n that do not have a small multiple of the form
r¢ — s, for small r and |s|, as follows. Select a positive integer d, an integer m
that is a little smaller than n/4, and put f = Zf:c fi X', where n = Zf=0 fim!
with 0 < fi < m. The algebraic number field is then defined as K = Q(«) with
f(«) = 0, and the map ¢: Z[a] — Z/nZ sends a to (m mod n).

If one is very lucky one hits upon a value of m for which the resulting number
field has a very small discriminant. This occurs, for example, if the digits f; of n
in base m are very small. In that case the algorithm as described in this paper can
be applied without major changes. It is much more likely, however, that one is
not so lucky, and then Steps 1 and 3 will run into serious trouble. It is debatable
how probable it is that Z[a] (or the ring of integers of K') is a unique factorization
domain (see [9]); but even if it is, it is completely unrealistic to expect that the
search methods discussed in Section 3 can be used to find generators for the unit
group and for the first degree prime ideals. This is because the values for M and
C would have to be taken prohibitively large. Standard estimates suggest that
the coefficients of the elements of U and G, when written as explicit polynomials
in @, are so large that they cannot even be written down in a reasonable amount
of time, let alone calculated. This means that the elements of U and G must
be represented in a different way, or that their computation must be avoided
altogether. We discuss a variant of the number field sieve that accomplishes the
latter.

9.1. Elimination over Z. To describe this variant, we make the simplifying as-
sumption that Z[a] is the ring of integers of K; this assumption is discussed
in 9.4. Also, we consider, for simplicity, only full relations. The sieving step pro-
vides us with many pairs of coprime integers a, b with the property that both
a+ bm and a + ba are smooth:

a+bm= Hpe""’(p), (a+ba) = H peee(®),
P P

Here p ranges over the prime numbers < Bj, and p over the first degree prime

ideals of Z[a] of norm < B,; furthermore, the e, 3(p) and e, 4(p) are non-negative

integers that one can compute. Note that we use only the ideal factorization of

a+ba, not a factorization in terms of sets U and G. Next one looks for solutions

to the system

Y eap(P)zap =0mod2, D ess(p)zap =0, zp€Z,
ab a,b

the sums ranging over the pairs a, b that have been found. This amounts to
solving a large and sparse system of linear equations over Z. If ry, 72 are as in
Section 3, then one needs a little more than ry 4 r» solutions z = (za,3); they
should be independent in a suitable sense. For each solution z, the integer

H(a + bm)?e®

a,b



is the square of an integer that can be explicitly written down as a product
of prime numbers p < Bj. Also, the exponents occurring in the prime ideal
factorization of the algebraic number

(9.2) u= ]:[(a + ba)ert

ab

are all equal to 0, so u is a unit. Therefore each z gives rise to a relation of the
type

(9-3) (TT()=@) = ()

in Z/nZ, where u is a unit given by (9.2) and the w(p) are integers. If one
has sufficiently many such relations, then the units u become multiplicatively
dependent, and one can find an explicit dependence relation by combining the
techniques of Section 5 with lattice basis reduction. For this one needs to know
the logarithms of the images of the units u under the embeddings K — C,
and these can be computed from (9.2). Taking the corresponding product of the
relations (9.3) one finds a relation of the type

([T e@r®)” = o(0),
P

so that z =[], p¥(?) is a solution to (2.2), as required.

9.4. The ring of integers. In 9.1 we made the assumption that Z[a] is the ring
of integers of K. If this condition is not satisfied then some of the elements u
produced by the algorithm may not be units. In that case the vectors v(u) from
Section 5 will not necessarily belong to a lattice, so that lattice basis reduction
techniques cannot be used to find relations with integer coefficients between
these vectors.

There are several ways to deal with this problem. The first is based on the fol-
lowing conjecture, which is quite possibly provable with present- clay techniques:
let d be an integer, d > 2; then for a “random” polynomial f = E.—o fiX' with
fi € Z, fqs = 1, the condition that Z[e] is the ring of integers of K is satisfied
with probability equal to 6/x%. This conjecture suggests that when one tries a
few values for m one soon runs into one for which the condition is satisfied, so
that the algorithm does not encounter the difficulty just indicated.

Alternatively, one might deal with the problem by replacing Z[a] by the ring of
integers A of K. With from some minor adjustments to the algorithm (see 3.5)
this ring can take the place of Z[a]. One might object that the only known
algorithms for determining A that are sufficiently fast for our purpose may fail
(see [30, Section 4; 5]); more precisely, they do produce a subring A’ of A, but A’
may be different from A if the discriminant of f has a very large but unknown
repeated prime factor. Fortunately, one can prove that A’ works just as well as
A if any such prime factor exceeds B».



v.0. Lomplexity. In the rest of this section we abbreviate Lnfv, A 4+ o(1)], for
n — 00, to Ly[v, A]. Arguments similar to those in Section 6 suggest that the
variant of the number field sieve that we just discussed factors any integer n in
time Ln[%, 91/3), where 91/3 = 2.0801. A bottleneck is formed by the large linear
system, which is to be solved over Z rather than over Z/2Z. We did invent a
fairly complicated technique by which we could reduce the size of this system
to approximately its square root, while preserving the sparsity; this technique
depends on the availability—from a suitably modified Step 2—of many pairs
of coprime integers a, b for which a + ba is By-smooth (with no condition on
a + bm). This reduces the conjectural run time of the number field sieve to
La[%,(64/9)/3], where (64/9)'/3 = 1.9230.

9.6. Quadratic characters. Although the ideas exposed above may have some
use in practice, our discussion has been rather sketchy. This is because there
exists a method that achieves the same conjectural run time L, [}, (64/9)'/3]
in a conceptually much simpler way. It employs quadratic characters in the
number field. They were suggested by Adleman [1] as a tool to avoid both the
assumption that the ring of integers of K is a unique factorization domain and the
determination of the sets U and G. In [7] it was shown that quadratic characters
can also be used to avoid the need to determine the ring of integers of K (cf. 9.4),
a problem that is not dealt with in [1]. For a description of the method we refer
to [1; 7).

It is an essential feature of the use of quadratic characters that it produces a
square in the number field without producing its square root. This leads to the
problem of computing square roots of very large algebraic integers. The known
methods for doing this, which are discussed on [7, Section 9], lead to arithmetic
operations with integers whose number of bits is roughly proportional to the
square root of the run time of the entire factoring algorithm! A method proposed
by Couveignes (see [15; 2]) works with much smaller numbers; it works only if
the degree d is odd.

It is as yet unknown which of 9.1 and 9.6 should be preferred in practice. The
first method has the disadvantage of a considerably more complicated elimina-
tion step, the second method requires substantial computations in the number
field, but, as shown in [2], works quite satisfactorily if the extension degree is
odd.

Coppersmith [11] showed that one can reduce the conjectural run time to
Ln(3,¢], where ¢ = 1(92 + 261/13)'/3 = 1.9019, by using several number fields.
There is no indication that the modification proposed by Coppersmith has any
practical value.
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