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ABSTRACT   

The polarization-related properties of stimulated Brillouin scattering (SBS) processes in long, randomly birefringent, 
standard optical fibers are examined. Evolution equations for the pump and signal waves, in the presence of both 
birefringence and SBS, are provided in Jones and Stokes spaces. It is shown that in the undepleted pump regime, the 
amplification of the SBS signal wave is equivalent to that of a linear medium with polarization-dependent gain. The 
process is associated with a pair of orthogonal states of polarizations (SOPs) of the signal wave, which undergo 
maximum and minimum amplification. In long, standard fibers, the Jones vector of the probe SOP which corresponds to 
maximum amplification is aligned with the complex conjugate of the pump wave Jones vector. The maximum and 
minimum SBS gain coefficients in such fibers equal two-thirds and one-third of the gain coefficient that is predicted by 
scalar theory, respectively. The large differential gain of the SBS process gives rise to an effective pulling of the 
amplified Stokes probe wave SOP, towards that of maximum amplification. Lastly, Stokes wave pulses that are aligned 
for maximum and minimum amplification experience different group delays, which manifest as polarization-related 
distortions in SBS slow light setups. 
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1. INTRODUCTION  
Stimulated Brillouin Scattering (SBS) requires the lowest activation power of all non-linear effects in silica optical 
fibers. In SBS, a strong pump wave and a typically weak, counter-propagating signal wave optically interfere to 
generate, through electrostriction, a traveling longitudinal acoustic wave. The acoustic wave, in turn, couples these 
optical waves to each other1, 2. The SBS interaction is efficient only when the difference between the optical frequencies 
of the pump and signal waves is very close (within a few tens of MHz) to a fiber-dependent parameter, the Brillouin shift 

Bν , which is of the order of 10-11 GHz in silica fibers at room temperature and at telecommunication wavelengths1, 2. 
An input signal whose frequency is Bν  lower than that of the pump (Stokes wave) experiences SBS amplification. If the 
input signal frequency is Bν  above that of the pump (anti-Stokes wave), SBS-induced signal attenuation is obtained 
instead. The strength of the interaction is often quantified in terms of an exponential gain coefficient γ , which is defined 
as the logarithm of the signal linear power gain (or loss), normalized to a unit pump power and unit fiber length [W⋅m]-1.  

SBS has found numerous applications, including distributed sensing of temperature and strain3-5, fiber lasers6, optical 
processing of high frequency microwave signals7-11, and even optical memories12. The SBS amplification (or attenuation) 
is accompanied by frequency dependent phase delays1, which modify the group delay of signal pulses. SBS has become 
a favorable underlying mechanism in many such variable group delay setups, often referred to as slow and fast light, for 
its low threshold power, robustness and simplicity of operation13-20. 

Since SBS originates from optical interference between the pump and signal waves, the SBS interaction, at a given point 
along the fiber, is most efficient when the electric fields of the pump and signal are aligned, i.e., their vectors trace 
parallel ellipses and in the same sense of rotation. Conversely, if the two ellipses are again similar, but traced in opposite 
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senses of rotation, with their long axes being orthogonal to each other, then the SBS interaction at that point averages to 
zero over an optical period. Consequently, in the presence of birefringence, both the local and the overall signal gain (or 
loss) depends on the birefringent properties of the fiber, as well as on the input states of polarization (SOPs) of both 
pump and signal. Following initial work by Horiguchi et al.21, van Deventer and Boot22 have studied in detail the signal 
SOPs leading to maximum and minimum gain. Based on the statistical properties of the evolution of the pump and signal 
SOPs in sufficiently long fibers, they argued that for standard, low birefringence fibers the maximum gain coefficient is 
twice that of the minimum one, and equals 2/3 of the maximum gain coefficient in a birefringence-free fiber 0γ . 
Furthermore, maximum gain is achieved when the pump and signal have identical polarizations (in their respective 
directions of propagation), while minimum gain is obtained for the corresponding ‘orthogonal’ case∗ 23-24. Their analysis 
was nicely corroborated by an experiment. However, the SBS amplification of an arbitrarily polarized input signal SOP 
was not discussed, nor was the role played by the Brillouin effect itself in the evolution of the signal SOP considered. 

In this work, the study of van Deventer and Boot is analytically substantiated and extended, using a vector formulation of 
the SBS amplification process in the presence of birefringence. A vector differential equation, combining both effects, is 
studied in the Jones and Stokes spaces. The analysis shows that in the undepleted pump regime, the SBS-amplifying 
fiber is equivalent to a polarization dependent gain medium. The maximum and minimum gains in that medium are 
associated with a pair of orthogonal signal SOPs25. These maximum and minimum gain SOPs provide a convenient 
vector base for the examination of arbitrarily polarized input signal waves. In sufficiently long standard fibers, these two 
SOPs are governed by the launch SOP of the pump wave alone, and do not depend on the birefringence properties of the 
specific fiber. In addition, we show that the evolution of the signal SOP is controlled not only by the fiber birefringence 
but also by the local SBS interaction, which drags the signal SOP towards that of the pump. Consequently, the output 
SOP of an amplified Stokes wave is seen to converge towards a specific, preferred state, that of maximum amplification, 
which is practically independent of both the input signal SOP and polarization transformations along the fiber25. The 
preferred output SOP could be arbitrarily varied, however, by changing the input pump SOP. The SOP of an attenuated 
anti-Stokes wave, on the other hand, is repelled from the same specific SOP. Such polarization pulling is experimentally 
demonstrated for both Stokes and anti-Stokes signals.  

In SBS slow-light setups, pulse distortion due to the limited bandwidth and the dispersion associated with the scalar 
frequency dependence of SBS has been thoroughly documented26. In the final part of this work, we show that SBS-
related, polarization-induced distortion is yet another mechanism responsible for pulse broadening in slow light setups. A 
signal pulse with its SOP aligned for maximum amplification undergoes a delay much longer than that experienced by a 
pulse whose SOP is adjusted for minimum gain. Thus, the resulting distortion is analogous to that of linear birefringence, 
where the orthogonal SOPs of maximum and minimum gain have a similar role to that of the principal axes in linear 
birefringence induced polarization mode dispersion (PMD)27. The broadening due to polarization of moderately delayed 
signal pulses could exceed that of pulses aligned for maximum delay. Polarization-induced distortion in an SBS slow 
light setup is shown experimentally as well. 

The remainder of this paper is organized as follows. Section 2 provides the analysis of SBS amplification in standard, 
weakly birefringent fibers. Both continuous wave (CW) and pulsed signals are considered. Experimental demonstration 
of SBS polarization pulling and measurements of polarization-induced distortion in SBS slow light are given in section 
3. Concluding remarks are provided in section 4.    

                                                 
∗ In the work of van Deventer and Boot22, the pump and probe SOPs are defined in two different reference frames, 
corresponding to opposite directions of propagation. In this work, as well as in most of the literature on polarization23-24, 
a single reference frame is used. Therefore, we defer the mathematical description of the conditions for 
maximum/minimum SBS gain to the next section. 
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2. ANALYSIS OF STIMULATED BRILLOUIN SCATTERING IN BIREFRINGENT 
FIBERS 

2.1 Propagation equations of the signal wave in Jones and Stokes spaces 

Let us denote the column Jones vector of a monochromatic signal wave as ( )sigE z
r

, z  indicating position along the 
fiber, with the launch and exit points at 0z =  and z L= , respectively ( L  is the fiber length). With no pump, the 
propagation of ( )sigE z

r
 can be described by: 

 ( ) ( ) ( )0sigsig EzzE
rr

T= , (1) 

with ( )zT  a unitary Jones matrix representing the effect of fiber birefringence. The pump wave, whose Jones vector is 

denoted by ( )pumpE z
r

, is launched into the fiber at z L= . Throughout this paper, we work in the same right-handed 

coordinate system { }, ,x y z , where the signal propagates in the positive z  direction, while the pump propagates in the 

negative z  direction. Thus, if both ( )sigE z
r

and ( )pumpE z
r

equal the 2X1 vector [1 ]Tj (T stand for transpose), they 
represent a right-handed circularly polarized signal and a left-handed circularly polarized pump wave, respectively23-24. 
We neglect linear polarization-dependent power losses in the fiber, although such losses can be easily included in the 
analysis. Further, since the Brillouin shift Bν  is merely ~10GHz, and only a few kilometers of modern fibers are 
concerned, polarization mode dispersion can be ignored and, therefore, shifting the optical frequency by Bν  has a 
negligible effect on the Jones matrix of the fiber. Hence, the propagation of the pump wave (in the absence of a probe) 
can also be expressed using ( )zT : 

 ( ) ( ) ( ) ( ) ( ) ( ) ;00 *
pumppumppump

T
pump EzzEzEzE

rrrr
TT =→=  (2) 

where ( )[ ] ( )zzT *inv TT = .  

When both the probe and pump waves are present, the local evolution of ( )sigE z
r

 and ( )pumpE z
r

 is driven by both the 
fiber birefringence and the SBS effect to give27-28:  

 
( ) ( ) ( ) ( ) ( ) ( )† †0

2
sig

pump pump sig

dE z d z
z E z E z E z

dz dz
⎡ ⎤γ

= +⎢ ⎥
⎣ ⎦

T
T

r
r r r

, (3a) 

 
( ) ( ) ( ) ( ) ( ) ( )zEzEzEz

dz
zd

dz
zEd

pumpsigsig
Tpump rrr

r

⎥
⎦

⎤
⎢
⎣

⎡ γ
+= †0

*

2
TT . (3b) 

0γ  [W⋅m]-1 is the SBS gain per unit length per a unit of pump power for a scalar interaction (i.e., for a fiber with no 
birefringence), and depends on the fiber material properties, the mode field diameter, the pump optical spectrum and the 
frequency offset between the pump and signal waves. We dedicate most of the analysis to the Stokes wave scenario, so 
that 0γ  is positive, but the analysis and results, properly interpreted, are equally valid for the anti-Stokes case, where the 
optical frequency of the signal is Bν  above that of the pump. The anti-Stokes signal surrenders its power to the pump, 

thereby becoming attenuated with an SBS attenuation coefficient of 0−γ . Note that ( ) ( )†
0( / 2) pump pumpE z E z⎡ ⎤γ ⎣ ⎦

r r
 is a 2×2 

matrix, representing the outer product of a column vector ( ( )pumpE z
r

) with a row one (the transpose conjugate 

of ( )pumpE z
r

).  

From now on it will be assumed that SBS-induced signal amplification or attenuation negligibly affects the pump (i.e., 
the so-called undepleted pump approximation). Thus, the SBS term in Eq. (3b) can be ignored and Eq. (3a) becomes 
linear in ( )sigE z

r
. Therefore,  
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 ( ) ( )0sigsig ELE
rr

⋅= H , (4) 

where H  is a 2×2 matrix, which depends on the fiber birefringence, the fiber length L , the pump power, and its SOP at 
z L= . The matrix H  is generally non-unitary. Nevertheless, it can be processed using the singular value decomposition 
(SVD) technique:  

 †

2

1†

0
0

VUVSUH ⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅=⋅⋅=

G
G

, (5) 

where U  and V  are unitary matrices, 1 2,G G  are real and positive and satisfy 1 2 1G G> >  in the case of SBS 
amplification and 1 21 G G> >  in the case of SBS attenuation. Using this decomposition two orthogonal input signal 
Jones vectors can be identified, which provide the maximum and minimum signal output powers, namely:  

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= −

1
0

;
0
1

0
1 min_1†max_ VVV in

sig
in
sig EE

rr
. (6) 

The corresponding output Jones vectors are given by:  

 _ max † _ min †
1 2

1 1 1 0 0 0
, ,

0 0 0 1 1 1
out out
sig sigE G E G

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ ⋅ = ⋅ = = ⋅ ⋅ ⋅ = ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
U S V V U S U U S V V U S U

r r
 (7) 

and are, therefore, also orthogonal. It is thus convenient to represent an arbitrarily polarized input signal using the 
orthogonal base of   _ maxin

sigE
r

, _ minin
sigE
r

:   

 min_
0

max_
0

in
sig

in
sig

in
sig EEE

rrr
β+α= . (8) 

Using Equations. (7) and (8), the output signal Jones vector and the signal power are:  

 2 22 2
0 1 0 2 0 1 0 2

1 0
; .

0 1
out out
sig sigE G G P G G

⎡ ⎤ ⎡ ⎤
= α +β = α + β⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
U U

r
 (9) 

When 1 2G G>> , Eq. (9) suggests that unless 0α  is negligible, an arbitrarily polarized input signal will be drawn towards 

the SOP of _ maxout
sigE
r

.  

Next, we try to relate _ maxin
sigE
r

, _ minin
sigE
r

 to the SOP of the pump wave. To that end, we have transformed Equations (3a) to 
the Stokes space25:  

 ( ) )()(ˆ)(ˆ1
2

)()(
_0

0_0 zSzszs
zP

dz
zdS

sigsigpump
pumpsig ⋅+

γ
= , (10a) 

 
( )

( )[ ])(ˆ)(ˆ)(ˆ)(ˆ
2

)(
)(ˆ)(

)(ˆ)(ˆ)(ˆ
2

)(
)(ˆ)(

)(ˆ

0

0

zszszszs
zP

zsz

zszszs
zP

zsz
dz

zsd

sigsigpumppump
pump

sig

sigpumpsig
pump

sig
sig

⋅−
γ

+×β=

××
γ

+×β=

r

r

 (10b) 

Here 0 _ sigS  is the signal power, 1, 2, 3,ˆ
T

sig sig sig sigs s s s⎡ ⎤= ⎣ ⎦  and similarly ˆpumps  are 3X1 normalized Stokes vectors, 
describing the evolution of the polarizations of the counter-propagating signal and pump waves, respectively. Finally, 

pumpP  denotes the pump power, which for the undepleted, lossless case is z-independent. The three-dimensional vector 

( )zβ
r

 describes the fiber birefringence in Stokes space27:  

 †2 TT
dz
dj≡σ⋅β

rr
, (11) 
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where σr  is a row vector of Pauli spin matrices27. The vector ( )zβ
r

 is aligned with the Stokes space representation of the 
local slow axis of birefringence27. Note again that we express both Stokes vectors in the same right handed coordinate 
system, in which the signal wave propagates in the positive z  direction. Therefore, the Stokes vector [ ]ˆ 0 0 1 Ts =  
represents a right-handed circular polarization for the signal wave, but a left-handed circular polarization for the pump.  

2.2 States of polarization for maximum and minimum amplification in long, standard fibers 

Eq. (10a) is easily cast into a form:  

 
( ) ( ) ( )sigpump

pumpsig ss
zP

dz
Sd

ˆˆ1
2

ln 0_0 ⋅+
γ

= . (12) 

In the undepleted pump regime, the solution is readily obtained:  

 ( ) ( )0 0
0 _ 0 _ 0 _

0

ˆ ˆ ˆ ˆexp 1 ' exp 1
2 2

L
pump pumpout in in

sig sig pump sig sig pump sig L

P P
S S s s dz S L s s

γ γ⎡ ⎤ ⎡ ⎤
= + ⋅ = + ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
∫ . (13) 

ˆ ˆpump sig L
s s⋅  is the scalar product of the pump and signal Stokes vectors, averaged over the fiber length. Thus, for any 

input SOP one can define an effective SBS gain, given by:  

 ( )
Lsigpump ss ˆˆ1

2
0 ⋅+
γ

=γ . (14) 

Obviously, γ depends on the input SOPs of both pump and signal.  

Eq. (10b) specifies two driving forces that control the evolution of the SOP along the fiber. The first, ˆsigsβ×
r

, describes 
the birefringence-induced evolution of the signal SOP27. The same term also governs the evolution of the pump SOP, 
albeit in the opposite direction. The second term, ( )0 ˆ ˆ ˆ ˆ( / 2) pump pump pump sig sigP s s s s⎡ ⎤γ − ⋅⎣ ⎦ , represents the effect of SBS 

amplification on the signal SOP. This second term has the following interpretation on the Poincare sphere: it is a vector, 
orthogonal to ˆsigs , and tangentially (on the sphere surface) pointing towards ˆpumps . This term signifies a force pulling 
ˆsigs  towards ˆpumps . The magnitude of this pulling force scales with the pump power and depends on the local projection 

of ( )ˆpumps z on ( )ˆsigs z , vanishing when ˆsigs is either parallel to ˆpumps  (pump and signal SOPs aligned) or anti-parallel to 
it (in the Stokes space, namely: orthogonal in the Jones space).  

We now turn to the prevalent scenario of standard single-mode fibers, where the birefringence term Eq. (10b) is larger 
than the SBS term (for a an average beat length of 40 m, 1~ 0.16 m

z

−β
r

 whereas 1
0 / 2 ~ 0.01mpumpP −γ  for 

[ ] 1
0 0.2 m W , 0.1WpumpP−γ = ⋅ = ). While being relatively small, the SBS term cannot be ignored.  High differential gains 

( 1 2/G G  > 10) are easily observed, and according to equation (9), any signal, whose input SOP even slightly deviates 

from that of _ minin
sigE
r

, will emerge with its SOP being pulled towards that of _ maxout
sigE
r

. While the polarization pulling is 

due to the SBS term, the final signal SOP is not that of ( )pumpE z L=
r

. The relation between the SOP of  _ maxout
sigE
r

 and that 

of ( )pumpE z L=
r

 are studied below.  

Let us assume first a very weak pump so that the Brillouin term in Eq. (10b) can be ignored. In this limit, the forward 
evolution of ˆsigs  and the backward evolution of ˆpumps  are solely governed by the birefringence term. We denote the 

maximum value of ˆ ˆpump sig L
s s⋅  over all possible SOPs of the input signal ˆ ( 0)sigs z = , but for a given pump SOP 

( ˆ ( )pumps z L= ), as { }ˆ ( 0)
ˆ ˆmax

sig
pump sig Ls z

s s
=

⋅ . It is possible to show that the average projection is given by29:  
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*

*

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) (0) ( ) ( ) (0)

1
1ˆ ˆ ˆ ˆ(0) ( ) (0) (0) 1 (0).
3

1

T T
Ensemble Ensemblepump sig pump sig pump sigL Average Average

T T T
Ensemblepump sig pump sig
Average

s s s z s z s z z s

s z s s s

⋅ ≈ ⋅ = ⋅

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥−⎣ ⎦

T T

T T

M M

M M
. (15) 

Here ( )zTM and * ( )zTM  are the Mueller matrices representing ( )zT  and * ( )zT , respectively (T stands for transpose), 
and the fiber is assumed to be long enough so that most z values are much larger than many correlation lengths of the 
random birefringence. Finally, the ensemble averaged value of * ( ) ( )T z z⋅T TM M  was taken from the work by Corsi et 
al.29. 
One can easily conclude from Eq. (15) that { }ˆ ( 0)

ˆ ˆmax
sig

pump sig Ls z
s s

=
⋅  is 1/3, resulting in a maximum achievable gain 

coefficient of 0(2 / 3)γ  (Eq. 14). This maximum is attained when ˆ ( 0)sigs z =  is the image of ( )ˆ 0pumps z =  on the 

Poincare sphere, with the equatorial plane acting as a mirror, namely: ( ) ( )max
1, 1,ˆ ˆ0 0sig pumps s= , ( ) ( )max

2, 2,ˆ ˆ0 0sig pumps s=  and 

( ) ( )max
3, 3,ˆ ˆ0 0sig pumps s= − . This ( )maxˆ 0sigs z =  is the normalized Stokes representation of the complex conjugate of the pump 

Jones vector at 0z = , namely, * ( 0)pumpE z =
r

. Conversely, { }ˆ ( 0)
ˆ ˆmin 1 3

sig
pump sig Ls z

s s
=

⋅ = − , corresponding to a minimum 

gain coefficient of  0(1/ 3)γ . This minimum value is attained for ( ) ( )min maxˆ ˆ0 0sig sigs z s z= = − = , which is the Stokes space 

representation of a polarization orthogonal to that of * ( 0)pumpE z =
r

, to be denoted by ( )0pumpE z∗⊥ =
r

. It is easily proven 

from Eqs. (1-2) that for a unitary ( )zT  (and ignoring the Brillouin term), if sigE
r

 and *
pumpE
r

 are a parallel pair at 0z = , 

they will continue to be parallel for all 0 z L≤ ≤ , so that _ max ( )out
sigE z L=
r

 has the same polarization as that of 
* ( )pumpE z L=
r

. These analytically obtained results are no different than the seemingly intuitively-derived conclusions of 
van Deventer and Boot22, when carefully noting the difference in the reference frame convention, but both approaches 
are strictly valid only in the limit of very weak pump power. Nonetheless, numerical simulations of equation (3a) show 
that the relation between max

sigE
r

 and pumpE∗
r

 holds in the presence of non-negligible level of pump power25. 

2.3 Polarization-induced distortion in SBS slow light setups 

The SBS amplification (or attenuation) of signal waves is frequency dependent. The spectral variations in the signal 
amplitude gain go hand-in-hand with an acquired optical phase that is frequency-dependent as well. Figure 1 (left) shows 
the real and imaginary parts of the normalized SBS complex gain coefficient for a CW pump wave: 
( ) ( )0 1 1 2 Bjγ Δω γ = + ⋅Δω Γ , where Δω  denotes the detuning of the signal wave from the frequency of maximum 

SBS amplification, and / 2 30 MHzBΓ π ≈  is the SBS linewidth1. The real and imaginary parts govern the amplitude 
gain and phase variations of the signal wave respectively.  

As can be seen in the figure, the imaginary part of the SBS gain coefficient is nearly linear within the amplification 
bandwidth. Thus, the spectral phase acquired by signal pulses introduces an effective added group delay13-20, 26:  

 
( ) ( ){ }

0
Im

2
pumpP L

Δω=

∂
τ = − γ Δω⎡ ⎤⎣ ⎦∂ Δω

. (16) 

The added group delay is positive for amplified Stokes waveforms, and negative for attenuated anti-Stokes pulses. The 
two phenomena, therefore, fall within the categories of ‘slow’ and ‘fast’ light, respectively. Figure 1 (right) shows 
examples of delayed and advanced signal pulses13. The amplitudes of the pulses were all normalized to unity. The added 
group delay is seen to increase with the SBS amplification. In the previous section, we discussed how the amplification 
provided by a given pump in a given fiber could vary with the SOP of the input signal. It is therefore anticipated that the 
group delay obtained in SBS slow and fast light setups would be polarization dependent as well.   
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Fig. 1: Left - Schematic real (left hand axis) and imaginary (right hand axis) parts of SBS gain function for CW pump. The 

frequency is normalized to units of BΓ . Right - Temporal shift of amplified or attenuated signal pulses13. 

In order to obtain a quantitative description of the polarization dependence of SBS slow light and its implications, let us 
now consider signal pulses, rather than continuous waves, and denote a single Fourier component of the signal as 

( ),sigE z Δω
r

. Equation (3a) can be re-written for each Fourier component, in the following form:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )† †d , d

,
d d 2

sig
pump pump sig

E z z
z E z E z E z

z z
Δω γ Δω⎡ ⎤

= + Δω⎢ ⎥
⎣ ⎦

T
T

r
r r r

. (17) 

The local birefringence term ( ) ( )†d dz z z⎡ ⎤⎣ ⎦T T  is virtually frequency independent within the narrow BΓ . Repeating the 
derivation of the previous subsection30:  

 ( ) ( ) ( )
( ) ( ) ( )max †

min

0
, 0,

0sig sig

G
E L E

G
⎡ Δω ⎤

Δω = Δω ⋅ ⋅ Δω ⋅ Δω⎢ ⎥Δω⎣ ⎦
U V

r r
, (18) 

we may obtain the input and output signal SOPs that are associated with maximum and minimum amplification, 
individually for each Fourier component Δω : ( ) ( ) [ ]_ maxˆ 1 0 Tin

sige Δω = Δω ⋅V , ( ) ( ) [ ]_ minˆ 0 1 Tin
sige Δω = Δω ⋅V , 

( ) ( ) [ ]_ maxˆ 1 0 Tout
sige Δω = Δω ⋅U  and ( ) ( ) [ ]_ minˆ 0 1 Tout

sige Δω = Δω ⋅U .  

In standard, birefringent fibers, ( )_ maxˆin
sige Δω  is closely aligned with the complex conjugate of ( )0pumpE∗

r
 for all 

BΔω < Γ , provided that ( ) 2pump BP Lγ Δω < π , where BL  is the mean beat length in the fiber25. The input SOPs 

( )_ maxˆin
sige Δω  and ( )_ minˆin

sige Δω  are therefore nearly frequency independent, even though the maximum and minimum gain 

values ( )maxG Δω , ( )minG Δω  vary exponentially with frequency through ( )γ Δω . This property of ( )_ maxˆin
sige Δω  had 

been validated by both numerical simulations and experiments30. Based on the above, it is possible to replace equation 
(18) with a pair of decoupled, scalar SBS amplification equations, one associated with the frequency domain transfer 
function ( )maxG Δω  and the input SOP ( )_ maxˆ 0in

sige , and the other with ( )minG Δω  and ( )_ minˆ 0in
sige . It is convenient to 

examine the propagation of an arbitrarily polarized input signal pulse using decomposition in the basis of ( )_ maxˆ 0in
sige  and 

( )_ minˆ 0in
sige . Since typically max minG G>> , we expect that the SBS induced delay of a pulse aligned with ( )_ maxˆ 0in

sige  will 

be longer than that of a pulse aligned with ( )_ minˆ 0in
sige . These two SOPs, therefore, take up a role similar to that of the 

principal axes of linear birefringence induced PMD, on top of representing polarization dependent gain axes30.  
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3. EXPERIMENTAL RESULTS 
3.1 Stimulated Brillouin scattering polarization pulling 

The experimental setup for characterizing polarization related properties of SBS is shown in Fig. 2. Light emitted from a 
tunable laser source was split by a 50% coupler. In the lower (pump) branch, the light was amplified by a high-power 
Erbium-doped fiber amplifier (EDFA), and directed into the fiber under test via a circulator. The length of the fiber 
under test was 2250 m, and its Brillouin frequency shift was Bν  = 10.57 GHz. The pump power was controlled by a 
variable optical attenuator (VOA). In the upper (signal) branch, the laser light was modulated by an electro-optic 
intensity modulator (EOM). The modulation frequency was tuned to Bν , and the EOM bias voltage was adjusted to 
suppress the optical carrier4. Following the EOM, the signal was filtered by a narrow-band Fiber Bragg grating (FBG). 
For SBS signal amplification measurements, the frequency of the tunable laser was adjusted so that the lower modulation 
sideband matched the FBG reflection frequency31. This way, the frequency of the signal propagating in the fiber under 
test was Bν  below that of the pump. For SBS attenuation measurements, the tunable laser frequency was modified so 
that the upper modulation sideband was retained by the FBG31. Following the SBS interaction, the signal was routed to a 
power meter, followed by a lock-in amplifier to filter out spontaneous SBS, or to a polarization analyzer for the 
measurement of the signal output power and SOP. A second FBG in the detection path was used to filter out the 
backscattered pump, as well as the spontaneous Brillouin scattering amplified by the Stokes process in the SBS loss 
scenario. 

 
Fig. 2: Experimental setup for characterizing the polarization dependence of SBS. ATT: Optical attenuator. VOA: Variable 

optical attenuator. FBG: Fiber Bragg grating. DSB: Double side band modulation. SSB: single side band modulation. 
PC: Polarization controller. EDFA: Erbium-doped fiber amplifier. EOM: electro-optic modulator. νp denotes the optical 
frequency of the pump 

For each pump power, the input signal SOPs which corresponded to minimum and maximum signal output power were 
found using the following procedure: First, a programmable polarization controller (Prog. PC) in the signal path was set 
to four non-degenerate SOPs, and the output signal power was recorded for each. Based on these four measurements, the 
top row of the 4X4 Mueller matrix describing the pumped fiber under test was extracted32, and signal SOPs for minimum 
and maximum output power could be calculated. Next, the programmable PC was set to these two input SOPs and the 
output signal power was recorded. 

Figure 3(a) shows the logarithm of the signal power gain (Stokes signal) as a function of pump power, for three different 
SOPs of the input signal wave. In the upper and lower curves, the signal SOP is adjusted for each pump power level to 
achieve maximum and minimum gain, respectively. In these curves, the logarithmic SBS gain appears to be linearly 
proportional to the pump power over the entire measurement range, indicating a power-independent gain coefficient, as 
predicted by the analysis. Furthermore, the slope of the maximum gain curve is extremely close to twice that of the 
minimum gain curve22. These results indicate that our 2.2km fiber comprises many correlation lengths of the random 
birefringence22, 29. The third curve of Fig. 3(a) shows the logarithm of the SBS gain for a signal, whose input SOP, 

_ near _ min
( )

in
sig StokesE
r

, is azimuthally 40° away from _ min
( )

in
sig StokesE
r

. Initially, for relatively low pump power, the gain slope is that of the 
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minimum gain curve. However, for higher pump powers, the measured gain increases rapidly and its slope approaches 
that of the maximum gain curve.  
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Fig. 3: (a) SBS gain (Stokes signal) in dB as a function of pump power, for a 2250 m long fiber. Lower curve (Green) – 

optimized for minimum gain, Upper curve (Blue) – optimized for maximum gain, Dashed curve (Red) – for an input 
SOP in the vicinity of

 
min_

)(
in

StokessigE
r , rotated from it by 400 around the s3 (RL) axis (the black squares are explained in the 

text). (b) The SOPs of the emerging amplified signals for the three cases of (a): maximum (blue solid circles), 
minimum (green open diamonds), and red squares for the intermediate case. Open symbols denote SOPs in the back of 
the sphere. The size of the square is a measure of the signal power, increasing with pump power for Stokes signals. The 
black ‘+’ is the SOP of the spontaneous SBS. The straight line through the center of the sphere connects this SOP to its 
orthogonal counterpart. (c) SBS attenuation (anti-Stokes signal) in dB as a function of pump power. Lower curve 
(Green) – optimized for minimum output power (maximum attenuation), Upper curve (Blue)– optimized for maximum 
output power (minimum attenuation), Dashed curve (Red) – for an input SOP in the vicinity of min_

)(
in

StokesAsigE −

r , rotated from 
it by 400 around the s3 (RL) axis. (d) The SOPs of the emerging attenuated signals for the cases of (c): maximum (blue 
open circles), minimum (green solid diamonds), and red squares for the intermediate case. The straight line through the 
center of the sphere is that of (b), shown here for reference. 

As a consistency check, we used Eqs. (8)-(9) first to project min_near_
)(

in
StokessigE

r
 on the measured max_

))(
in

StokessigE
r

, min_
)(

in
StokessigE

r
, and then 

used the measured values for 1G  (maximum gain) and 2G  (minimum gain) to analytically predict the gain experienced 

by min_near_
))(

in
StokessigE

r
. The results are shown as open squares on the dashed (red) curve in Fig. 3(a), demonstrating excellent 

agreement with the measured gain. Figure 3(b) shows the output SOPs corresponding to max_
)(

out
StokessigE

r
, min_

)(
out

StokessigE
r

 and 
min_near_

)(
out

StokessigE
r

 for all pump powers. Also shown on the sphere is the SOP of spontaneously amplified Brillouin scattering, 
which was obtained by turning off the signal input and measuring the SOP of the Brillouin-scattered light at 

Bps ν−ν=ν . Note that as pumpP  spans the 5-35mW range, { }max_
)(

out
StokessigE

r
 and{ }min_

)(
out

StokessigE
r

 hardly change and they are fairly 
orthogonal to one another (the SOP readings of the polarization analyzer in the minimum gain case were contaminated 
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by the spontaneously amplified Brillouin scattering, leading to a larger spread near { }min_
)(

out
StokessigE

r
). Furthermore,  { }max_

)(
out

StokessigE
r

 
coincides, as expected, with the SOP of the spontaneously amplified Brillouin scattering. Also shown is the evolution of 
the signal SOP for min_near_

)(
in

StokessigE
r

, clearly indicating the pulling of its SOP towards that of { }max_
)(

out
StokessigE

r
. Figure 3(c) shows the 

logarithm of the maximum and minimum attenuation of an anti-Stokes signal. As obtained for the Stokes wave, the 
curves for maximum and minimum are linear, and the ratio of their slopes is close to two. Note that the obtained curves 
replicate those of the corresponding Stokes signal, albeit with a minus sign. The figure also shows the measured and 
calculated logarithmic loss of an anti-Stokes signal with an input SOP min_near_

)(
in

stokesAsigE −

r
. Finally, Fig. 3(d) shows the output 

SOPs corresponding to max_
)(

out
StokesAsigE −

r
, min_

)(
out

StokesAsigE −

r
 and min_near_

)(
out

StokesAsigE −

r
 for all pump powers. Polarization pulling towards the SOP 

of { }max_
)(

out
StokesAsigE −

r
 is observed. It is seen that { }min_

)(
out

StokesAsigE −

r
 (solid diamonds in Fig. 3(d)), which suffers maximum attenuation 

are parallel to { }max_
)(

out
StokessigE

r
 (solid circles in Fig. 3(b)), which enjoys the maximum possible gain. 

Figure 4 shows the signal output SOP for twenty different input SOPs, which were evenly distributed on the Poincare 
sphere. As the pump power is increased, the output signal SOPs converge to a particular, preferred state. The 
convergence is effective for both SBS signal gain and signal loss, in the undepleted pump regime. 

a:     

   

b:  c: 

Fig. 4: Measured output signal SOP for SBS signal gain and SBS signal loss for twenty evenly distributed input signal 
SOPs. (a) Stokes SOP, pump power is 5 mW. (b) Stokes SOP, pump power is 45 mW. (c) Anti-Stokes SOP, pump 
power is 20mW (SOP measurements in the signal attenuation scenario were difficult due to the presence of 
spontaneous SBS, which competed with the attenuated signal. Thus, reliable readings could not be obtained for pump 
powers above 25 mW.) 

3.2 Polarization-induced distortion in SBS slow light 

Excessive polarization-related pulse broadening was observed experimentally. The measurement setup is shown in Fig. 
5. Light from a distributed feedback laser diode (DFB-LD) was split by a directional coupler. One branch was amplified 
using an EDFA, and was launched into the fiber under test as an SBS pump wave at z L= . The other branch was 
double-sideband modulated at the Brillouin frequency shift of the fiber under test (10.91 GHz), with the bias of the EOM 
adjusted to suppress the optical carrier frequency. The upper frequency sideband was discarded by a narrowband FBG, 
and the filtered lower frequency sideband was used as a Stokes wave signal. This signal was then modulated by Gaussian 
pulses, using a second EOM, and was launched into the fiber at 0z = . A PC was used to adjust the input signal SOP. 
The pump power, fiber length and input pulse full width at half maximum (FWHM) were 560 mW, 140 m and 17 ns. 

Figure 6 shows measurements of the normalized output power for different input SOPs. The gain and FWHM of 
maximally amplified output pulse power ( )_ maxout

sigP t  were 21 dB and 63 ns, whereas those of the minimally amplified 

pulse power ( )_ minout
sigP t  were 6.7 dB and 30 ns. Several pulses of intermediate SOP alignments, amplified by only 9.5-

13 dB, were broadened to a FWHM of 65-75 ns. The results demonstrate that SBS slow light implementations may 
introduce a polarization-related distortion, which is inherent to the vector nature of SBS. Polarization induced distortion 
becomes negligible when the signal input is closely aligned with ( )_ maxˆ 0in

sige , which is the preferable input SOP in most 
slow light setups. Nonetheless, our results show that an arbitrarily polarized signal pulse, subject to a comparatively 
moderate amplification, can become broader than a pulse aligned for maximum gain and delay. Unless polarization is 
stabilized, the width of the maximally delayed pulse does not necessarily set an upper bound on pulse broadening in SBS 
slow light delay setups.  
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Fig. 5: Experimental setup for observing SBS-PMD. VOA: variable optical attenuator. Det: detector. RF: radio frequency. 

DC: direct current. 
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Fig. 6: Measured, normalized signal power as a function of time. Dashed line (blue): input Gaussian pulse (FWHM 17 ns). 

Solid lines: output pulses with the input SOP aligned for minimum gain (left, green) and maximum gain (right, red). 
Dash-dot lines (black): examples of output pulses with intermediate input SOP alignments. Experimental conditions: 
L  =140 m, pumpP  = 560 mW. 

4. DISCUSSION AND CONCLUSIONS 
In this work, the analysis of SBS in birefringent fibers was extended to include arbitrarily polarized signals. A vector 
propagation equation for the signal wave in the undepleted pump regime was provided, both in Jones and in Stokes 
spaces. The equations and their subsequent analysis provide expressions for the output signal vector, regardless of the 
polarization statistics of the pump and signal waves along the fiber. The analysis showed that SBS in the undepleted 
pump regime may be modeled as a pseudo-linear partial polarizer, whose input states for maximum and minimum gain 
are orthogonal. Due to the large difference in gain between these maximum and minimum states, it is expected that the 
SOP of an arbitrarily polarized input signal will be closely aligned with that of the maximum gain axis at the fiber 
output. This prediction was experimentally confirmed, for both Stokes and anti-Stokes signal waves. The vector 
properties of SBS can give rise to an arbitrary polarization synthesis. The analysis also shows that the maximum and 
minimum input signal SOPs for the Stokes wave in long, standard single-mode fibers correspond to the conjugate of the 
outgoing pump, and the orthogonal of that conjugate, respectively. This correspondence is practically valid for pump 
powers up to tens of mW over fibers a few km long. The roles of the two SOPs are reversed for the anti-Stokes wave. 

The polarization and birefringence dependence of SBS has already been used in Brillouin fiber lasers33, 34 and distributed 
birefringence measurements35. On the other hand, the same dependence can hinder the performance of distributed strain 
and temperature sensors36. In addition, birefringence was observed to cause a nonlinear response in the delay-pump 
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power transfer function37. In another example, the polarization sensitivity of SBS-induced delay was overcome using a 
Faraday rotator mirror38. The quantitative analysis of the strength of polarization pulling over relatively short spans of 
standard fibers could provide information regarding the beat length and polarization coupling length of a specific fiber 
under test39. Finally, frequency-selective polarization pulling based on SBS was recently applied in the generation of 
orthogonally polarized, optical single-sideband modulation formats40. Polarization properties of SBS are also addressed 
in the works of Galtarossa et al.41 and Ursini et al.42. Clearly, the research interest in the polarization attributes of SBS in 
optical fibers and their applications is on the rise. Nonlinear polarization pulling based on stimulated Raman scattering 
amplification43 and the Kerr effect44, 45 were also demonstrated over the last two years.  

Polarization induced distortion becomes negligible when the signal input is closely aligned with the SOP of maximum 
delay, which is the preferable input state in most slow light setups. For this reason, the effect was seldom encountered by 
researchers working on SBS slow light setups. Nonetheless, our results show that an arbitrarily polarized signal pulse, 
subject to a comparatively moderate amplification, can become broader than a pulse aligned for maximum gain and 
delay. Unless polarization is stabilized, the width of the maximally delayed pulse does not necessarily set an upper bound 
on pulse broadening in SBS slow light delay setups. 
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