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Abstract  
 
Tensegrity structures are spatial, reticulate and lightweight systems composed of struts and 
cables. Stability is provided by a self-stress state between tensioned and compressed elements. 
Tensegrities have received interest among scientists and engineers in fields such as architecture, 
civil and aerospace engineering. Flexibility and ease of tuning make these systems attractive for 
controllable and adaptive structures. However, tensegrities are often prone to difficulties 
associated with meeting serviceability criteria and with providing adequate damage tolerance 
when used as civil engineering structures. This paper extends research on active control of 
tensegrity structures to study self-repair of a tensegrity pedestrian bridge that is damaged. Self-
repair is intended to meet safety and serviceability requirements in case of cable damage in the 
pedestrian bridge. Intelligent control methodologies that implement stochastic search with 
active member grouping are proposed. Case studies for several damage scenarios are presented 
to show the effectiveness of the methodology. Results from simulated damage scenarios show 
that self-repair can be successfully performed with a minimum number of active members 
leading to reductions in control complexity. 
 
Keywords: tensegrity structures, active control, self-repair, damage tolerance, stochastic search  
 

1. Introduction  

Recent advances in theory and practice of active structural control technology have modified 
the general perception of structural behavior. Through addition of sensors, actuators and 
computing methods, active structures can become capable of interacting with complex 
environments [1]. The aim of such structures is to enhance structural performance by sensing 
changes in behavior and in loading, adapting the structure to meet goals, and retrieving past 
events to improve future performance [2].  
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In built environments, structural control has been proposed for enhancing safety of structures 
under extreme conditions since the last quarter of the 20th century. Control of civil engineering 
structures was first introduced by Yao [3] as a means of protecting tall buildings against high 
winds. A modern concept of an active structure was proposed by Soong and Manolis [4], who 
described an active structure as one consisting of two types of load-resisting members: static 
(passive) members and dynamic (active) members. Long-term reliability of control systems has 
been a matter of controversy in the case of actively controlled civil structures. Structural control 
has been employed for earthquake protection in the US and Japan, where earthquakes are a 
primary concern [5]. However, many engineers believe that active control is not the best way to 
protect civil engineering structures against phenomena that have long return periods because 
of questionable long-term reliability of active control systems [6]. Instead, actively controlled 
structures are more suited to satisfy serviceability criteria in changing environments [2].  

Since tensegrity structures can be equipped with active control systems, they have the potential 
to be actively controlled for safety and serviceability purposes. Tensegrity structures are spatial 
reticulate systems that are composed of struts and cables. Stability is provided by the self-stress 
state between tensioned and compressed elements independently of all external actions. 
Tensegrities have applications in a range of fields such as sculpture, architecture, aerospace 
engineering, civil engineering, marine engineering and biology [7]. Most studies found in the 
literature investigated form-finding [8-12] and design characteristics of tensegrity structures 
[13-16]. Statics and dynamics of simple tensegrity modules have also been investigated [17-19]. 

Research into active control of tensegrity structures was initiated in the mid-1990s. Tensegrity 
structures have several promising properties. A high strength to mass ratio provides possibility 
of designing strong and lightweight structures. Tensegrities are attractive solutions for 
controllable and smart structures as often small amounts of energy are needed to change the 
shape of tensegrity structures [20]. Djouadi et al. [21] developed an active control methodology 
for vibration damping of tensegrity structures intended to spatial applications. Chan et al [22] 
presented an experimental study of active vibration control of a three-stage tensegrity structure 
using local feedback control. Vibration control is also investigated by Ganesh Raja and 
Narayanan [23] on a two-module tensegrity structure equipped with piezoelectric actuators. 
Averseng and Crosnier [24] experimentally studied the control of a tensegrity plane grid where 
an actuation system is connected to the supports.  
 
Fest et al. [25] experimentally explored shape-control of a five-module active tensegrity 
structure. A quasi-static control strategy based on stochastic search is first proposed to satisfy 
serviceability criterion [6]. The control strategy is then extended to take into account additional 
robustness objectives [26] and to perform vibration control [27]. Kanchanasaratool and 
Williamson [28] used active struts to perform feedback shape-control for a simple tensegrity 
module.  
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Deployment of tensegrity structures has also been investigated. Tibert and Pellegrino [29] 
experimentally investigated use of telescopic struts for the deployment of tensegrity reflectors. 
Sultan and Skelton [30] proposed a cable-control deployment strategy for tensegrity structures. 
Actuators are used to modify cable lengths such that the structure is stable throughout the 
deployment process. Pinaud et al. [31] implemented cable-control deployment of a small-scale 
two-module tensegrity structure. Smaili and Motro [32] also used a cable control strategy to 
investigate folding of a double layer tensegrity grid by activating finite mechanisms. Korkmaz et 
al. [33] studied active control system configuration of a tensegrity bridge. 
 
In most research studies into active tensegrity structures, actuation is performed through 
changing element lengths. Length changes can be made to struts or cables through various 
actuation strategies. However, strut-based actuation, employing telescopic struts, may be 
inefficient when required element-length changes are large. On the other hand, cable control is 
more complicated than strut control due to additional mechanical devices [34].  
 
The disadvantage of controlling too many cable elements can be overcome by connecting 
several cables together and using only one motor to control them [35]. This suggests that 
groups of individual active cable elements could be combined into continuous cables. A single 
continuous cable can slide over multiple nodes through frictionless pulleys. Moored and Bart-
Smith investigated actuation on a simple tensegrity beam with groups of individual active cable 
elements that are combined into continuous cables. Bel Hadj Ali et al. [36] proposed a modified 
dynamic relaxation algorithm for static analysis of tensegrity structures including continuous 
cables. Apart from the numerical example presented in [36, 37], no study addressing structural 
control employing continuous cables for large tensegrity structures is available in the literature. 
 
Flexibility makes tensegrity structures prone to difficulties associated with meeting 
serviceability criteria. Since structural integrity is achieved through self-stress, damage tolerance 
needs to be studied. Thus, damage tolerance and self-repair of tensegrities is an emerging 
research area. Few researchers have studied damage tolerance and self-repair of tensegrity 
structures through active control. Ben Kahla and Moussa [38] numerically investigated the 
effect of a sudden rupture of a cable on tensegrity systems. Adam and Smith [39] addressed 
damage location in situations of partially defined damage and self-repair of a full-scale active 
tensegrity structure. Abedi and Shekastehband [40] studied the structural integrity of a double 
layer tensegrity grid subject to member loss. Although these studies showed that tensegrity 
structures are often damage tolerant, no demonstration of self-repair capabilities of a 
tensegrity-based bridge structure could be found. Moreover, none of the previous studies 
compared active control strategies for the purpose of self-repair. 
 
This study investigates self-repair opportunities for an active tensegrity pedestrian bridge for 
cases of cable damage. Only functional repair is addressed [41]. Self-repair actions thus aim to 
bring the bridge back to a serviceable state if it is damaged. Cable damage is simulated by taking 
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cable members out of the structural analysis model. As formulated in this study, the self-repair 
task includes a finite number of continuous variables. The size of the solution space is large 
(1.34*1071 possible solutions). The self-repair task is thus too complex to be modeled 
completely and the solution space includes local minima for this structure. Therefore classical 
optimization techniques cannot be applied effectively. Optimally directed solutions for changes 
in element lengths are identified using a stochastic search algorithm called Probabilistic Global 
Search Lausanne (PGSL) [42] and a gradient-based search method. The PGSL technique is based 
on the assumption that sets of better solutions are more likely to be found in the neighborhood 
of sets of good solutions and, therefore, search is intensified in regions that contain sets of good 
values. Search is driven by probability density functions. Case studies for several damage 
scenarios are presented to show the effectiveness of the methodology. 
 
This paper describes a study of the feasibility of self-repair using discontinuous and continuous 
cables, an evaluation of actuation lengths using two search strategies and a comparison of 
element sizes required for the two control strategies. In order to achieve these objectives, first, 
design characteristics of the tensegrity bridge are explained. Secondly, structural behavior of 
the bridge in damage cases is given. Next, self-repair methodologies are proposed. Finally, 
effectiveness of the active control strategies are compared in terms of actuation length required 
and number of actuators needed in order to implement each strategy for self-repair purposes. 
 

2. Tensegrity bridge  
 
Design of this bridge has been presented in detail in [13]. This section is a summary of this work. 
A side view of the tensegrity bridge is given in Figure 1. The bridge was composed of four ring-
shaped tensegrity modules spanning 20m [16, 43]. Symmetry about midspan was obtained by 
mirroring two modules. The structure was designed to have 2.0m width internal space for 
walking and a clearance of 2.5m as recommended by codes [44]. The dimensions of the free 
space were fixed to have enough room for non-motorized traffic (pedestrians and cyclists). The 
nodes of the bridge structure at both extremities were attached to a steel frame, which was 
rigidly anchored to the ground (Figure 1). Although this study focuses on this configuration, the 
bridge was intended to be deployable from both supports, meeting in the middle. 
 
The pentagon module contained 15 nodes describing 3 pentagonal layers (Figure 2). The middle 
pentagonal-layer nodes were twisted with respect to outer pentagon by 36° in the counter-
clockwise direction. The pentagon module comprised 15 struts held together in space by 30 
cables forming a ring shaped tensegrity unit [45]. Struts could be categorized into diagonal and 
intermediate struts based on their position. Diagonal struts connected outer and inner 
pentagon nodes while intermediate struts connected middle pentagon nodes to outer and inner 
pentagon nodes. Similarly, cables were separated into 10 layer cables and 20 x-cables. Layer 
cables connected nodes of the two outer pentagons while x-cables connected middle pentagon 
nodes to inner and outer pentagon nodes. The 10 x-cables that were coplanar with the diagonal 
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struts were called coplanar x-cables. In Figure 1 and Figure 2, thick lines denote bars while thin 
lines denote cables. 
 
 

20m

A

A
Node A

 
Figure 1. Tensegrity bridge 

 
The pentagon module used in this study had a length of 500cm with an inner radius of 390cm. 
This geometry satisfied internal space requirements. Diagonal and intermediate struts were 
chosen to have the same length of 678cm. Layer cables had a length of 458cm while x-cables 
were 347cm long. The nodes of the structure at both extremities were fixed in all three 
translation directions. Live loads were applied on the footbridge deck and were thus 
transmitted to the four bottom nodes on each module. Two of the bottom nodes were shown 
as Node A and Node B in Figure 2. The deck was fixed to the tensegrity modules through pins at 
four nodes per module and therefore, it did not increase the number of independent self-stress 
states. Dead and wind loads were applied as nodal forces on the structure.  
 

Node A

Isometric View

layer cables

x-cables

diagonal strut

intermediate struts

Node B

Midspan Section AA  
 
Figure 2. Pentagon module  

 
Two configurations of the bridge were designed and studied. In the first configuration, all cable 
elements were assumed to be discontinuous and firmly attached to the structure nodes. In the 
second configuration, each sequence of four noncoplanar x-cables was replaced by a single 
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continuous cable that was assumed to run over frictionless pulleys connected to the nodes. The 
40 noncoplanar x-cables of the tensegrity bridge were thus replaced by only ten continuous 
cables. As will be shown in next sections, use of continuous cables changed the static behavior 
of the bridge and the way it can be controlled.  
 
The tensegrity bridge was designed to meet design specifications for safety and serviceability 
defined by the Swiss Code (SIA). Two load combinations were considered for Ultimate Limit 
State (ULS) verifications. In Equation 1 and Equation 2 dead load (G), live load (Q), loads due to 
self-stress (P) and wind (W) were combined to verify the overall strength and stability of the 
structure (Eq.1) and the local member resistance (Eq.2). The self-stress was assigned a load 
factor of 0.8 and 1.2 in Eq.1 and Eq.2, respectively.  

 
1.35 1.5 0.8 0.6G Q P W    [Eq. 1] 

1.35 1.5 1.2 0.6G Q P W    [Eq. 2] 

 

Under Serviceability Limit State loading (SLS), design loads are combined as follows: 
 

1.0 0.4 1.0 0.6G Q P W    [Eq. 3] 

 
The coefficient related to P in Eq.1 ensured that the structure was stable even with a lower level 
of self-stress. Similarly, the coefficient of P in Eq.2 provided structural elements that resist the 
internal stresses when self-stress was greater than expected. 
 

Design optimization of the tensegrity bridge was performed using member dimensions and self-
stress level as design variables [43]. Struts were separated into two design groups: diagonal and 
intermediate struts. Strut members in each group were to have the same hollow tube section 
profile. Layer cables in the whole footbridge were specified to be of same section and 
experience the same level of self-stress. The same design decision was taken into account for x-
cables.  
 
As recommended by the Swiss Code, a live load of 4kN/m2 has been taken into account [46]. 
The bridge deck was made of steel and it is assumed to have a weight of 1kN/m2. The structural 
members have been selected from commercially available standard steel sections with specified 
cross-sectional profiles and cables. For struts, the product set consisted of 45 hollow-tube 
section profiles. The steel grade was S355, with a modulus of elasticity of 210000MPa and yield 
stress of 355MPa. For cables, a list of 22 sections was used. Cables were made of stainless steel 
with a modulus of elasticity of 120000MPa. Material properties and unit prices were obtained 
from major Swiss steel fabricators. Design variables included the self-stress level in the 
tensegrity structure. The self-stress ratio was defined as the ratio between the member 
pretension axial stress (before loading) and its yield (or buckling) stress. Nine discrete self-stress 
ratios for cables were considered running between zero and 20% in steps of 2.5%. 
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Structural analyses for various load combinations were performed using dynamic relaxation 
[36]. Analysis results were used to check safety and serviceability requirements. A genetic 
algorithm (GA) was employed to solve the design optimization task since genetic algorithms are 
more suitable than other stochastic search methods for discrete variables (45 tube sections and 
22 cable sections). Optimization variables were coded as integer strings. Penalty functions were 
employed to handle design constraints by penalizing individuals that violated constraints, and 
thus giving them a lower probability of survival. The penalty function approach was 
implemented by adding an additional term to the objective function. This additional term 
corresponded to the cost of violating constraints. In this manner, the search for optimum 
solutions was directed toward feasible regions of the search space. Optimization results were 
satisfactory for a population size of 50 individuals running for 60 generations. Crossover and 
mutation probabilities were fixed as 0.9 and 0.1, respectively. The best solution generated over 
a sequence of five runs using different random seeds is taken to be the optimal design solution.   

3. Two cable-configuration designs  

For the bridge configuration having discontinuous cables, the optimal design attained after five 
runs of the GA has a cost of CHF41,100. The material cost is calculated using estimates of Swiss 
market values of the materials used. Node fabrication costs, although likely to be high, are not 
included because this cost is used for comparison only with other designs having the same 
topology (number of nodes). Member sections and self-stress ratios for the design solution are 
displayed in Table 1. The self-stress ratio is defined in Section 2. While imposed on cables as 
design specifications, the values for the struts are calculated values.  
 
Under the SLS load combination, midspan displacement should not exceed 2.8cm (span 
length/700). For the as-designed configuration, the maximum midspan displacement is 2.7cm. 
The design is governed by serviceability criteria. Table 2 provides a comparison of stresses due 
to factored loads with strength values for struts and cables. Under ULS load combination, a 
maximum axial compression force of 41kN (30 N/mm2) is obtained in struts, which represents 
50% of buckling capacity. Maximum tension forces of 63kN (356 N/mm2) and 19kN (374 N/mm2) 
are obtained for x-cables and layer cables respectively. Tension forces in x-cables and layer 
cables represent 33% and 35% of their yield capacities respectively. 
 

Table 1. Design results for the bridge with discontinuous cables 

Member Diameter [mm] 
(mm) 

Cross-sectional area [mm2] 
(mm2) 

Self-stress ratio [%] 
 

(%) 
Diagonal struts 114 1390 13 

Intermediate struts 114 1390 13 

Layer cables 8 50 13 

X-cables 15 177 8 
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Table 2. ULS Code verification for the bridge with discontinuous cables 

Member 
Maximum Stress [N/mm2]  

(due to factored loads) 
Tensile or Buckling Strength [N/mm2] 

(with resistance factor) 

Diagonal Struts 30 60 
 Intermediate Struts 30 60 
 Layer cables 374 1069 

X-cables 356 1069 

 
For the bridge configuration with continuous cables, an optimum design resulting in a material 
cost of CHF49,800 is obtained by using GA-based optimization. Table 3 gives the member 
sections and self-stress ratios for structural members. Under the SLS load combination, the 
maximum displacement of the two midspan nodes is 2.8cm.  
 
Under ULS load combinations, a maximum axial compression force of 58kN (34 N/mm2) is 
obtained in diagonal struts and this represent 39% of buckling capacity. Intermediate struts 
have a maximum compression value of 51kN (37 N/mm2) representing 62% of their buckling 
capacity. Maximum tension forces of 37kN (401 N/mm2) and 102kN (594 N/mm2) are obtained 
for layer cables and x-cables respectively. Tension forces in layer cables and x-cables represent 
56% and 38% of their tension capacities (Table 4). In the bridge with continuous cables, the 
buckling strength of the diagonal struts differ from the buckling strength of the diagonal struts 
in the bridge configuration with discontinuous cables (Table 2 and Table 4) since the diameters 
of are different (Table 1 and Table 3).  
 
Table 3. Design results for the bridge with continuous cables 

Member  Diameter [mm] 

(mm) 

Cross-sectional area [mm2] 

(mm2) 

Self-stress ratio [%] 

(%) 
Diagonal struts  140 1710 18 

Intermediate struts  114 1390 45 

Layer cables  9 63.6 20 

X-Cables  18 254.5 20 

 
Table 4. ULS Code verification for the bridge with continuous cables 

Member 
Maximum Stress [N/mm2] 

(due to factored loads) 
Tensile or Buckling Strength [N/mm2] 

(with resistance factor) 

Diagonal Struts 34 87 
 Intermediate 

Struts 
37 60 

 Layer cables 594 1069 

X-cables 401 1069 
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For the two configurations of the bridge, optimization results show that the design of the bridge 
is governed by SLS requirements. Added flexibility induced by the use of continuous cables 
result in a design solution with higher levels of self-stresses. Furthermore, cross-sectional areas 
of diagonal struts, layer cables and x-cables are larger in the bridge configuration having 
continuous cables while cross-sectional areas of intermediate struts remain the same in both 
configurations.  
 

4. Bridge behavior after damage   
 
Structural behavior of the two configurations is analyzed using the dynamic-relaxation method 
[47]. Cable damage is simulated by taking cable members out of the structural analysis model. 
Under ULS load combination, all stresses are below the limits for all simulated cases. Therefore, 
safety requirements are met when the structure is damaged.  
 
Structural integrity can be lost for several reasons, such as cases of accidental damage and 
element removal during maintenance. In this study, the aim of the active control system is to 
maintain serviceability when cable damage (or removal) occurs. While safety criteria are based 
on stress limits, the serviceability criterion refers to deflection limitations for this study. Nodal 
displacements and stresses in the structural elements are computed under several load 
combinations determined by design specifications [44].  
 
Results show that there is symmetry between the effects of damage when cables that are 
similarly positioned in the two halves of the bridge are damaged. Thus, the results obtained by 
damage in only Module 1 and Module 2 are discussed (Figure 3). Position and numbering of 
damaged cables are shown in Figure 3. Damage is simulated for the layer cables that belong to 
the intermediate and middle pentagons as well as for the x-cables of the first and the second 
modules of the structure. In the configuration that has continuous cables, the number of 
damage cases is reduced compared to that of the bridge configuration having discontinuous 
cables. 
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Figure 3. Side view of the tensegrity bridge with numbering of cables of the two first modules  

 
Figure 3 shows cable members of the first and the second module of the bridge. Each of the two 
pentagonal layers (i.e. intermediate pentagon and middle pentagon) involves 5 layer cables. 
There are 10 discontinuous x-cables and 5 continuous x-cables in each module. Damage cases of 
all these cables have been investigated. 
 

Results indicate that the safety requirements are met for all cases of individual cable damage. 
That is, effects of the loading in the structural members (i.e. stresses) are smaller than the 
ultimate strength (including buckling strength) of the members in damage cases. However, this 
is not the case for serviceability requirements. Figures 4-9 show the displacements at the two 
midspan nodes (Node A and Node B, Figures 1-2) for all possible single cable damage cases. 
Results show that the vertical displacements at bridge midspan exceed the limit (2.8cm, span 
length/700) for certain damage cases. Simulation results indicate that the structural behavior 
varies with the position of the damaged cable and that the structure is more affected by 
damage in a few critical cables than it is when other cables are damaged. 
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4.1. Configuration with discontinuous cables 
 
Figures 4-6 show the magnitudes of midspan deflections for configuration with discontinuous 
cables in damage cases where cables in Module 1 and Module 2 are damaged.  
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Figure 4. Midspan displacements for damage of intermediate and middle pentagon layer cables 
(discontinuous cables) 
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Figure 5. Midspan displacements for damage of x-cables of the first pentagon (discontinuous cables) 
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Figure 6. Midspan displacements for damage of x-cables of the second pentagon (discontinuous cables) 

 
In configuration with discontinuous cables, average displacements at midspan are below the 
limit for cases where layer cables are damaged (Figure 4). However, there are several x-cables 
where damage causes excessive displacements at midspan of the structure. A potential need for 
active control arises for these cases since the structure is no longer serviceable although safety 
criteria are satisfied (Figure 5 and Figure 6). 

4.2. Configuration with continuous cables 
 
Figures 7-9 show the magnitudes of midspan deflections for configuration with continuous 
cables for cases where cables in Module 1 and Module 2 are damaged.  
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Figure 7. Midspan displacements for damage of intermediate and middle pentagon layer cables 
(continuous cables) 
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Figure 8. Midspan displacements for damage of x-cables of the first pentagon (continuous cables) 

 



Korkmaz et al, Determining Control Strategies for Damage Tolerance of an Active Tensegrity Structure, 
Engineering Structures , Volume 33, Issue 6, June 2011, Pages 1930-1939, 
doi: http://dx.doi.org/10.1016/j.engstruct.2011.02.031 

 

 

 14 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

66 67 69 70 71 73 74 75 77 78 79 81 82 83 84

Displacement at Node A

Displacement at Node B

Average Displacement at 
Midspan

Allowed Maximum 
Deflection

Displacement Magnitude [cm]

Damaged Cable

 
Figure 9. Midspan displacements for damage of x-cables of the first pentagon (continuous cables) 

 
Midspan displacements are higher when configuration with continuous cables replaces 
configuration with discontinuous cables. Damage in some layer cables result in excessive 
midspan displacements when configuration with continuous cables are analyzed.  

5. Damage tolerance through active control   
 
Critical-cable-damage cases (i.e. where damage causes the greatest deflections) are selected as 
case studies for self-repair. When these cables are damaged, the maximum displacement 
magnitudes at the midspan nodes are between 5.8cm and 3.5cm for the configuration having 
discontinuous cables and between 7.8cm and 7.5cm for the configuration having continuous 
cables. However, the displacement at bridge midspan must not exceed 2.8cm (Section 3). Cables 
symmetric along the middle pentagon layer of the structure have the same displacement values 
at midspan nodes (Table 5 and Table 6). 
 
Table 5. Greatest midspan displacements for cases of individual cable damage in the structure with 
discontinuous cables (Cable numbers in parentheses indicate the symmetrical cables) 

Damaged Cable No. Maximum Displacement [cm] 

80 (111) -5.8 

76 (115) -3.9 

79 (112) -3.8 

42 (148) -3.5 

84 (106) -3.5 
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Table 6. Greatest midspan displacements for cases of individual cable damage in the structure with 
continuous cables (Cable numbers in parentheses indicate the symmetrical cables) 

Damaged Cable No. Maximum Displacement [cm] 

42, 45, 79 and 80 (111, 112, 147 and 148) -7.8 

39, 40, 75 and 76 (115, 116, 151 and 152) -7.5 

 

 
Numerical simulations show that the tensegrity bridge is damage tolerant with respect to safety 
requirements. However, serviceability requirements are not satisfied in some cable damage 
situations. The bridge is thus not capable of accomplishing its function for some damage 
scenarios. Several case studies are tested numerically to show the potential of active control 
strategies to adjust the structural behavior to meet serviceability requirements. For a given 
damage scenario, the structural response may be controlled through active cable members or 
groups of active cables. 
 
An objective of self-repair is to reduce excessive midspan displacements resulting from cable 
damage to acceptable levels with a minimum control effort. Control effort is defined by the 
minimum actuation length that is needed to decrease the excessive displacements to the 
limitation set in Section 3. An actuation scheme with minimum actuation leads to small 
perturbations and modest energy requirements. Active cables of the structure can be elongated 
or contracted modifying internal stress distribution and node displacements of the structure. 
The control task can thus be stated as an optimization task where the objective is to minimize 
the sum of active-cable length adjustments.  
 
Let xt =[x1, x2, ..., xNAG]  be the vector of actuation length for all active group of members. The 
damage-tolerance control task can be stated as follows:  

1

min
NAG

i

n

f x


                                                                                                           [Eq. 4] 

subject to  

,

,

1 0, 1,...,
sd i

Rd i

N
i NE

N
                                                                                            [Eq. 5] 

1 0
midspan

limit




                                                                                                         [Eq. 6] 

,max ,max 0, 1,...,x i ig x x i NAG                                                                     [Eq. 7] 

,min ,min 0, 1,...,x i ig x x i NAG                                                             [Eq. 8] 
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In these equations NAG and NE are the number of active member groups and the number of 
structural elements respectively. Code limitations for stresses are set to be constraints in the 
optimization task. Eq. (5) defines the local capacity and buckling checks for tensioned and 
compressed members. Nsd,i is the ultimate axial force of member i, while NRd,i is axial force 
strength of member NRd includes Nk,Rd for struts. Eq. (6) defines the serviceability limit-state 
requirement of midspan deflection, δmidspan, normalized by the limit defined by SIA Code. Eq. (7) 
and (8) represent the constraints on the control variable values. We assume that each active 
cable adjustment xi is limited to values ranging between xi, min and xi, max.  
 
The number of active members and possible moves define the space of possible solutions. Even 
with a small number of active elements, it is impossible to generate and test every possible 
solution due to the combinatorial nature of the task. If the precision of the actuators is set to be 
0.5mm, solution space includes 2.66 x 1023 possible outcomes for one damage case when 
continuous cables are used and 1.34 x 1071 outcomes when discontinuous cables are used as 
active members. Furthermore, the objective function likely has multiple local minima. Stochastic 
search is therefore useful for this situation. Stochastic methods sample the solution space using 
special strategies. Although there is no guaranty of reaching a global optimum, near optimal 
solutions are usually sufficient for control applications. This optimization task was addressed 
using Probabilistic Global Search Lausanne (PGSL) [42]. Results obtained via PGSL are compared 
to the outcomes of Gradient Search Method. Two types of control are studied: control with 
discontinuous cables (CDC) (Table 1) and control with continuous cables (CCC) (Table 3). All of 
the active cables used in CDC are discontinuous cables. On the other hand, in CCC, the active 
members are continuous cables that run over frictionless pulleys. 
  
For CDC, active cable grouping is carried out as follows: 

 Group 1: Cables that are not coplanar with diagonal struts 

 Group 2: Group 1 and layer cables of the first three pentagons 

 Group 3: Cables that are coplanar with diagonal struts 

 Group 4: Group 3 and layer cables of the last three pentagons 

 Group 5: Group 1 and layer cables of the three middle pentagons 

 Group 6: Group 3 and layer cables of the three middle pentagons 

 
Cable members of the tensegrity bridge are grouped according to geometrical characteristics 
and requirements for deployability function of the bridge (not part of this study). For example, 
groups are identified based on the conclusion of previous studies that the cables that are not 
coplanar with diagonal struts are essential for deployment function.  
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Figure 10. Actuation lengths needed to modify the structure so that deflections do not exceed 2.8cm 
(active cable Group 1 and Group 2) 

Figure 10 contains the results of calculations of total actuation lengths determined by PGSL. Six 
cases of damage are evaluated. In the cases where multiple cable damage is investigated, the 
damaged cables are selected from adjacent active cables in order to provide a comparison 
between CDC and CCC.  Results vary from actuation lengths of 6mm to 63mm for the case of 
four cables damaged simultaneously (111, 112, 147, 148). There is no significant difference in 
the results for Group 1 and Group 2. Therefore, layer cables do not need to be activated for 
these cases. Therefore, of the two groups, Group 1 is more suitable to be active. 
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Figure 11. Actuation lengths needed to modify the structure so that deflections do not exceed 2.8 cm 
(active cable Group 3 and Group 4) 
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Figure 11 presents results for ten cases of damage. In two of the cases given, where cables 38, 
41, 83 and 84 as well as cables 106, 109, 150 and 153 are damaged, all of the damaged cables 
are active. Results vary from a total actuation length of 25mm for the case of a broken cable 79 
to 158mm for the case of a broken cable 76. Controlling Group 4 consistently leads to shorter 
actuation lengths than for Group 3. Results indicate that activating cables of Group 1 leads to 
shorter actuation lengths. Therefore, Group 1 provides damage tolerance with shorter actuation 
lengths and a smaller number of active members. 
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Figure 12. Actuation lengths needed to modify the structure so that deflections do not exceed 2.8cm 
(active cable Group 5 and Group 6) 

Figure 12 introduces results obtained by using Group 5 and Group 6. Although the damaged 
cables, which cannot be controlled, belong to Group 5 in the first four damage cases, controlling 
Group 5 leads to lower actuation lengths than Group 6 for every damage case.  

Table 7. Minimum total actuation lengths needed for self-repair (mm) 

Damaged Cables Group 1 Group 5 

111,112,147,148 58.9 54.3 

115,116,151,152 18.1 22.7 

39,40,75,76 18.3 23.9 

42,45,79,80 59.5 56.1 

Total 154.8 157.0 

 

Results given in Figure 10, Figure 11 and Figure 12 indicate that Group 1 and Group 5 require 
less total actuation length for self-repair than the other four groups. Table 7 gives actuation 
lengths needed for a damage tolerant structure by separately employing groups 1 and 5. 
Although Group 5 involves 15 more active cables than does Group 5, total actuation lengths 
needed for self-repair are smaller than when Group 1 is used. 
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Table 8 shows the minimum total actuation lengths needed for self-repair of the structure for 
critical damage cases when CDC and CCC are applied. When the same cables in the two 
configurations are damaged, the minimum total actuation lengths needed for self-repair are 
understandably higher with CCC than they are with CDC.  
 
Table 8. Minimum total actuation lengths needed for self-repair (mm) 

Damaged Cables CDC CCC 

111,112,147,148 54.3 170.6 

115,116,151,152 18.1 194.3 

39,40,75,76 18.2 194.2 

42,45,79,80 56.1 167.3 

111 43.4 170.6 

115 13.9 194.3 

112 13.7 170.6 

148 11.7 170.6 

42 31.6 167.3 

79 25.3 167.3 

62 2.0 78.2 

64 2.5 50.9 

Total 290.8 1896.2 
 

(b) The 10 cables required for deployment 
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Figure 13. Active cables in Group 1 with CCC 

Figure 13 illustrates the structural system of the tensegrity bridge. Thick lines show the struts 
and thin lines represent the cables. Black elements are active cables in Group 1 with CCC. 
 
For CDC, a motor is needed in order to actuate each active cable while one motor is enough to 
actuate a cable cluster of 4 cables in CCC. For this structure, CCC provides self-repair with only 
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10 actuators, while CDC requires 40 actuators (Table 9). Results given in Table 8 demonstrate 
that CDC requires less total actuation length for self-repair. Since continuous cables lead to 
higher deflections in the structure, which lead to higher levels of actuation and higher internal 
stresses than for discontinuous cables, cross-sectional areas and self-stress in structural 
members have to be increased when CCC is used (Table 1, Table 2, Table 3 and Table 4). On the 
other hand, results given in Table 9 indicate that CCC provides self-repair with fewer actuators 
than required by CDC. Therefore, actuation complexity is dramatically reduced when CCC is 
used. Moreover, technical difficulties associated with actuation of cables are reduced by 
positioning the actuators at the extremities (X=0 and X=2000cm, Figure 13) of the bridge. 
 
Table 9. Number of actuators needed for self-repair 

  CDC CCC 

Number of Actuators 40 10 

 

Three damage scenarios are chosen considering the displacements at the midspan nodes of 
configuration having continuous cables. Actuation opportunities with CCC are examined by 
using two sampling methods: PGSL and Gradient Search Method. Single-objective search is 
carried out with the constraints given by Equations 2-5.  
 
The aim of the optimization process is to minimize actuation lengths without exceeding code 
limitations (safety and serviceability criteria). Therefore, maximum displacement magnitude at 
midspan after actuation is limited to this value. Displacement magnitudes at midspan before 
actuation, which vary from 3.2cm to 7.8cm for the most critical damage cases, are successfully 
decreased to a maximum value of 2.8cm. 
 
Table 10. Comparison of two search techniques for determining self-repair control commands 

 

Damaged Cables Displacement Before 
Actuation (cm) 

Search 
Algorithm 

Actuation Length 
(mm) 

Displacement After 
Actuation (cm) 

111,112,147,148 7.8 PGSL 170.6 2.8 

111,112,147,148 7.8 Gradient Search 214.2 2.8 

115,116,151,152 7.5 PGSL 194.3 2.8 

115,116,151,152 7.5 Gradient Search 200.4 2.5 

107,108,162,165 3.2 PGSL 13.2 2.8 

107,108,162,165 3.2 Gradient Search 167.7 0.4 
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One case of gradient search reduces the midspan displacement value to 0.4cm. While this 
reduction is attractive, the objective is to identify the search algorithm that satisfies code 
requirements using the shortest actuation length. The search algorithm, PGSL does this in all 
three cases, (Table 10). 
 

6. Conclusions and future work 
 
Two designs of this tensegrity bridge have damage tolerant characteristics for all scenarios of 
single-cable damage when equipped with an active control system. 
 
Compared with CDC, CCC leads to larger cross-sections to satisfy design criteria. However, the 
decrease in actuation complexity obtained through CCC may enhance more effectively 
intelligent attributes of civil engineering structures. For such structures, actuation strategies are 
difficult to define. Tradeoffs between desirable characteristics (e.g. actuation lengths and 
element sizes) and degree of actuation are needed. 
 
A comparison between CDC (control using discontinuous cables) and CCC (control using 
continuous cables) revealed that using CCC reduces the number of actuators needed for self-
repair of a tensegrity bridge. Of the two search strategies studied, PGSL identifies shorter 
actuation lengths. In the cases where the same cable damage scenarios are investigated for the 
two configurations, CDC provides a self-repair with smaller total actuation lengths. Greater 
displacements caused by continuous cables lead to greater minimum total actuation lengths 
needed for damage tolerance when continuous cables are used. 
 
Since the actuators can be placed at the extremities of the structure when CCC is used, technical 
difficulties associated with actuation of cables are reduced. Thus, application of CCC is expected 
to be more suitable than CDC for large structures. 
 
Future work involves building a methodology to select which members are active. A sensitivity 
analysis of key variables will be carried out. A global efficiency factor will be defined for each 
element under all load cases.  
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