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Abstract—This paper describes carry-less arithmetic opera-
tions modulo an integer 2M − 1 in the thousand-bit range,
targeted at single instruction multiple data platforms and
applications where overall throughput is the main performance
criterion. Using an implementation on a cluster of PlayStation 3
game consoles a new record was set for the elliptic curve
method for integer factorization.
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I. INTRODUCTION

Numbers of a special form often allow faster modular
arithmetic operations than generic moduli. This is exploited
in a variety of applications and has led to a substantial
body of literature on the subject of fast special arithmetic.
Speeding up calculations using special moduli was already
proposed in the mid 1960s by Merrill [40] in the setting
of residue number systems (RNS) [25]. Other applica-
tions range from speeding up fast Fourier transform based
multiplication [19], enhancing the performance of digital
signal processing [54], [50], [23], to faster elliptic curve
cryptography (ECC; [32], [41]), such as in [3].

Another application area of special moduli is in factoriza-
tion attempts of so-called Cunningham numbers, numbers of
the form bn±1 for b = 2, 3, 5, 6, 7, 10, 11, 12 up to high pow-
ers. This long term factorization project, originally reported
in the Cunningham tables [21] and still continuing in [15],
has a long and distinguished record of inspiring algorithmic
developments and large-scale computational projects [34],
[42], [14], [46], [37], [13]. Factorizations from [15] with
b = 2 are used in formal correctness proofs of floating point
division methods [27]. Several of these developments [36]
turned out to be applicable beyond special form moduli,
and are relevant for security assessment of various common
public-key cryptosystems.

This paper concerns efficient arithmetic modulo a
Mersenne number, an integer of the form 2M − 1. These
numbers, and a larger family of numbers called general-
ized Mersenne numbers [51], [17], [1], have found many
arithmetic applications ranging from number theoretic trans-
forms [12] to cryptography. In the latter they are used to run
calculations concurrently using RNS [2] or to improve the

speed of finite field arithmetic in ECC based schemes [51],
[55]. The great internet Mersenne prime search project [26]
is based on an implementation of the Lucas-Lehmer primal-
ity test [39], [33] for Mersenne numbers in the many million
bit range. Hence, efficient arithmetic modulo a Mersenne
number is a widely studied subject, not just of interest in its
own right but with many applications.

Our interest in arithmetic modulo a Mersenne number was
triggered by a potential (special) number field sieve (NFS)
project [36], for which we need a list of composites dividing
2M−1 for exponents M in the range from 1000 to 1200. The
Cunningham tables contain at least 20 composite Mersenne
numbers (or composite factors thereof) in the desired range
that have not been fully factored yet. It may be expected
that some of these composites are not suitable candidates
for our list because they can be factored faster using the
elliptic curve method (ECM) for integer factorization [38]
than by means of special NFS (SNFS). The only way to
find out if ECM is indeed preferable, is by subjecting each
candidate to an extensive ECM effort (which, though it may
be substantial, is small compared to the effort that would
be required by SNFS): only candidates that ECM failed to
factor should be included on the list.

The efficiency of ECM factoring attempts relies on the
efficiency of integer arithmetic modulo the number being
factored. Given the need to do extensive ECM pre-testing
for at least 20 composite Mersenne numbers, we developed
arithmetic operations modulo a Mersenne number suitable
for implementation of ECM on the platform that we intended
to use for the calculations: the Cell processor as found in
the Sony PlayStation 3 game console. Because each ECM
effort consists of a large number of independent attempts
that can be executed in single instruction multiple data
(SIMD) mode and because each core of the Cell processor
can be interpreted as a 4-way SIMD environment, our
arithmetic modulo a Mersenne number is geared towards
SIMD implementation. It is described in Section III after
a brief description of the Cell architecture in Section II.
Although our implementations were written for the Cell
processor, our methods apply to any type of SIMD platform,
including graphics cards. Section IV sketches ECM, our
Cell processor implementation, and lists some of our ECM
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results, including a new ECM record factorization.
While the new ECM factorizations removed some of the

easy cases from our list of candidate Mersenne numbers, the
further practical implications of ECM records are limited
to their consequence for two variants of the RSA cryp-
tosystem [47], namely RSA multiprime [47] and unbalanced
RSA [48]. The former gains a speedup by a factor of r2

or r2

4 for the private operation in vanilla RSA or CRT-RSA,
respectively, by selecting RSA moduli (of appropriate size
to be out of reach of NFS) consisting of the product of
r > 2 primes of about the same size. In unbalanced RSA,
the RSA modulus has two factors as usual, but one is chosen
much smaller than the other. In these variants, r and the
smallest factor must be chosen in such a way that ECM has
a sufficiently low probability to find the resulting relatively
small prime factor(s). Our ECM findings affirm that 1024-
bit RSA moduli with r ≥ 4 should be avoided [35] and may
give practitioners of these variants some guidance how small
the factors may be chosen.

II. THE CELL PROCESSOR AND ITS ARCHITECTURE

The Cell processor, the main processor of the PS3 and
thus mainly targeted at the gaming market, is a powerful
general purpose processor. On the first generation PS3s it
can be accessed using Sony’s hypervisor, a feature that has
been disabled in current versions. This made the PS3 a
relatively inexpensive and also flexible source of processing
power, as witnessed by a variety of cryptanalytic projects:
chosen prefix collisions for the cryptographic hash function
MD5 [52], [53], the solution of a 112-bit prime field elliptic
curve discrete logarithm problem [9], and implementation
of elliptic curve group arithmetic over a degree-130 binary
extension field [10].

The architecture of the Cell processor is quite different
from that of regular server or desktop processors. Taking
full advantage of it requires designing new software. It is
worthwhile doing so, because architectures similar to the
Cell’s will soon be mainstream [44]. It not only helps us to
take advantage of the Cell’s inexpensive processing power,
it also helps to prepare for future generations of processors.
See Section IV-A for the rationale why the Cell processor
was chosen as the platform for our ECM attempts.

The Cell has a Power Processing Element (PPE), a dual-
threaded Power architecture-based 64-bit processor with
access to a 128-bit AltiVec/VMX SIMD unit. Its main
processing power, however, comes from eight Synergistic
Processing Elements (SPEs). When running Linux, six SPEs
can be used: one is disabled, and one is reserved by the
hypervisor. It is conceivable that this last one becomes
accessible too [28]. Each SPE runs independently from the
others at 3.192GHz, using its own 256 kilobyte of fast local
memory for instructions and data. It has 128 registers of 128
bits each, allowing SIMD operations on sixteen 8-bit, eight

16-bit, or four 32-bit integers. An SPE has no 32×32 → 64-
bit or 64× 64 → 128-bit integer multiplier, but has several
4-way SIMD 16×16 → 32-bit integer multipliers including
multiply-and-add instructions.

There is an odd and an even pipeline: in ideal cir-
cumstances an SPE can dispatch one odd and one even
instruction per clock cycle. Most arithmetic instructions
are even. Because the SPE lacks smart branch prediction,
branching is best avoided (as usual in SIMD). Multiple
SIMD processes may be interleaved, filling both pipelines to
increase throughput, while possibly increasing per process
latency. Here we took advantage of interleaving in another
manner.

The Cell processor has also been made available to the
supercomputing community by placing two Cell chips in
a single blade server. They come with more memory than
in the PS3 and on each Cell all eight SPEs are accessible.
For high-performing blade servers a newer derivative of the
Cell, the PowerXCell 8i, offers enhanced double-precision
floating-point capabilities. Due to their significantly higher
price these compute nodes come at a price performance ratio
quite different from the relatively inexpensive PS3.

III. ARITHMETIC MODULO 2M − 1 ON THE SPE

In this section we describe the SPE-arithmetic that we
developed for arithmetic modulo N = 2M −1, for M in the
range from 1000 to 1200 (allowing larger values as well).
Assume that M < 13 · 96− 2 = 1246 (larger M -values can
be accommodated by putting M < u·v−2 with v·(2u−1)2 <
231). Our approach aims to optimize overall throughput as
opposed to minimize per process latency. Two variants are
presented: a first approach where addition and subtraction
are fast at the cost of a radix conversion before and after
the multiplication, and an alternative approach where radix
conversions are avoided at the cost of slower addition and
subtraction. This second variant turns out to be faster for our
ECM application. In applications with a different balance
between the various operations the first approach could be
preferable, so it is described as well. All our methods are
particularly suited to SPE-implementation, but the approach
may have broader applicability.

For k ∈ Z>0 a k-bit integer is an integer w with
0 ≤ w < 2k. A signed k-bit integer is an integer w with
−2k−1 ≤ w < 2k−1. For r ∈ Z>1 a radix-r representation
of an integer z with 0 ≤ z < rs is a sequence of radix-r
digits (wj)s−1

j=0 such that z =
∑s−1

j=0 wjr
j and wj ∈ Z≥0.

It is unique if 0 ≤ wj < r for 0 ≤ j < s. If 2k ≥ r,
a signed k-bit radix-r representation of z is a sequence
(wj)s

j=0 of signed k-bit integers such that z =
∑s

j=0 wjr
j .

We use signed radix-2k representation for signed k-bit radix-
2k representation.
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A. Related work

In [18] an SPE implementation is presented using arith-
metic modulo the special prime 2255−19 introduced in [3].
SPE-arithmetic modulo a special prime is used in [9] to
solve a 112-bit elliptic curve discrete logarithm problem
on Cell processors. The SPE-performance of generic versus
generalized Mersenne moduli is compared in [8]. SPE-
arithmetic for moduli in the 200-bit range is presented in [6],
[16]; on PS3s the former is more than twice faster than the
latter. Different approaches to implement arithmetic over a
binary extension field on SPEs are stated in [10].

Our usage of a small radix to avoid carries (cf. below) is
not new [20], [31, Section 4.6], [6]. In [6] signed radix-213

representation is used along with the SPE’s 16× 16 → 32-
bit multiplication instruction to develop fast multiplication
modulo 195-bit moduli. All additions done during a single
schoolbook multiplication are carry-less, requiring normal-
ization to radix-213 representation only at the end of the
multiplication.

B. Representation of 4-tuples of integers modulo N

On the SPE it is advantageous to operate on four integers
modulo N simultaneously, in 4-way SIMD fashion. Each
128-bit SPE register is interpreted as being partitioned into
four 32-bit words. With s 128-bit registers thought to be
stacked on top of each other, where 32s ≥ M , four different
integers modulo N can be represented using four disjoint
parallel columns, each consisting of s words: denoting the
ith word of the jth register by wij for i ∈ {1, 2, 3, 4}
and j = 0, 1, . . . , s − 1, the sequence (wij)s−1

j=0 is inter-
preted as the radix-232 representation of the 32s-bit integer∑s−1

j=0 wij232i. More generally, for any t ≤ 32 of one’s
choice, the sequence (wij)s−1

j=0 may represent the integer∑s−1
j=0 wij2ti whose value depends on the interpretation of

the words wij : as an unnormalized radix-2t representation if
the wij are interpreted as non-negative integers (normalized
and unique if wij < 2t as well), and as a signed k-bit radix-
2t representation, for some k ≤ 32, if the wij are interpreted
as signed k-bit integers.

It should be understood that the integer operations de-
scribed below are always carried out in 4-way SIMD fashion
on the SPE.

C. Addition and subtraction modulo N

Addition and subtraction in 4-way SIMD fashion on a pair
of 4-tuples of integers modulo N in radix-2t representation,
with each 4-tuple represented by a stack of s registers of
128-bits (where ts ≥ M ), is done by applying s additions
or subtractions to the matching pairs of registers (one from
each stack), combined with a moderate number of carry
propagations. The reduction modulo N most of the time
affects just two of the radix-2t digits, with probability
2−1−t−(M mod t) that more digits are affected (in which case

it causes a slight stall for the other three calculations in the
4-tuple).

For t = 32 the SPE’s built-in carry generation instructions
are used, for smaller t-values somewhat more work needs
to be done. For completeness (and future reference, cf.
Step 5 in Section III-G), we describe the calculation of
c = a + b mod N and d = a − b mod N (so-called
addition-subtraction of a and b) given the signed radix-213

representations a =
∑95

j=0 aj213j and b =
∑95

j=0 bj213j .
The following 5 steps are carried out:

1) Let a′j = aj + 212 for 0 ≤ j < 96.
2) Set cj = a′j + bj and dj = a′j − bj for 0 ≤ j < 96.
3) Let the initial value of the carry τ be 0. For j = 0 to 95

in succession first replace τ by τ + cj , next replace cj

by τ mod 213, and finally replace τ by bτ/213c. The
resulting τ is a carry corresponding to τ · 213·96;
modulo N this carry is taken care of by adding τ · 2α

to cβ (for γ = 13 · 96 − M , β = bγ/13c and
α = γ − 13β ∈ [0, 12]) followed by a few more
carry propagations. If there is still a carry which occurs
rarely, use a more expensive function.

4) Repeat the previous step with c replaced by d.
5) Set cj = cj − 212 and dj = dj − 212 for 0 ≤ j < 96.

Steps 1, 2, and 5 allow arbitrary parallelization. Table I
lists SPE clock cycle counts for the addition operations
modulo 21193 − 1: it can be seen that for signed radix-
213 representation they are more than twice slower than for
radix-232 representation.

D. Multiplication modulo N using radix conversions

Given a pair of 4-tuples of M -bit integers, the four
pairwise products result in a 4-tuple of 2M -bit integers. The
four reductions modulo N can in principle be done by means
of a few of the above 4-tuple additions and subtractions
modulo N . Here we present our first approach that uses two
different radix representations, thereby making it possible to
take advantage of the fast radix-232 addition and subtraction
modulo N . In Section III-F another approach is described
that is based on signed radix-213 representation.

The multiplication modulo N of two M -bit integers a
and b given by their radix-232 representations, each using 39
words of 32 bits, proceeds in three steps that are described
in more detail in sections III-D1 through III-D3. The steps
are:

1) conversion of inputs a and b to signed radix-213

representation;
2) carry-less calculation of the 2M -bit product a · b in

signed 32-bit radix-213 representation;
3) reduction modulo N and conversion to radix-232 rep-

resentation of the 2M -bit product a · b, resulting in
c = a · b mod N ∈ {0, 1, . . . , N − 1}.

The following sections describe the steps in more detail.
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1) Conversion of inputs to signed radix-213 representa-
tion: Given the radix-232 representation of the precomputed
constant C0 = 212 ·

∑95
j=0 213j , first calculate the radix-

232 representation of a + C0, in the usual way requiring
carries. Next, using masks and shifts, extract the radix-213

representation (ã)95j=0 of a + C0, and finally subtract C0

again by calculating aj = ãj − 212, for j = 0, 1, . . . , 95
(because a96 = 0 for our choice of M , it is dropped). The
last two steps allow various straightforward parallelizations
and run twice faster (while requiring fewer registers) if
two 13-bit chunks are packed into a single 32-bit word.
Applying the same method to b, we find signed radix-213

representations of the inputs, below regarded as polynomials
Pa(X) =

∑95
j=0 ajX

j , Pb(X) =
∑95

j=0 bjX
j ∈ Z[X] with

Pa(213) = a and Pb(213) = b.
2) Carry-less calculation of the 2M -bit product in signed

32-bit radix-213 representation: The product polynomial
P (X) = Pa(X)Pb(X) =

∑190
j=0 pjX

j corresponds to the
carry-less product calculation of a and b as represented
by (aj)95j=0 and (bj)95j=0, respectively. Its coefficients satisfy
|pj | ≤ 96 · (212)2 < 231, which allows computation mod-
ulo 232, resulting in a signed 32-bit radix-213 representation
(pj)190j=0 of the product a · b = P (213). If M < 13 · w with
w < 96, the degree of P (X) will be at most 2w− 2 < 190,
which leads to savings here and in the description below.

The polynomial P (X) is calculated using three levels
of Karatsuba multiplication [30] (but see Section III-F2 for
the possibility to use more levels), resulting in 27 pairs of
polynomials (P (k)

a (X), P (k)
b (X)) of degree ≤ 11, for k =

1, 2, . . . , 27 (in the more general case where M < u · v − 2
we would use 16− u levels). This leads to 27 independent
polynomial multiplications Q(k)(X) = P

(k)
a (X)P (k)

b (X),
done using carry-less schoolbook multiplications. The poly-
nomial P (X) is then obtained by carry-less additions and
subtractions of the appropriate Q(k)(X)’s.

3) Reduction modulo N and conversion to radix-232

representation of the 2M -bit product: Given a signed 32-
bit radix-213 representation (pj)190j=0 of the 2M -bit product
a · b, regarded as the polynomial P (X) =

∑190
j=0 pjX

j with
P (213) = a · b, the radix-232 representation (ci)38i=0 of the
M -bit number c ≡ P (213) mod N is calculated. We use the
following precomputed constants:

• C1 ≡ −231 ·
∑190

j=0 213j mod N , 0 ≤ C1 < N .
• Integers kj , lj and mj such that

13j = mjM + 32lj + kj

with 0 ≤ 32lj + kj < M and 0 ≤ kj < 32,

for 0 ≤ j < 191. Note that mj ∈ {0, 1, 2} because
M > 827 (and M < 1246).

Given these values, the following four steps are carried out,
the correctness of which easily follows by inspection:

1) For 0 ≤ j < 191, compute p̃j = pj + 231 (this allows
arbitrary parallelization), so that 0 ≤ p̃j < 232. As a

result (
∑190

j=0 p̃j · 213j) + C1 ≡ P (213) mod N .
2) For 0 ≤ j < 191, left shift p̃j over kj bits and right

shift p̃j over 32− kj bits, to obtain dj , ej such that

p̃j · 213j ≡ dj · 232lj + ej · 232(lj+1) mod N

(this again allows arbitrary parallelization).
3) Let v0 = 0. For 0 ≤ i < 39, let

ui =
∑

j:lj=i

dj +
∑

j:lj+1=i

ej , (1)

(where the indices j can be precomputed) and compute

c̃i = (vi + ui) mod 232 ∈ {0, 1, . . . , 232 − 1},
vi+1 = b(vi + ui)/232c

(this allows partial parallelization). Finally, compute
c̃39 = v39 +

∑
j:lj=38 ej .

Using Eq. (1), reduction moduli N is effected by
disregarding mj and grouping together identical dj-
values and identical ej-values. As a result, (c̃i)39i=0

is the radix-232 representation of a number c̃ with
c̃ + C1 ≡ c mod N .

4) Calculate c ≡ c̃ + C1 mod N . Although the numbers
are slightly bigger, this calculation is in principle the
same as regular addition modulo N .

E. Optimizations

Swapping even for odd instructions. Modular arithmetic
mostly relies on the SPE’s arithmetic instructions, which
are even pipeline instructions. Following the approach
from [43], [11] one may replace an even instruction by
one or more odd ones with the same effect. Although
this may increase the latency for the functionality of each
replaced even instruction and the number of instructions,
balancing the counts of even and odd instructions often
increases the throughput. This method was used throughout
our implementation. Examples are sketched below.

Modular squaring. When squaring polynomials of degree
at most 11, half of the mixed products, i.e., 122−12

2 = 66
multiplications, can be saved by doubling their resulting 21
sums (as the top elements are zero). Of these sums, the
eleven for coefficients of odd degree can be doubled for
free during the conversion to radix-232, by using for odd j
precomputed integers k̃j , l̃j , and m̃j such that

13j + 1 = m̃jM + 32l̃j + k̃j

with 0 ≤ 32l̃j + k̃j < M and 0 ≤ k̃j < 32,

instead of kj , lj , and mj , as defined earlier. The ten
remaining sums need to be doubled before they are added to
the corresponding squared input coefficient. Each doubling
can be done by a single even pipeline addition. However,
a doubling can also be performed by four odd pipeline in-
structions (or two doublings in six odd pipeline instructions).
The ten remaining doublings could thus be squeezed in the
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odd pipeline, including all load and storage overheads (all 21
doublings would not have fit in the odd pipeline). As a result,
all doublings required for squaring came for free.

Conversion to radix-232. The computation of dj and ej

requires a shift by kj and 32 − kj , respectively, for 0 ≤
j < 191, for a total of 382 even pipeline shift instructions.
If kj ≡ 0 mod 8, each shift can be replaced by a single odd
pipeline byte reordering instruction (or by no instruction if
kj = 0). Shift counts bigger than 8 can be replaced by three
odd pipeline instructions.

M -dependent optimization. For 0 ≤ j < 191 and most M
we have

∑
j:lj+1=i ej < 232, since ej is obtained by a right

shift over 32 − kj > 0 bits and the shift amounts usually
differ. Thus, for such M the second summation in Eq. (1)
does not generate carries.

We have written a program that generates SPE code for
each value of M , with the applicable C0, C1, kj , lj , mj , k̃j ,
l̃j , and m̃j hard-coded and including all optimizations
mentioned so far. The resulting code thus depends on
the value of M used, with slightly varying performance
between different M -values. Representative instruction and
cycle counts for 4-way SIMD multiplication and squaring
modulo 21193 − 1 on a single SPE are given in Table I.
Because 78

144 · 3905 ≈ 2115, the 2130 cycles required for
the calculation of the Q(k)’s while squaring is very close to
what one would expect based on the 3905 cycles required
for multiplication.

F. Further speedups

Initial estimates indicated that the advantage of speed of
the radix-232 additions would outweigh the disadvantage of
the conversion (in Section III-D1) to signed radix-213 rep-
resentations required for the carry-less product calculation.
Only after the code based on the methods described above
had been used for about nine months (obtaining the results
as reported in Section IV) and two further improvements
had been developed, this issue was revisited. The two
improvements, in sections III-F1 and III-F2, apply to the first
approach as well. The alternative version of the method from
Section III-D3 that normalizes (and reduces) the signed 32-
bit radix-213 product to its signed radix-213 representation
(as opposed to converting and reducing the product to radix-
232 representation, as in Section III-D3) is presented in
Section III-G.

1) Using C1 ≡ 0 mod N in Section III-D3: Let γ =
13·191+18−M , β = bγ/13c and α = γ−13β. To get non-
negative p̃j’s in the first step of Section III-D3, it suffices to
put p̃0 = p0 +231, p̃j = pj +231−218 for 1 ≤ j < 191, and
next to replace p̃β by p̃β−2α to make sure that the sum of all
values added to

∑190
j=0 pj213j telescopes to zero modulo N .

Here we use that pj ≥ −96(212)(212 − 1) > −231 + 219 >
−231 + 218 and that −231 + 219 > −231 + 218 + 2α (or
−231+219 > −231+2α if β = 0). Thus C1 in Section III-D3

is replaced by a value that is zero modulo N . This saves an
addition (by C1) in the final calculation of c in the fourth
step of Section III-D3.

2) Karatsuba multiplication with multiply-and-add: A
more substantial improvement is obtained by noting that for
26 out of the 27 k-values in Section III-D2 the coefficients
of the polynomials P

(k)
a (X) and P

(k)
b (X) are signed 15-bit

integers. Therefore, for these k another level of Karatsuba
multiplication can be used for the calculation of Q(k)(X),
while taking advantage of the SPE’s multiply-and-add in-
structions. Some details are described below.

Let e, e′, f, f ′ be four polynomials of degree n − 1. To
multiply the two polynomials e + e′Xn and f + f ′Xn of
degree 2n − 1, calculate g = e − e′ and h = f ′ − f (note
the asymmetry). Defining ef = U + U ′Xn, e′f ′ = V +
V ′Xn and gh = W + W ′Xn, we have to calculate (e +
e′Xn)(f +f ′Xn) = U +(U ′+W +U +V )Xn+(V +W ′+
U ′ + V ′)X2n + V ′X3n. This is done by calculating (using
multiply-and-add when relevant) U and U ′ in n2 operations,
next U ′+V and V ′ using another n2 operations, U ′+V +U
(n additions) and U ′ +V +V ′ (n−1 additions), and finally
U ′+V +U +W and U ′+V +V ′+W ′ using n2 operations.

In this way this final level of Karatsuba multiplication
requires 3n2 + 4n− 1 operations, which can be reduced to
3n2 + 3n− 1 if g and h can be calculated twice as fast, as
in our case. With n = 6 this becomes 125 operations for
the calculation of each of the 26 Q(k)(X)’s to which this
applies; the 27th one can be done in 144 operations, for a
total of 3394 even instructions to calculate all Q(k)(X)’s.
For n = 3 we get 3n2 + 3n − 1 = 35 < 62, but the
remaining parts of the 12-to-6-Karatsuba step take more than
20 operations, so more than 3 × 35 + 20 = 125 operations
per Q(k)(X).

Improving the method from Section III-D using sec-
tions III-F1 and III-F2 would lead to a speedup of slightly
less than 10% for modular multiplication and a much
smaller speedup for modular squaring. We have not used this
improvement as it led to only a small speedup of the ECM
application. Instead we combined the improvements with the
method presented in Section III-G below as it was expected
(and turned out) to lead to a more substantial speedup for
the ECM application.

G. Multiplication modulo N using signed radix-213

Multiplication modulo N with inputs and output in signed
radix-213 representation (and thus relatively slow addition
operations) is obtained from the description in Section III-D
by omitting the conversion in Section III-D1, keeping Sec-
tion III-D2 in place (possibly improved as described in
Section III-F2), and by replacing Section III-D3 by the
reduction and normalization step described below.

1) Reduction modulo N and normalization to signed
radix-213 representation of the 2M -bit product: Given a
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Table I: SPE cycle counts for 4-way SIMD operations modulo 21193 − 1.
instructions cycles measured instructions cycles measured

even odd even odd
a + b or a− b a + b and a− b

120 117 144 180 radix-232 222 180 235 268
301 296 332 363 signed radix-213 553 394 571 645

a · b original, radix 232 inputs and output (Section III-D) a2

708 722 752 Pa(X), Pb(X), and P
(k)
a (X),

P
(k)
b (X) for 1 ≤ k ≤ 27

Pa(X) and P
(k)
a (X)

for 1 ≤ k ≤ 27
354 361 376

3889 1137 3905 Q(k)(X) for 1 ≤ k ≤ 27 2107 2055 2130
1138 1078 1163 P (X) and (dj , ej) for 0 ≤ j < 191 1139 1086 1171

906 907 936 c̃i for 0 ≤ i < 39 and c 900 905 931
6641 3844 6756 6971 total 4500 4407 4608 4814

a · b signed radix-213 inputs and output (sections III-F, III-G) a2

3622 1510 3637 P
(k)
a (X), P

(k)
b (X), and Q(k)(X) for 1 ≤ k ≤ 27 2220 1921 2243

1292 1172 1308 P (X), steps 1, 2 and part of steps 3, 4 of Section III-G1 1299 1264 1340
544 508 568 Steps 5, 6 and remainder of steps 3, 4 of Section III-G1 544 508 568

5458 3190 5513 5666 total 4063 3693 4151 4306

signed 32-bit radix-213 representation (pj)190j=0 of the 2M -
bit product a · b, regarded as the polynomial P (X) =∑190

j=0 pjX
j with P (213) = a ·b, the signed radix-213 repre-

sentation (cj)95j=0 of the M -bit number c ≡ P (213) mod N
is calculated.

1) Compute (p̃j)190j=0 as described in Section III-F1.
2) For 0 ≤ j < 96 replace p̃j by p̃j +212. (All additions

in steps 1 and 2 are combined at a total cost of 191
even addition instructions for steps 1 and 2.)

3) For 96 ≤ j < 191 let p′j and p′′j be words such that
p̃j = p′j + p′′j 216 and 0 ≤ p′j , p

′′
j < 216, and replace

p′j by p′j2
k′

j and p′′j by p′′j 2k′′
j using odd instructions,

where 13j = m′
jM + 13`′j + k′j and 13j + 16 =

m′′
j M + 13`′′j + k′′j .

4) For 96 ≤ j < 191 replace p̃`′
j

by p̃`′
j

+ p′j and p̃`′′
j

by p̃`′′
j

+ p′′j using a total of 190 even instructions.
(No overflow occurs because p′j , p

′′
j ≤ 228 and pj <

(j + 1)224 for 0 ≤ j < 96.)
5) Perform Step 3 of the addition-subtraction method in

Section III-C with c (consisting of halfwords) replaced
by p̃ (consisting of words). The carry τ can become
as big as 219 − 1.

6) For 0 ≤ j < 96 calculate the halfword cj = p̃j − 212.
Steps 1, 2, 3, 4, and 6 allow arbitrary parallelization. The
resulting SPE clock cycle counts are listed in Table I.

H. Comparison with other SPE implementations

Because an SPE runs at 3.192GHz and six are avail-
able per PS3, it follows from Table I that a single PS3
can perform 13.5 (17.8) million multiplications (squarings)
modulo N per second. This may be compared to 182 million
and 138 million multiplications modulo 192-bit and 224-bit
special moduli, respectively, as reported for a single PS3
in [8], i.e., less than an 11-fold slowdown for 5-fold bigger
special moduli.

For generic moduli the same carry-less Karatsuba-based
multiplication applies, but the reduction becomes more cum-
bersome. We expect we can do much better than the basic
approach which would reduce our performance by a factor of
at most three. Compared to the roughly 102 million modular
multiplications for generic moduli in the 200-bit range, as
reported for a single PS3 in [6], we would get at worst a
20-fold slowdown for 6-fold bigger generic moduli.

IV. APPLICATION TO ECM

A. Background on ECM

ECM [38] attempts to factor a composite using a number
of independent trials. The success probability per trial grows
with the effort spent per trial, but decreases with the size of
the smallest factor. Overall, the expected factorization effort
for ECM (i.e., number of trials times effort per trial) grows
subexponentially with the size of the smallest factor. For
(S)NFS the effort does not depend on the size of the factor(s)
but just on the size of the number being factored. For RSA
moduli with two factors of about equal size, NFS is expected
to be much faster than ECM. If there may be a relatively
small factor (such as for composites of the form 2M − 1),
ECM may be more efficient than (S)NFS.

Each ECM trial consists of two phases, phase one with
bound B1, which is compute intensive but requires little
memory, followed by a memory-hungry phase two with
bound B2. Depending on the number of trials and the two
bounds, the probability can be estimated that a factor up to a
specific size, if present, will be found. To have probability at
least e−1

e ≈ 0.632 to find a factor of up to 65 decimal digits
(when present), 24 000 ECM trials with B1 = 3 · 109 and
B2 ≈ 1014 suffice [58]. For the same bounds and success
probability, 110 000 trials suffice to find a 70-digit factor
(when present). Before our work the largest prime factor
ever found using ECM had 68 decimal digits [56].
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Using the GMP-ECM package [58], [57] on a single core
of a 2.2GHz Athlon 2427, phase one for an ECM trial for
2M−1 with M around 1100 takes on the order of six hours,
phase two takes about one hour requiring many GBytes of
RAM (for generic composites of comparable size each phase
takes about twice as long; more precise timings are presented
in Table IV in Section IV-C below). For each composite of
the form 2M − 1 with 1000 ≤ M ≤ 1200 this implies
about 20 core years for an ECM attempt to find a 65-digit
factor, and about 90 core years for a 70-digit one. This
should be compared to an SNFS effort ranging from on the
order or 70 (M ≈ 1000) to several thousand (M ≈ 1200)
core years. Thus, the larger M , the harder we should first
try with ECM, commensurate with the expected SNFS effort
and the probability that a candidate has a small factor.

Each ECM trial performs a particular sequence of addi-
tions, subtractions, and multiplications modulo the number
being factored. Modular inversions can mostly be avoided.
Phase one can easily be run in parallel in SIMD fashion
for any number of trials. During a large scale ECM effort,
overall throughput of trials is, within reason, a more impor-
tant performance measure than latency per trial: for instance,
being able to process four trials simultaneously in one day
is better than processing (on the same platform) one trial
every eight hours.

Rationale to use Cell processors for ECM on 2M−1. Factor-
ing numbers of the form 2M −1 is a “popular” activity [15]
and hunting for relatively small factors is not hard given
several freely available ECM packages. Nevertheless, given
the efforts involved, we considered it likely that several of
the unfactored composites 2M − 1 with 1000 ≤ M ≤ 1200
have a factor that can be found more economically by ECM
than by SNFS. Given our research interest in the ones that
cannot (relatively) easily be factored by ECM, we decided
on an ECM effort down our list of at least 20 candidates,
aiming to find all factors of up to, roughly, 65 digits. Since
it was meant to be a simple production run, we chose to use
the off-the-shelf GMP-ECM package, because it is free, easy
to use, has an excellent track-record, and can take advantage
of the special form of the number 2M − 1. Other packages
may be faster, but we were not familiar with them [5].

The overall computation requires at least 20× 20 = 400
core years and can in principle be done on regular server-
clusters. But that would be a waste of resources, because
about 6

7 th of the time is spent in phase one, which requires
little memory thereby underutilizing the available RAM.

We also have access to a cluster of 215 PS3s, and thus
to 215 Cell processors comprising a total of 1290 SPEs
with only little memory per SPE. It could therefore be more
economical for us to use those SPEs to do all phase one
calculations, and to do the relatively small phase two effort
whenever servers with adequate RAM would otherwise be
idle. To test this we ported phase one of GMP-ECM to the

Table II: SPE effort for 4-way SIMD phase one ECM trials for
N = 21193 − 1, B1 = 3 · 109 (where “cpc” = “cycles per call”).

operation number of calls radix-232 signed radix-213

mod N cpc hours cpc hours
a · b 26 193 284 192 6971 15.89 5666 12.92
a2 13 358 576 558 4814 5.60 4306 5.00
a + b
a− b

ff
18 990 126 989 268 0.44

9=; 645 1.12
a + b 523 868 924 180 0.01
a− b 523 868 924 180 0.01

total 21.95 19.05

SPE, trying a variety of home-grown SPE-specific arithmetic
packages (which were already known to outperform [29]).
In the course of these early experiments we stumbled upon
a 63-digit prime factor (of 21187 − 1). This showed that
conducting a thorough ECM search indeed makes sense, and
stimulated development of the much faster SPE-arithmetic
modulo 2M − 1 described in Section III.

It was not our goal to improve the ECM package that
we put on top of our enhanced arithmetic. It is likely that
improvements reported over GMP-ECM that are based on
different elliptic curve arithmetic or representations, such as,
for instance, described and implemented in [4], [5], apply
to our overall performance figures as well.

ECM on the Cell processor to support (S)NFS. Although
ECM factorizations have little cryptographic significance,
this does not imply that ECM performance is cryptograph-
ically irrelevant as well. In [7], for instance, it is observed
that high performance ECM implementations on relatively
inexpensive devices (given their computational power, such
as on graphics cards (GPUs)), may be helpful for future
(S)NFS projects. A particularly memory-hungry step of
(S)NFS, sieving, generates large quantities of fairly small
(100- to 200-bit) composites that must be factored. That task
requires little memory and is therefore best outsourced to
cheap devices, so sieving is not interrupted and all resources
are used in a cost-conscious fashion. This area has seen
a flurry of recent activity: see [49], [45], [24], [22] for
implementations on reconfigurable hardware such as field-
programmable gate arrays and [7], [6] for GPUs. In [6] the
Cell architecture is covered as well.

B. ECM on the Cell applied to 2M − 1
Table II lists the numbers of modular arithmetic operations

carried out by phase one of a single ECM trial with
bound B1 = 3 · 109 (cf. Section IV-A) when using GMP-
ECM. When run on an SPE, four phase one trials are run
simultaneously. With the operations from Section III, their
cycle counts (cf. Table I), and the SPE’s 3.192GHz clock
speed, this leads to an estimated time of less than 22 hours
on a single SPE to complete four phase one ECM trials
with bound B1 = 3 · 109 using our first approach from
Section III-D, and a more than 10% speedup when using the
approach from Section III-G along with the improvements
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from Section III-F. The measured wall-clock times are
slightly larger than the estimates. For applications where
additions play a more important role the method from
Section III-D may outperform the method from Section III-G
(where both methods are enhanced using Section III-F).

With six SPEs per Cell processor and 215 Cell processors
in the PS3-cluster, 4×6×215 = 5160 phase one ECM trials
can be processed in less than 20 hours. With 24 000 trials
(cf. Section IV-A), phase one for a 65-digit search takes less
than four days; phase one for the 110 000 trials for a 70-
digit search takes two and a half weeks. Using our multi-core
adaptation of phase two of GMP-ECM, the corresponding
phase two calculations (with B2 = 103 971 375 307 818)
take the same time when using 4 cores per node on a 56-
node cluster (with two hexcore processors per node): each
trial takes 15 minutes on 4 cores, using at most 16 GBytes
of RAM. Thus, the efforts of the two clusters involved in
our calculations are well matched.

After nine months of sustained calculations for several
M -values (using the slower approach from Section III-D),
seven new factors have been found, in the following order:
a 63-digit factor for M = 1187, the 73-digit factor

1 808 422 353 177 349 564 546 512 035 512 530 001
279 481 259 854 248 860 454 348 989 451 026 887

for M = 1181, another 73-digit factor,

1 042 816 042 941 845 750 042 952 206 680 089 794
415 014 668 329 850 393 031 910 483 526 456 487,

for M = 1163, a 66-digit factor for M = 1073, a 63-digit
factor for M = 1051, a 68-digit factor for M = 1139,
and a 70-digit factor for M = 1237. The 241-bit, 73-
digit prime factor of 21181 − 1 is the current ECM record,
beating the previous record by 5 digits. The factor was
found after somewhat more than 25 000 phase one trials
at approximately the 8800th corresponding phase two trial,
implying that we were quite lucky finding it. Less, but still
considerable luck was involved in finding the second 73-bit
factor (a bit smaller at 240 bits): it was found after about
50 000 ECM trials. So far our example number 21193 − 1
stubbornly resisted all ECM efforts to be factored after
running 142 162 ECM trials on it. For the numbers 2M − 1
that we fail to factor using ECM, such as (so far) for
M = 1193, our efforts will result in a reasonable degree
of confidence that they will not have a prime factor of 65
digits or less. Only for M = 1051 and M = 1237 did we
find composite cofactors: for M = 1051 the attempt was
continued and the 63-factor was indeed re-found where it
could be predicted (once it had been found), but the c248
cofactor remained unfactored.

Table III lists all results obtained using the slower ap-
proach from Section III-D, with ck and pk denoting a
k-digit composite and prime, respectively. For exponents
M ∈ [1000, 1125] (M ∈ [1126, 1200]) not stated in Table III

Table III: Factors found of 2M − 1 using ECM on the Cell with
the arithmetic described in Section III-D of this paper, and with

B1 = 3 · 109 and B2 ≈ 1014.

M
targeted completed number of trials resultcomposite phase one phase two

1051 c310 23 136 9 186 p63 · c248
1073 c281 24 504 1 460 p66 · p215
1139 c313 49 080 35 490 p68 · p246
1163 c318 50 152 47 768 p73 · p246
1181 c291 25 393 8 808 p73 · p218
1187 c266 15 089 9 860 p63 · p204
1237 c373 71 556 70 809 p70 · c303

Table IV: Time to complete 24 phase one ECM trials.

processor GHz cores hours
Mersenne generic

Intel Xeon E5430 2.66 8 23.70 43.13
Intel Core i7 920 2.67 4 46.28 83.52
Intel Core2 Quad Q9550 2.83 4 47.26 85.93
Intel Core2 Quad Q6700 2.66 4 48.80 86.45
AMD Phenom 9500 2.22 4 38.48 65.75
AMD Opteron 1381 2.50 4 33.78 58.46
PlayStation 3 3.19 6 19.20

roughly 25 000 (50 000) ECM trials have been completed
with bounds as above without finding a factor.

Although we hope, during our continuing efforts using the
faster approach from sections III-F and III-G, not to miss
factors up to the 65-digit range, with ECM one can never be
sure. Should we wish to find out, using SNFS is probably
the best option. Using the improved arithmetic we have so
far found one factorization: for M = 961 we found that
c254 = p61 · p193 after 1190 curves with B1 = 109 and
B2 = 25 427 965 563 016.

C. Comparison between Cell and regular processors.

A single PS3 processes 24 phase one ECM trials for
21193 − 1 in 19.2 hours. To put this number in perspective,
we did the same computation using GMP-ECM 6.3 powered
by GMP 5.0.1 (both the latest versions) using all cores on a
variety of processors, with optimal multiplication parameters
obtained using the tune-up script, and while taking advan-
tage of the special Mersenne-arithmetic available in GMP-
ECM. Table IV lists the results. It can be seen that for this
application a single PS3 outperforms several common 4-core
platforms by a factor of more than 2. On a per-core basis,
and accounting for the ratio in clock-speeds, our special 4-
way SPE Mersenne arithmetic turns out to about 5

4 times
more effective than the regular Mersenne arithmetic from
GMP-ECM 6.3 when run on Intel processors, despite the
fact that the SPE does not have 64-bit or 32-bit integer
multiplications. The lack of such multipliers is, however,
clearly to the SPE’s disadvantage when comparing it to the
AMD processor with its much faster (than Intel) integer
multiplication.
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V. CONCLUSION

For integers M in the range from 1000 to 1200 we
presented our Cell processor implementation of multiplica-
tion of M -bit integers, processing 24 such multiplications
in parallel on a single PlayStation 3 game console, and
used it to obtain efficient multiplication modulo 2M − 1.
The ideas underlying our implementation apply to many
arithmetic contexts of cryptologic relevance, such as elliptic
curve cryptosystems and cryptanalysis thereof.

We focused on application of our arithmetic to elliptic
curve factoring, as a preparatory step for a potential (S)NFS
factoring project. This led to the three largest factors found
using ECM so far.
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