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Abstract— As wireless and mobile technologies are becoming 

increasingly pervasive, an uninterrupted connectivity in 

mobile devices is becoming a necessity rather than a luxury. 

When dealing with challenged networking environments, this 

necessity becomes harder to achieve in the absence of end-to-

end paths from servers to mobiles. One of the main techniques 

employed to such conditions is to simultaneously use parallel 

available networks. In this work, we tackle the problem of 

data allocation to parallel networks in challenged 

environments, targeting a minimized delay while abiding by 

user preset budget. We propose ACCOP, an Adaptive, Cost-

Constrained, and delay-OPtimized data-to-channel allocation 

scheme that efficiently exploits parallel channels typically 

accessible from the mobile devices. Our technique replaces the 

traditional, inefficient, and brute-force schemes through 

employing Lagrange multipliers to minimize the delivery 

delay. Furthermore, we show how ACCOP can dynamically 

adjust to the changing network conditions. Through analytical 

and experimental tools, we demonstrate that our system 

achieves faster delivery and higher performance while 

remaining computationally inexpensive.  

Keywords- Opportunistic Networks, Challenged Networks, Data-

to-channel Allocation, Fuzzy Logic, Parallel Networks 

I.  INTRODUCTION 

A delay tolerant network (DTN), also called challenged 
network, is characterized by node mobility, intermittent 
connectivity, large delay, low data rate, and the absence of an 
end-to-end routing path [1]. Due to these inherent peculiarities, 
general networking practices cannot be transplanted to 
challenged networks but instead need to be revisited and 
refined. In particular, the Mobile Ad hoc NETworking 
(MANET) paradigm, which depends on packet forwarding over 
multiple hops, falls short of providing adequate performance 
levels. The main reason behind that is the fact that MANETS 
consider mobility as an issue to overcome rather than an 
opportunity to exploit. Accordingly, the field of opportunistic 
networks evolved as a possible solution that opportunistically 
utilizes any possible resource available, including mobility, to 
achieve faster data delivery and to maximize throughput.   

The majority of attempts in this field have focused on 
improving the routing protocols to efficiently utilize mobility 
[2,3]. Other solutions were based on central infrastructures 
which assist the end devices by aggregating the messages into 

bundles [4]. Parallel networks have been also investigated to 
minimize delivery delays by splitting the data on multiple 
channels to be delivered simultaneously [5]. 

With the increased availability of multiple heterogeneous 
networks on mobile devices, it has become essential to leverage 
such opportunities for enhanced network connectivity. 
Combined with data bundling (i.e. message aggregation), these 
networks provide a resource efficient solution, which is well 
suited to the underlying model of challenged networks. In this 
work, we tackle the problem of efficient data fragmentation 
over the parallel networks, taking into account network 
conditions and user spending plan. We present ACCOP, an 
Adaptive Cost-Constrained and delay-Optimized data allocation 
scheme over Parallel opportunistic networks. The contribution 
of ACCOP is twofold. First, it provides a novel, 
computationally efficient scheme for data-to-channel allocation 
over opportunistic networks that minimizes the delay while 
conforming to a user-preset cost plan. Second, ACCOP makes 
use of fuzzy decision making to model the uncertainty and 
mitigate the staleness of the estimated network throughput. This 
scheme is totally built on the application layer, thus it does not 
necessitate lower level modifications to the running protocols 
nor cross-layer communication. 

For system evaluation, we use the ONE (Opportunistic 
Network Environment) simulator [7], and we compare against 
the existing systems, showing the advantages our system 
provides. 

In the next section, we present our description of the 
problem at hand. A survey of related work is presented in 
section III. We propose the ACCOP scheme in section ‎IV. Then 
we introduce the throughput estimation mechanism in 
section ‎V. The evaluation of our system comes next. We 
conclude this paper in section ‎VII. 

II. PROBLEM DESCRIPTION 

Our system model is presented in Figure 1. The major 
components are the Stationary Agent (SA), the mobile agents 
(MA), the wireless access points (WAP), the cellular base 
stations, and the Low-Earth-Orbit (LEO) satellites. The SA is a 
server connected to the Internet with storage and processing 
capabilities. It pre-fetches data requested by an MA from the 
appropriate servers (web servers, file servers, email servers, 
etc). When the MA is in a position to receive the data, the 
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gathered data is aggregated into structures called bundles, using 
application level techniques such as [8]. The bundles are then 
sent using one or more parallel (possibly heterogeneous) 
networks according to the ACCOP scheme. One of the principal 
channels used is the challenged network which utilizes WLAN. 
For this channel, data delivery is not restricted to direct 
connections to the access points. Routing and forwarding 
techniques are exploited to extend the reachability of the access 
points. Multiple forwarding actions may take place before the 
mini-bundle reaches the destination that is out of the reach of 
the wireless coverage. At the destination, data is reassembled 
using the associated sequence numbers before being ready for 
use. 

Exploiting both disruption handling mechanisms, parallel 
networks and bundling, allows attaining better user experience 
via higher availability periods. However, this combination gives 
rise to an interesting problem: how should the bundles be sent 
over the parallel channels to minimize the end-to-end delay? 
The problem becomes more challenging when adding the fact 
that each channel has a different cost per data unit, and that a 
user usually prefers to set a maximum budget on his data 
consumption. The simplistic solution [9] consists of dividing the 
bundles into smaller units of predetermined size, called mini-
bundles, enumerating all the possible distributions over the 
existing channels, and choosing the one which minimizes the 
delay while staying within the assigned budget. However, this 
solution suffers two limitations. First, it sets an a priori 
constraint on the size of the mini bundle, which is not 
guaranteed to result in a minimum delay in the steps that follow. 
Second, it follows the brute-force, computationally expensive 
technique of enumerating all the possibilities, relying on the 
preset granularity of a mini-bundle size. On the other hand, our 
scheme allows obtaining the optimal division over the different 
channels, resulting in the minimum delay, before selecting the 
mini-bundles’‎size. 

III. RELATED WORK 

Previous works have studied the effectiveness of parallel 
channels in challenged networks. Consequently, several 

architectures were proposed based on this concept, some of 
which are considered below. 

The first type of such architectures is that capable of 
switching between parallel networks for purposes of data 
transfer. Examples include the MAC layer implementation of 
seamless session management, which allows for transparent 
alternation between the different technologies [21]. This 
concept is employed in [22], which introduces a sample 
heterogeneous delay tolerant network where nodes are allowed 
to utilize any of Cellular/WiMAX/WiFi networks in addition to 
routing schemes. Moreover, the authors of [31] present a cross-
layer architecture that uses elaborate fuzzy-logic techniques to 
decide on the most appropriate accessible channel. It performs 
decisions based on Quality of Service (QoS) and application-
specific factors. These architectures differ from ours in that the 
channels are not simultaneously used, but rather alternated 
between, and in that they mainly rely on cross-layer solutions. 

Another category of heterogeneous networks are those that 
simultaneously send different data types on different networks. 
It has been proposed to use parallel networks not only as 
channels for data transfer but also as means for sending control 
data to decide on the best data channel. The Cellular Assisted 
Heterogeneous Networking (CAHN) architecture is one such 
example [21]. This concept of dedicating one channel for 
sending control information is readily employed in many 
systems in order to aid in routing decisions as in [24]. These 
attempts are detached from ours in the sense that they are 
designed for sending heterogeneous data on heterogeneous 
channels while our system sends the data fragments (possibly 
from same source) on multiple, not necessarily heterogeneous, 
channels. 

The closest type of architecture to our system is that of 
ParaNets [1], which was devised for challenged networks 
protocols, enabling devices to simultaneously utilize multiple 
heterogeneous networks when available. ParaNets-based data-
to-channel allocation techniques have been investigated in the 
recent years. The first system proposed was ParaNets-Enabled 
Data Bundling System for Intermittent Connections (DBS-IC) 
[5], which takes into account the nominal bandwidth of the 
underlying technologies and the maximum affordable cost set 
by the user. The major limitations of this scheme were its 
reliance on brute-force, computationally expensive techniques 
in addition to its inadaptability to the variable network 
conditions. Accordingly, its authors later developed ParaNets-
Enabled DBS-IC with dynamic data-to-channel allocation 
strategies [9]. This allocation scheme was built on the work 
presented in [1] and [5], and suggested that measuring the 
channel conditions and adapting to it significantly improves the 
previous scheme. Nevertheless, they did not clearly present 
their adaptability mechanism. Moreover, they still depended on 
brute-force computations of all possible data-to-channel 
allocations. These limitations are the ones addressed by our 
scheme. 

It is worth mentioning that fuzzy logic, on which our 
throughput estimation is built, has been previously applied in 
delay tolerant networking scenarios. In [22], fuzzy decision 
making was utilized to choose between the different radio 
technologies while, in [23], the decision mechanism was 
targeted for the server selection. Moreover, several works have 

 
Figure 1: System Model 



used fuzzy logic in routing algorithms for challenged networks 
([25,26]). 

IV. ACCOP SCHEME 

We tackle the shortcomings of the brute-force approach to 
data-to-channel allocation by investigating an analytical 
optimization method, which theoretically produces the best 
distribution of the mini-bundles over the parallel channels. We 
show that, for the case of three networks, we can arrive at 
closed form equations, allowing the computation of the specific 
share of each network. The cases with more than three 
accessible networks can be analogously analyzed although they 
are highly uncommon in challenged networks [1, 5] and usually 
inconvenient from a battery power perspective. 

To solve the optimization problem at hand, we use the 
Lagrange multipliers technique, which is typically applied on an 
objective function subject to multiple constraints [10]. In our 
case, these constraints are related to the measured network 
conditions and the maximum affordable cost set by the user. For 
ease of presentation, and without loss of modularity, we 
consider the scenario of 3 accessible data networks: WLAN 
(IEEE 802.11g), 3G (UMTS), and satellite (LEO [11]). 
Moreover, we choose throughput as the metric for measuring 
network conditions. Consequently, our network assessment 
remains at the application layer.  We also base our estimates 
on the passive network measurement paradigm [12], where the 
data packets are post-processed to locally characterize the 
network properties. Such technique is used to avoid the costly 
pilot packets (i.e. regularly sent beacons) which vastly increase 
the estimation overhead. Nevertheless, this might introduce 
some staleness in the throughput estimates, thus we tackle this 
problem in the following section. 

 Modeling the problem using Lagrange Multipliers results in 
an objective function to be minimized, subject to multiple 
constraints. In our case, the value to be determined is the data 
size to be allocated to each channel in order to minimize the 
end-to-end delay. Formally, we cast the problem as follows: 

 Objective function:  (     ) ‎   {
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 Output variables           i 
     

‎                  (2) 

 Constraints:  

 Cost:                            (3) 
 Size:                      (4) 
 Non-negativity:    ,    ,                (5) 

The variables used are defined as: 

  (     ): total end-to-end time taken to deliver a data 
bundle to the requesting node through the multiple 
channels. 

      : size of data (in bytes) allocated to WLAN, 
UMTS, and satellite channels respectively. 

         : throughput (in bytes/sec)  sensed on WLAN, 
cellular (UMTS), and satellite channels respectively. 

 W, C, and S subscripts: WLAN, cellular (UMTS), and 
satellite channels respectively. 

         : cost/byte for data transmission on WLAN, 
cellular (UMTS), and satellite channels respectively. 

  : maximum cost affordable by the user. 

  : total size of the data bundle 

The objective function expresses the delivery delay, 
envisioned by the application, as the maximum delay among the 
diffe e t‎ ch   els.‎E ch‎ ch   el’s‎ estimated delay is the ratio 
of the data size to the sensed channel throughput. We have an 
external user-specified constraint on the maximum affordable 
cost. An inherent system constraint is the total bundle size, 
which should be equal to the summation of the mini-bu dles’ 
sizes. A trivial constraint is the fact that the size allocated to 
each channel should have a positive value.  

The goal is to find X, Y, Z that minimize  (     )  For 

space constraints, we omit the derivation from this paper. In 

the full paper [17], we show that, using the generalization of 

Lagrange Multipliers known as Karush-Kuhn-Tucker (KKT) 

theorem [13], this optimization problem can be reduced to 1) 

solving three linear systems of equations, 2) checking the 

compliance of the solutions with a set of conditions, and 3) 

selecting among the complying solutions the ones 

corresponding to minimal delay. We further simplify the first 

step by showing that a closed form solution for the systems is 

attainable. In sum, the device has at hand a set of 25 possible 

solutions, from which it has to choose the one that results in 

minimum delay. Equation (6) shows a sample of the equations 

the mobile device has to evaluate. The rest of the equations are 

not shown due to space constraints:  
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Before plugging the parameters into the solutions, we can 
verify their compliance to the non-negativity and the cost 
constraints. This results in further pruning the set of possible 
solutions to less than 25. 

V. ADAPTABILITY TO CHANNEL VARIATIONS   

The delay minimization scheme used above assumes the 
presence of decent esti  tes‎ of‎ the‎ ch   els’‎ th ou hput. 
However, this assumption is not easily guaranteed, especially in 
wireless media. It is further exacerbated in the case of delay 
tolerant networks where the end-to-end delay reaches high 
ceilings. Apparently, the active network sampling, relying on 
systematically sending pilot packets, does not carry much 
improvement over the passive network sampling since the 
associated overhead is too expensive given the scantly resources 
available. Accordingly, it is evident that we should select the 
low-overhead passive network sampling technique, updating the 
 ode’s‎ view‎ of‎  etwo k‎ st te‎ upo ‎ d t ‎ delive y.‎ I ‎ wh t‎
follows, we present a method of targeting this estimation 
problem, based on fuzzy decision making. Our methodology 
operates at the application layer. It is also decoupled from the 
delay optimization module. Other estimation schemes can be 
similarly integrated with the ACCOP scheme, and ours is an 

 



attempt towards realizing better estimates in the context of 
opportunistic networks.  

To achieve good estimates in the presence of network 
uncertainties, it is necessary to appropriately combine the 
previous estimates with the newly sensed values through an 
averaging operation. In the case when other factors enter in 
assessing the network, the combination mechanism needs to be 
adaptable and extendable. Fuzzy decision making is well 
tailored for these two goals. . Contrary to the traditional set 
theory, Fuzzy Set Theory allows partial membership to sets (i.e. 
belonging to a set to a certain degree). Accordingly, fuzzy logic 
underlies approximate reasoning, providing a better alternative 
for modeling uncertainty than the typical combination of 
predicate logic and probability-based schemes [14]. 
Furthermore, fuzzy logic allows dealing with several types of 
uncertainty within a single conceptual framework. In 
heterogeneous networks, it allows a technology-independent 
knowledge representation, which can fit multiple radio 
technologies, network protocols, and user applications [15]. In 
sum, this technique is used for modeling uncertainty, preserving 
modularity, and keeping the system easily adjustable for new 
input metrics. The interested reader can refer to [16] for a 
comprehensive survey of fuzzy logic and its applications. 

Figure 2 provides an illustrative diagram of our fuzzy-based 
estimation algorithm, which is triggered whenever the device 
senses a new value of the channel throughput. The system takes 
as inputs the newly sensed throughput, the estimated 
throughput, and the time stamp difference between both 
measurements. The difference between the throughput 
timestamps determines the weight to be allocated to each of the 
new and old measurements in calculating the next estimate of 
the throughput. After being normalized to a fixed range, these 
values undergo fuzzification according to the membership 
functions described below. They pass through the fuzzy 
inference system that outputs a fuzzy throughput estimate, 
which is defuzzified to output a crisp value. Finally, the estimate 
is denormalized to get the actual throughput estimate.  

We associate with time three fuzzy levels: L (low), M 
(medium), and H (high) and with throughput five levels: VL 
(very low), L (low), M (medium), H (high), and VH (very 
high). The membership functions of the time stamp difference 
and the throughput input parameters are both triangular with a 
left and a right shoulder. Figure 3 shows a normalized version 

of the time difference membership function. The boundaries of 
the time membership functions are dynamically updated based 
on the frequency of updates using a weighted average. The 
intuition behind this  adaptability is that if a too large or too 
small Tmax is selected, a low frequency of updates (which 
logically implies that newly emerging values should be given a 
greater weight) will be indistinguishable from a high frequency 
of updates (where the recent estimate should possess a higher 
weight).  i il  ly ‎ the‎ th ou hput‎  e be ship‎ fu ctio ’s‎
boundaries are adapted to the recently sensed values. The 
details of the fuzzification, defuzzification, and the rule base are 
omitted for space constraints and included in the full paper [17]. 

VI. SYSTEM EVALUATION 

In what follows, we describe the details of the simulations 
performed, whose results provide evidence for the effectiveness 
of our system.  

A. Simulation Environment 

Simulations were performed using the Opportunistic 
Network Environment (ONE) simulator [16], which is 
specifically designed for ch lle  ed‎ etwo ks’‎ev lu tio . The 
choice for ONE over ns-2 or OPNET was motivated by its 
widespread use in the opportunistic networking community due 
to its generic support for DTN testing. For implementing the 
fuzzy-based throughput estimation mechanism, we used the 
jFuzzyLogic Java package [18]. 

We compare ACCOP to ParaNets-Enabled Data Bundling 
System for Intermittent Connections with dynamic data-to-
channel allocation strategies [9], which we will shortly denote 
by DBS-IC-DA. The latter is based on the brute force method 
for computing the data allocation contributing to minimum 
delay. It is an evolved version in a series of data-to-channel 
allocation systems [4,9,19] and is, up to our knowledge, the 
only system whose functionality is comparable to ours. These 
systems all share the brute force technique of delay 
minimization, but differ in their adaptation to varying channel 
conditions. We are comparing against the system which is 

Table II: Simulation environment parameters 

Hardware 

Components 

Operating System: Microsoft Windows 
Vista 

Intel Xeon Quad core 2.66 GHz 

Environment 

Number of SAs = 1 

SA buffer size = 2000MB 

Number of MAs = 30 
MA buffer size = 1MB 

Movement Model 

MA model = Random-Waypoint 

SA model = Stationary 

MA wait time = [0, 20]s 
MA speed = [2.7, 5.4] m/s 

Parallel Channel 

Characteristics 

Costs Per Data Size: 

WLAN = 0$/MB 
Cellular = 0.5$/MB 

Satellite = 0.65$/MB 

Nominal Throughput: 

WLAN = 2.4Mbps 

Cellular = 14.4Mbps 

Satellite = 10Mbps 
 

Figure 3: Time difference membership function 

 Figure 2: Throughput estimation via fuzzy decision making 



claimed to have the best adaptation technique among its 
predecessors.  

Our simulated system is a version of ACCOP with three 
accessible communication technologies (WLAN, UMTS, and 
satellite). The WLAN channel relies on an opportunistic routing 
technique, which is a variant of the spray and wait algorithm 
[20]. We used one node as a static agent (SA) for data bundling 
while the other nodes are mobile agents (MA), whose target is 
to transmit and receive data to and from the SA. 

A summary of the major simulation parameters we used is 
presented in Table I. It is noteworthy to mention that the cost of 
WLAN is taken as zero due to the fact that payment is usually 
done for the service provision rather than for data consumption. 
In addition, WLAN nominal throughput is decreased to a value 
typical in challenged environments. Although we use the 
Random Waypoint mobility model at this stage, future work is 
intended to do the performance evaluation on real-world 
mobility traces. 

B. Simulation Results 

The simulation results presented here are based on the 
following performance measures:  

1) Probability of successful data delivery to the request 

initiator 

2) Average data delivery delay from the time the request is 

issued to the time data reaches the request initiator. 

 Figure 4 is based on a maximum cost randomly chosen 
from the range [0.1, 0.2] $/MB. It shows the effect of the mini-
bundles’‎  u be ‎ o ‎ the‎p ob bility‎ of‎ d t ‎ delive y. DBS-IC-
DA is based on dividing the bundled data into mini-bundles of a 
specific size, considering all the possible permutations among 
the channels, and selecting the one with minimum expected 
delay. With DBS-IC-DA, we notice that it is necessary to divide 
each bundle into at least 25 mini-bundles, before reaching the 
same delive y‎  te‎of‎the‎A  OP’s‎sche e.‎Eve ‎whe ‎this‎is‎
achieved, it comes at a higher computational complexity. We 
have shown previously that the device using ACCOP has to 
plug in the parameters into a maximum of 25 equations, and 
then choose the minimum. On the other hand, it can be shown 
that the number of possible allocations to the three channels in 
the DBS-IC-DA scheme, assuming a preset number of mini-
bundles N is given by:  

∑ (     )   (   )  ⁄ 
          (7) 

In this scheme, the more mini-bundles (i.e. higher 
granularity) considered, the higher the chance of approaching 
the lowest delay is. As an example, consider the case of 25 
mini-bundles, where the device has to consider 351 different 
combinations followed by 350 comparisons before deciding on 
the best choice. Therefore, the computations needed are 14 
times higher than ACCOP. The quadratic variation of the 
number of permutations and comparisons with the number of 
mini-bundles makes high granularity very expensive. For the 
same computational cost (25 equations) as ACCOP, the attained 
granularity with DBS-IC-DA is around 5 mini-bundles, which 
still gives a probability of delivery well below that of ACCOP.  

To further illustrate the inaccuracy of the brute force 
method, we present in Figure 5 the variation of the fraction of 
data allocated to each channel as the number of mini-bundles 

increases. We notice that when few mini-bundles are 
considered, the technique has low granularity, so the allocation 
scheme produces results which significantly stray from the ones 
obtained with more mini-bundles. The percentages allocated to 
the channels converge to their stable values only after the 
number of mini-bundles reaches high values. By then, the 
computational overhead becomes substantial.  

Now that we have illustrated the effectiveness of the 
Lagrange based calculations of ACCOP, we move to the 
assessment of the throughput estimation block. To get an insight 
into the improvements gained, we perform the comparison 
against the non-dynamic version of ACCOP. The justification is 
twofold. First, the authors of [9] do not provide sufficient 
description of their throughput estimation to be able to replicate 
and compare against. Second, their channel allocation scheme is 
difficult to test isolated from its adaptability to network 
parameters. Accordingly, the system we are comparing against 
in this part differs from ACCOP in its fixed throughput values 
which were pre-assigned to be the nominal values for the 
technologies employed in each channel.  
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Figure 4: Delivery probability variation with variable granularity 

Figure 6: Delivery delay variation with cumulative delivery probability 

Figure 7: Allocation fraction per channel vs. affordable cost 

 



 Figure 6 illustrates a subtle point in establishing a fair 
comparison between the delivery delays of the systems at hand. 
The delay is plotted against the cumulative delivery probability. 
The motivation behind this is that these systems have different 
delivery probabilities. From a delay perspective, the system 
with higher delivery rate has changed the delay of some of its 
previously undelivered packets from an infinite to a finite value. 
Accordingly, these packets might take more time to get 
delivered, but this time cannot be seen as a performance loss. 
As shown in Figure 6, the delay of the dynamic system is lower 
than that of the non-dynamic version for the same values of 
cumulative delivery probability. When the latter increases 
beyond the overlapping region, the delay of the delivered data 
in the dynamic system is still lower than the supposedly infinite 
delay of the undelivered data.  

In Figure 7, we show the trend of variation of the fraction of 
data allocated per channel with the maximum affordable cost by 
the user. As expected, for zero cost, all data is transported via 
WLAN while for higher allowable costs the reliance on cellular 
channel increases to around 90%. Although the satellite channel 
is more costly and of lower bandwidth than the cellular one, it is 
still used when smaller delays are desired to assist the cellular 
channel. Notice that since this graph shows the average data 
allocation percentage, it can be deduced that there is a uniform 
variation around the nominal values of the throughput for each 
technology. This by no means implies that the static method and 
the dynamic method are similar. The adaptability is effective in 
determining the allocation for best delay according to the 
instantaneous throughput rather than the average one.  

VII. CONCLUSION 

ACCOP provides a novel efficient solution for the data-to-
channel allocation problem in opportunistic networks. Instead 
of relying on brute-force calculations, ACCOP uses Lagrange 
multipliers to arrive at deterministic equations, which result in 
the‎ i i  l‎del y‎possible‎while‎  dhe i  ‎ to‎ the‎use ’s‎ p eset‎
budget. To account for the varying channel conditions we 
presented a fuzzy-logic-based approach for throughput 
estimation over the different channels. In addition to mitigating 
the p    ete s’‎staleness, this fuzzy scheme models the inherent 
uncertainty of throughput measurements. Our system evaluation 
ve ified‎ou ‎cl i s‎of‎A  OP’s‎supe io ity‎i ‎te  s‎of‎delive y‎
probability and end-to-end delay. 

Future work on this topic includes investigating further 
methods for adapting to the varying network parameters. This is 
simplified by the fuzzy decision making technique we 
employed, which supports incorporating heterogeneous metrics. 
Furthermore, we aim to implement the system and to test it on 
mobile phones, to prove its effectiveness in practice.  Our 
ultimate goal is to integrate ACCOP as a module into a larger 
system for opportunistic networking, which combines new 
routing schemes with ACCOP for further enhancements. 
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