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® Flow regimes

® Avalanches in the
laboratory: the
dam-break problem
® Measurement
system: 3D surface

eveloped flow (equilibrium?): 7, ~ pghsin ¢

reconstruction
@ Flow visualization oh
runout phase: 7, ~ pgh cos 9%
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A shallow world . . ou ou . oh Tp
shallow-flow approximation: — + u— = gsinf — gcos0— — —
Newtonian avalanches ot Oz dr  pgh
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A usual working assumption: bulk dynamics are controlled by the body
High-speed flows

Perspectives ® (different regimes outlined using dominant-balance arguments

@ influence of the front: boundary condition? Specific rheology and behavior?

® 4 few peculiarities: instabilities, entrainment (mass balance)
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Experiments: Carbopol (polymeric gel) colored in blue.
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dynamics
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e Effect of solid
concentration

e® Empirical constitutive
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A shallow world

Newtonian avalanches Courtesy Office fédéral de la topographie. Geschinen (VS) 23 Feb.
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dynamics R —

e Inference from field o dt mg _|_ F(u)

data

e Sliding-block ] ]

approximation Projection onto the path

@ Frictional behavior
e Velocity-dependent

behavior FC ] du N X y=f(X

o Mud theometry — = gsin #({)—u——+curvilinear terms

@ Viscoplastic model ) ) d > ) _ )

® Effect of solid Knowing the velocity variations and the path profile makes it possible
concentration

® Empirical constitutive to deduce the bulk frictional force.

equations

e® Empirical constitutive
equations (2)
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Experimental investigations conducted on natural materials or nearly
natural materials providing evidence of viscoplastic behavior.

Authors

Experiments

O’Brien & Julien (1988)

Coussot (1997), Coussot & Piau (1995),
Coussot et al. (2003)

Coussot et al. (1998)

Bardou et al. (2003)

Remaitre et al. (2005)
Major & Pierson (1992)

Martino (2003)
Schatzmann et al. (2003)
Parsons et al. (2001)
Sosio & Crosta (2009)

viscometric tests on natural mudflow deposits
Couette rheometer on fine mud samples

wide-gap Couette rheometer with debris-flow samples

Couette rheometer and special rheometers used for concrete on debris-flow
samples

Couette rheometer on fine mud samples

Couette rheometer with fine-grained materials collected on debris-flow de-
posits

Couette rheometer with natural samples

special BMS rheometer with natural samples

flume with artificial mixtures made up of clay, silt, and sand

Couette rheometer on sand and clay samples
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Eliid-mechanics Herschel-Bulkley model

approaches

Rheology T = TC _l_ K,Y’n’ (1)

e Snow rheology

e Influence on flow
dynamics

e Inference from field

with 7. the yield stress, K and n two constitutive parameters, all
3 Slding-block dependent on solid concentration.

approximation

e Frictional behavior

e Velocity-dependent
behavior ; °

@ Mud rheometry ®

e Viscoplastic model - - ° ]
e Effect of solid ] - ]
concentration

e® Empirical constitutive
equations |
e® Empirical constitutive ] L

equations (2) m

n (Pa

A shallow world m  cod dispersion ¢=0.3 (coll oidal) w1

® bimodal coa slurry ¢=0.32
1 ML | AL L AL i
1 10 10 1000

VoS

Newtonian avalanches

Viscoplastic avalanches

High-speed flows

Perspectives Variation in the bulk viscosity 7) of coal slurry as a function of the shear rate. The bulk viscosity curve is parallel to the curve
I obtained with the fine fraction. I
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Rheology

kaolin

£=0.8

¢=0.6

=04

£=0.2

—— Zhou's model
— Eq. (7)

e Snow rheology

e Influence on flow
dynamics

e Inference from field
data 100 -
e Sliding-block ]
approximation

o4dHhron

r (Pa)

c

e Frictional behavior
e Velocity-dependent
behavior

e Mud rheometry

10

@ Viscoplastic model
e Effect of solid
concentration (”t
e® Empirical constitutive

equations

e® Empirical constitutive

equations (2) Y

Adding a small amount of coarse particles leads to a decrease in the bulk yield stress.

A shallow world

@ |nterestingly enough, the bulk yield stress starts diverging when the total solid concentration comes closer to the
Newtonian avalanches maximum solid concentration.

Viscoplastic avalanches

@ A striking feature of this abrupt rise is that the increase rate is very close to the value measured for a pure kaolin
High-speed flows dispersion.

Perspectives
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Perspectives

Coulomb law (Iverson’s model)
T = ¢’ tan o, (2)

with o/ = o — p (with p the interstitial pore pressure).
Frictional-collisional model (Savage)

T =otany + u(T)7, (3)

with I" the granular temperature.
Coulomb-number dependent relation

T = otany + pu(Co)7. (4)

with the Coulomb number Co = p,a®4? /0.
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approaches

Rheology

e Snow rheology 7T = 0 tan SO(I) : (5)
e Influence on flow

dynamics

® Inference from field with [ = Co_l/ 2 the inertial number. Josserand’s relation is based

data

® Sliding-block on the solid concentration ¢

approximation

e Frictional behavior

t:e\ézl\;)igirty—dependent P K(¢)O- + ILL(QS),VQ’ (6)

e Mud rheometry

@ Viscoplastic model

e Effect of solid
concentration

e® Empirical constitutive
equations

® Empirical constitutive
equations (2)
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High-speed flows
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EL“;‘jc;f;th:j”ics Most models used for computing the behavior of an avalanching
AR mass are based on the shallow-flow approximation: e = H/L < 1.
A shallow world y

gate

e Governing equations:
a shallow world

e Shallow-flow
equations

e Strength and
weakness

Newtonian avalanches

Viscoplastic avalanches

High-speed flows There are two approaches

Perspectives

® Flow-depth averaged equations: historical approach used by Saint-Venant (floods), Savage & Hutter (granular
flows), Iverson & Denlinger, Mangeney & Bouchut and many others...

@ [ubrication approximation: pioneering work conducted by Reynolds and subsequent authors (boundary layer
theory), renewed interest with the work done by Mei & Liu, Huppert, Balmforth & Craster.
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Rheology

A shallow world

e Governing equations:
a shallow world

e Shallow-flow
equations

e Strength and
weakness

Newtonian avalanches
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High-speed flows
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A versatile set of

ohu Ohu?
ot

equations

oh N ohu
ot ox

+F ox

oh 1

= pgh — kgh— — —,

or p

with 8 Boussinesq coefficient (usually set to unity), k a pressure coefficient, and 7 the bottom shear stress, EZ and D

entrainment and deposition rates.

u(w,y,t) h(zt)

Ty _ T
-

| N I N N O N s

Information is averaged when deriving the governing equations, which makes it difficult to properly define the coefficients that

come up in the final equations.
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EL“;‘;'C;:;C:;”“S The shallow-water equations offer a reasonably accurate physical
framework for describing a host of natural phenomena. The
Rheclogy governing equations are now well “tamed” by numerical methods.
A shallow world Numerical schemes for 1D and 2D models are reasonably fast and
SN —
o oremng squations: make it possible to simulate complex flows (e.g., tsunamis) on large
 Shallow-flow scales. However, when dealing with geophysical flows on steep
St slopes, we are faced with many issues:
gth and
weakness

@ tracking the front position;
Newtonian avalanches

. . . . . . . . . .
Viscoplastic avalanches computing the internal dissipation and account for it through 7p,;

High-speed flows @ taking additional terms induced by irregular topography into account;

Perspectives

® evaluating mass balance and its effect on the bulk dynamics;

® estimating the change in the bulk composition (e.g., segregation) and local rheology.

' 23-24 June 2010 Valsavarenche Summer School — 21/ 44 '



S

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Fluid-mechanics
approaches

Lubrication approximation

Rheology

A shallow world

Newtonian avalanches

e Lubrication
approximation

e Lubrication
approximation
(continued)

e Application to
Newtonian avalanches
e Application to
Newtonian avalanches
(continued)

e Convective regime

e Front behavior

® Matched asymptotic
expansions

e Comparison with data
e Comparison with data

)

Viscoplastic avalanches

High-speed flows

Perspectives

Starting with the Cauchy equations (mass and momentum balance
equations), we scale the variables

u=u/Us, T=x/Ls, y=19y/(eLy), p=0/Psx, p=p/Ps, ...

with e = H, /L, and make a power e-expansion of the scaled

variables: u = ug + €uq + . . .. Collecting together the terms

associating the same power of €, we end up with a hierarchy of
equations. For instance, we have

du Op do do

=1 = e n+1 T Ty v
eRe = € cot 08:13 + € o + 9y (7)

dv Op do do
2 Ly n vy

— = —cotf 1+ — — 8
eRedt CO ( +(’3y)+68x + € 9y (8)
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Fluid-mechanics

0
approaches To order €, we have to solve

Rheology

A shallow world O — 2 | +

Newtonian avalanches
@ Lubrication

imati Ipo

approximation

e Lubrication O a Y (10)
approximation y

(continued)

e Application to
Newtonian avalanches

a much simpler set of equations than the full governing equations! In
e Application t .. .
Moo avalnches the limit of Re — 0 and to order ¢, we obtain

(continued)

e Convective regime 8 80'
e Front behavior O — COt 9 pO _|_ 17 Yy
e Matched asymptotic 833 ay ’

expansions

e Comparison with data a ao.
e Comparison with data 0 = — cot 9 pP1 + 0, zy

@ 0y ox

Viscoplastic avalanches

(90'0795@/

: )

(11)

(12)

High-speed flows

Perspectives
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Rheology

A shallow world

Newtonian avalanches

e Lubrication
approximation
® Lubrication
approximation
(continued)

e Application to

Newtonian avalanches

e Application to

Newtonian avalanches

(continued)
e Convective regime
e Front behavior

® Matched asymptotic

expansions

e Comparison with data
e Comparison with data

)

Viscoplastic avalanches

High-speed flows

Perspectives

Application to Newtonian avalanches

To leading order, the governing equation for i writes

o, O 0 (a0
Ot oxr Oz ox |
SN >

o VO
convection dz’ffusion

(13)

Analytical solutions can be worked out in terms of similarity solutions
at late and early times:

h(z,t) = t " H(E, )

with & = z/t".

Substituting into (13) gives n = 1/3 (late time solution) or n = 1/5
(early time solution). Depending on the initial conditions,
convergence towards the similarity solution can be slow.
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Fluid-mechanics
approaches

@ 0.4F

Rheology

h(x,t)

A shallow world

Newtonian avalanches
e Lubrication
approximation

e Lubrication
approximation
(continued)

e Application to
Newtonian avalanches
e Application to
Newtonian avalanches
(continued)

(b)

e Convective regime

@ Front behavior

® Matched asymptotic Flow-depth profiles provided by numerical solutions (solid line) of the nonlinear diffusion equation for & = 6° at

expansions dimensionlesstimes t = 1, 2, 4, 8, 16, 32, 64, 128, and 256. In subplot (a), we plotted the analytical approximation obtained
e Comparison with data by composing the inner and outer similarity solutions (dashed line). In subplot (b), the analytical solution corresponding to

e Comparison with data pure convection is reported.

2)

Viscoplastic avalanches

High-speed flows

Perspectives
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Convective regime

Rheology

A shallow world

Newtonian avalanches

e Lubrication
approximation

e Lubrication
approximation
(continued)

e Application to
Newtonian avalanches
e Application to
Newtonian avalanches
(continued)

e Convective regime

e Front behavior

® Matched asymptotic
expansions

e Comparison with data
e Comparison with data

)

Viscoplastic avalanches

High-speed flows

Perspectives

At long times, we end up with a nonlinear convection equation:

Oh  Oh3

5’75_'_ ox

0,

which can be recast into the characteristic form

dh ot

— = (0along — =1 and —

dr ot

ox
ot

r =X+ 3h0(.7?0)t

h(.’L’, t) = h()(.’L’())

— 3h2,

(14)

(15)
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Front behavior

Rheology

A shallow world

Newtonian avalanches

e Lubrication
approximation

e Lubrication
approximation
(continued)

e Application to
Newtonian avalanches
e Application to
Newtonian avalanches
(continued)

e Convective regime

e Front behavior

® Matched asymptotic
expansions

e Comparison with data
e Comparison with data

)

Viscoplastic avalanches

High-speed flows

Perspectives

Singularity at the front (boundary layer). We make the following

change of variable

In the mobile frame attached to the front, the dominant balance in
the momentum balance equation is between the streamwise
gradient of the pressure and the cross-stream gradient of the shear
stress. Since h = O(¢) and cot /2 = O(1), we then pose

We now embody this scaling analysis into an asymptotic analysis by
substituting the following stretched variables into the governing
equations: x = x5 + ex’, y = ey, t = €t

u = e3/2 — 63/2u6 4.y = e3/2) — 63/22}6 4.

X

/

z —z4(t)

€

€ = tan? 0.

h=c¢hy+---,andp=ep)+---.
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Matched asymptotic expansions

Rheology

A shallow world

Newtonian avalanches

e Lubrication
approximation

e Lubrication
approximation
(continued)

e Application to
Newtonian avalanches
e Application to
Newtonian avalanches
(continued)

e Convective regime

e Front behavior

@ Matched asymptotic
expansions

e Comparison with data
e Comparison with data

)

Viscoplastic avalanches

High-speed flows

Perspectives

The re-scaled momentum balance equations are

d 5, o 9%u’ 9%/
61/2Re(—u—:i;f u) — 3l/2_397P 220 % 7% (16)

dt’ ox’ ox’ Ox’? oy’?

d o o 8%’ 8%’
63/2Re(—v—£tf v) — —3c0t9<1—|——p>—|—65/2—v 4+ el/22 % g

dt’ ox’ oy Ox'2 oy'?

The evolution equation for the flow depth is then
Oh

Oh 0
+ G(h) = 0, with G(h) = —h?> cot —
ot ox' () () Ox'
That is a nonlinear diffusion that can be solved numerically (e.g.
using the built-in function pdepe in Matlab); exact similarity solution
also exist (providing the long-term behavior).
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Fluid-mechanics
approaches

10.0C
Rheology 5.0

A shallow world

1.0Ct

Newtonian avalanches g o5
e Lubrication
approximation 0.1Ck
e Lubrication 0.05}
approximation
(continued) 001

0.01 0.05 0.1C 0.50 1.0C 5.0010.0C

e Application to X

Newtonian avalanches
e Application to

Newtonian avalanches Normalized front position (z ¢ /& ¢ )3 as a function of time in a log-log representation: the experimental curves (dashed line

(continued) marked with symbols) related to & = 6°, 12°, 18°, and 24° slopes are indicated. The solid line represents the theoretical
e Convective regime curve (z /& ¢ )3 = t corresponding to the outer similarity solution.

e Front behavior Fluid: glycerol n ~ 345 Pa.s (molten toffee)

® Matched asymptotic

expansions

e Comparison with data
e Comparison with data

)

Viscoplastic avalanches

High-speed flows

Perspectives
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Rheology :
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£ x t=0.08 x t=0.37
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A shallow world 04l o103 1 od o t=147
& t=134 & t=59
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Newtonian avalanches 02 107 &
® Lubrication 00 ‘ ‘ ‘ ‘ 00

. . 0.0 0.2 04 0.6 0.8 1.0 0.0 0‘.2 0‘.4 0‘.6 0‘.8 1.0
approximation : : : : : : : : : :

® Lubrication
approximation
(continued)

o +1=047

e Application to R B u o to3.3
. Ot=23.7€ 4 0t=6.77

Newtonian avalanches mi-752 0.4 ¢ - 1352

. . * t=150¢ o * t=27.0€
e Application to o | M
Newtonian avalanches a

. . . . - . . . .
(continued) 0.4 06 08 10 %% 00 02 0.4 06 08 1.0
n n

e Convective regime
e Front behavior
e Matched asymptotic

: Flow-depth profiles h (7, t) normalized by the maximum flow depth Ay, o for 6 = 6° (a), 0 = 12° (b), 0 = 18° (c),
expansions

and & = 24° (d) at different dimensionless times. We also plotted the composite solutions (thick line).
e Comparison with data

e Comparison with data

(@)

Viscoplastic avalanches

High-speed flows
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EL“;‘:C;:;C:;”“S The same techniques can be applied to viscoplastic materials.
Rheology 8h a
A shallow world — —l— —F(h) — O,

| ot  Ox
Newtonian avalanches

Viscoplastic avalanches Wlth Y — max (h — B’[,’ 0) and

e Application to
viscoplastic avalanches

o F(h) = nyttimZnt Dh=nY o p T
(continued) (27/2, _|_ 1)(7?, _|_ 1) K ( U, )n c
High-speed flows H*

Perspectives

' 23-24 June 2010 Valsavarenche Summer School — 31/ 44 '



.
.(Pﬂ. Comparison with data

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Fluid-mechanics
approaches

5t (@

Rheology 4

X¢

A shallow world

Pta
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_____

Newtonian avalanches alr

Viscoplastic avalanches
e Application to
viscoplastic avalanches

Xt

e Comparison with data
e Comparison with data
(continued)

¥’
-
s
-
—-—

High-speed flows

Perspectives

Variation in the front position with time for @ = 24°. Experiments done with Carbopol at various concentrations. Dashed
curves: theoretical prediction given by a zero-order nonlinear convection equation (modelling the behavior of an avalanching
mass of Herschel-Bulkley fluid).
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Newtonian avalanches
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e Application to
viscoplastic avalanches

e Comparison with data
e Comparison with data
(continued)

Variation in the front position with time for 6 —=
12°. Experiments done with Carbopol at various
concentrations. Dashed curves: theoretical predic-
tion given by a zero-order nonlinear convection equa-
tion (modelling the behavior of an avalanching mass
of Herschel-Bulkley fluid).

High-speed flows

Perspectives
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A shallow world

Newtonian avalanches
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High-speed flows

® Problem to solve
@ Shallow-water

equations

e Matrix form

® Phase-plane
formalism

® Phase-plane for

v >1

® Phase-plane for
=1

e Solution for for
v >1

e Conclusions

Perspectives

. h(x,7) .

® flow on horizontal bottom
® o entrainment (density constant)

® friction negligible (inertial regime), no Benjamin boundary condition at the Front
® shear in the upward direction u? = '7'&2 with v # 1

® released volume: V = f(;Ef h(z, t)de = At™.

Goals:
|
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® Problem to solve
@ Shallow-water

equations

e Matrix form

® Phase-plane
formalism

® Phase-plane for

v >1

® Phase-plane for
=1

e Solution for for
v >1

e Conclusions

Perspectives

Oh i Ohu 0

ot Ox
ou ou 287 Oh T
E—F(Qﬁ/—l) (933+ (9:13_ ax(1+h(7—1)>.

Similarity forms

w =001V (€), h = 6262201 Z(¢), and £ = %,

Boundary conditions

o At the front Z(£¢) = 0 and V(£¢) = 1 (non-Boussinesq regime).
e At the front Z(&¢) = Fr?c and V' (£¢) = 1 (Boussinesq regime:
Benjamin condition).

e At the entrance:

and V' 63/204 when & — 0.

Zc><552§2 o€
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@ Problem to solve
@ Shallow-water

equations

e Matrix form

® Phase-plane
formalism

® Phase-plane for

v >1

® Phase-plane for
=1

e Solution for for
v >1
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dw

withw = [Z, V]T,

|

V-1

(y—OV2+Z Z(V(2y—1)—1)

S:[%Z+V

7
=25

V., 2),

7 ],and

3V —2 ]
(V(dy—=3)6—1) |

The determinant of the matrix M isdet M = 67 (Z — I(V')) , with
I(V)=1+(V —=2)Vy.
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® Problem to solve
@ Shallow-water
equations

@ Matrix form

® Phase-plane

formalism
® Phase-plane for

v >1

® Phase-plane for
=1

e Solution for for
v > 1

e Conclusions
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Regular and critical points (' = 0 and G = 0)
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@ Problem to solve
@ Shallow-water

equations

® Matrix form

® Phase-plane
formalism

® Phase-plane for

v >1

® Phase-plane for
=1
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I /A
0.8 f C Ce J/1C;
| V4
E J
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A A,
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- % . °
0 =L _Z ~ .
0.5 1 1.5 2
V

Problem: how to join S (source) and P (front point)?
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@ Problem to solve
@ Shallow-water

equations

® Matrix form

® Phase-plane
formalism
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v >1
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=1
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v > 1
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For v = 1 the sym-
metry curve of the
critical point (node)
A passes through P

1 L

dz F(V, 2)
dV. G(V, Z)

N
0.4

B VAFv+ZAFz—|—--O‘2
VaGy + ZAGy + -+ °F

Z/

1.2 1.4 1.6 1.8 2
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® Problem to solve
@ Shallow-water

equations

e Matrix form

® Phase-plane
formalism
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v >1
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225 23 TS 3

<wo

Jump between A, and A’
Dashed line: approximate
(i.e., to first order) analytical
solution to the Euler equa-
tions

h/t
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approaches e A more physical construction of the solution in the tip region
Rheology

TS e For non-Boussinesq regimes, subcritical similarity solutions
Newtonian avalanches doeS nOt EXiSt.

Viscoplastic avalanches

h-speed flows e Supercritical similarity solutions exist for a limited range of
® Problem to solve volume gI‘OWth n

e Shallow-water
equations

@ Matrix form

L f
® Phase-plane V — / h(gj7 t)daj p— Atn’
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formalism
® Phase-plane for

v >1

® Phase-plane for ;
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approaches e mass balance: how material is incorporated and deposited?

Rheology

A shallow world e shallow flows: do the flow-depth-averaged equations perform
Newtonian avalanches well when used to modelling unsteady fixed-volume surges?

Viscoplastic avalanches

E—— e flow structure: particle flows, segregation, two-phase aspects,

Perspectives etC .

e Ongoing and future

research . . . e c
» Segregation e stochastic modelling: coupling deterministic and stochastic
e Comparison with data mOdels (MCMC mOdEIS).
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Fluid-mechanics Segregation and diffusive remixing can be modelled by a nonlinear
approaches
Rheology advection diffusion equation

A shallow world

9. 9

0 0P
. T div(qbsu) - & (ngs(l - Qbs)) ¢

~ 92 D@z

Newtonian avalanches

(18)

Viscoplastic avalanches

High-speed flows

[Gray et al., JFM]
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e Ongoing and future
research

® Segregation

e Comparison with data
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e Ongoing and future
research

® Segregation

e Comparison with data
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