
Key Lengths
Contribution to The Handbook of Information Security

Arjen K. Lenstra

Citibank, N.A., and Technische Universiteit Eindhoven
1 North Gate Road, Mendham, NJ 07945-3104, U.S.A.

arjen.lenstra@citigroup.com

Abstract. The key length used for a cryptographic protocol determines
the highest security it can offer. If the key is found or ‘broken’, the se-
curity is undermined. Thus, key lengths must be chosen in accordance
with the desired security. In practice, key lengths are mostly determined
by standards, legacy system compatibility issues, and vendors. From a
theoretical point of view selecting key lengths is more involved. Under-
standing the relation between security and key lengths and the impact
of anticipated and unexpected cryptanalytic progress, requires insight
into the design of the cryptographic methods and the mathematics in-
volved in the attempts at breaking them. In this chapter practical and
theoretical aspects of key size selection are discussed.

1 Introduction

In cryptographic context, 40, 56, 64, 80, 90, 112, 128, 155, 160, 192, 256,
384, 512, 768, 1024, 1536, 2048, and 4096 are examples of key lengths.
What they mean and how they are and should be selected is the subject
of this chapter.

Key lengths indicate the number of bits contained in a certain cryp-
tographic key or related arithmetic structure. They are a measure for
the security that may be attained. To the uninitiated, however, the re-
lation between key lengths and security is confusing. To illustrate, key
lengths 80, 160, and 1024, though quite different, may imply comparable
security when 80 is the key length for a symmetric encryption method,
160 a hash length, and 1024 the bit length of an RSA modulus. Part of
this correspondence follows immediately from the well known ‘fact’ that
symmetric encryption with B-bit keys and 2B-bit cryptographic hashes
offer the ‘same’ security. But the correspondence with 1024-bit RSA is
quite a different story that allows many variations. In the sequel an at-
tempt is made to view this and other key length issues from all reasonable
perspectives.

Key lengths are often powers of 2 or small multiples thereof. This is
not for any mathematical or security reason. It is simply because data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are usually most conveniently processed and stored in chunks of 8 bits
(bytes), 32 bits (words), 64 bits (blocks), etc.

Symmetric encryption and cryptographic hashing. Ideally, the
long term prospects of the relationship between key length and security
should be well understood when key length decisions are made. In case of
symmetric encryption and cryptographic hashing methods the decision is
facilitated for most users by the following three facts:

– There is broad consensus which key lengths are ‘conservative’, i.e.,
have good prospects to offer very long term security.

– Nowadays, most default choices available on the marketplace are con-
servative.

– The performance is barely, if at all, affected by the key length choice.

Thus, for symmetric encryption and cryptographic hashing it suffices to
make a reasonably well informed conservative choice.

Asymmetric systems. As hinted at above, there is much less agreement
about conservative choices for asymmetric systems such as RSA. Further-
more, for these systems the performance does deteriorate with increasing
key lengths. Even if a consensual conservative choice could be made, it
may not be a choice that is practically feasible. In practice most users of
asymmetric systems follow the recommendations of the vendor commu-
nity. But there is no guarantee that the vendor community always has
sufficient business incentive to comply with the recommendations of the
standards bodies, or that the latter fully understand all relevant issues.
The main purpose of the present chapter is to offer unbiased advice to
the more prudent users of asymmetric systems to help decide which of
the available options may be adequate for their purposes.

Security in practice. The security that corresponds to a key length
choice for a cryptographic protocol represents the highest security that
can, in principle, be achieved by the system incorporating that protocol.
Systems are usually most efficiently attacked by exploiting other than
cryptographic key related weaknesses. Examples are imperfections in the
underlying protocol, in the implementation, the environment, or the users.
Selecting appropriate key lengths may therefore be regarded as an aca-
demic exercise. It should be kept in mind, however, that inadequate key
length choices do affect the security of a system. In the remainder of this
chapter security-affecting issues other than key lengths are not further
discussed.

Overview. This chapter is organized as follows. Section 2 introduces
the concept of security level and contains the general background for

2

the remainder of the chapter. Key lengths for symmetric systems are
discussed in Section 3 and cryptographic hash function sizes in Section 4.
An overview of asymmetric methods is given in Section 5, which leads
to the discussion of factoring based systems in Section 6 and of discrete
logarithm based systems in Section 7. The reader who is not familiar
with common cryptographic concepts such as symmetric and asymmetric
cryptosystems may look them up in other chapters to this handbook.

In the sequel, log x denotes the natural logarithm of x and logb x
denotes the base b logarithm of x. As customary, exp(x) = ex.

2 Security Level

General attacks. In this section general attacks are considered. For
symmetric systems these are attacks where the key has to be recovered
given a single known (plaintext, ciphertext) pair. For block ciphers the
plaintext consists of a single or at most a few blocks. It is assumed that
this pair uniquely determines the key, or that correctness of the key can
independently be verified. Refer to [6] for a discussion of the latter point.
For asymmetric systems general attacks are attacks where the private
key has to be found given the public key. General attacks most closely
correspond to real life situations. They exclude attacks where the attacker
has access to any other data that can be generated only by means of the
unknown key, such as in differential and linear cryptanalysis of block
ciphers.

Security level. If a symmetric cryptosystem with λ-bit keys does not
allow a general attack that is faster than exhaustive key search, then it
is traditionally said to have security level λ. Exhaustive key search for λ-
bit keys may involve up to 2λ different keys. In general, a cryptographic
system offers security level λ if a successful general attack can be expected
to require effort approximately 2λ.

Relation between security level and security. To determine if a
cryptographic system offers adequate security or protection, it is not im-
mediately useful to tie the definition of security level to symmetric cryp-
tosystem key lengths. In the first place, the amount of time and money
required to realize an attack effort decreases over time because computers
become faster and cheaper. Thus, the amount of protection offered by a
certain fixed security level is constantly eroded. A related point is that
cryptanalytic progress over time may affect the security level of a crypto-
graphic system not by lowering the cost to realize a certain attack, but by
proposing an improved attack method. Furthermore, the definition of se-

3

curity level involves an unspecified constant of proportionality—vaguely
indicated by the ‘approximately 2λ’—and thus its meaning may vary from
system to system. And finally, ‘adequate protection’ is a vague term whose
interpretation depends on the application one has in mind, and is even
then still subjective. In the remainder of this section these issues affect-
ing the relation between security levels and security are addressed, which
allows selection of key lengths corresponding to any amount of protection
one feels comfortable with.

Modelling the relation. Although a cryptosystem’s security level may
not be indicative of its effectiveness, security levels allow comparison of
the security offered by systems. Assuming identical constants of propor-
tionality and environments, a system of security level λ + µ may be ex-
pected to be 2µ times harder to attack, and thus be 2µ times more se-
cure, than a system of security level λ. Once it has been agreed that a
certain security level offers an adequate amount of protection in a certain
known (past) environment, twice the protection can be achieved in that
environment by incrementing the security level by one (assuming other
characteristics of the system involved are not affected by the change).
And, more in general, an x times higher amount of protection follows,
in that same environment, by adding log2 x to the security level. If, ad-
ditionally, the effect of changes in the environment is modelled, then a
more general correspondence can be derived between security levels and
amount of protection for any (future) environment. As indicated above,
these environmental changes come in two flavors: changes in the compu-
tational environment that affect the amount of protection by lowering the
cost at which the same attack can be realized but that leave the security
level itself unchanged, and changes in the cryptanalytic environment that
allow a different type of attack thereby lowering the security level. The
presentation below heavily relies on [28] where this approach was first
proposed.

Defining adequate protection. The Data Encryption Standard (DES)
is a symmetric cryptosystem with 56-bit keys, published in 1977 by the
U.S. Department of Commerce [32] and supposed to be reviewed once
every five years. There was some skepticism about the security level of the
DES. But despite extensive cryptanalysis no better general attack than
exhaustive key search has been found and the security level is generally
believed to be 56.

Because the DES was widely adopted, there must have been broad
consensus that in 1982, the first year the DES would come up for review,
it offered an adequate amount of protection for commercial applications.

4

For that reason, and for the purposes of this chapter, adequate protection

is defined as the security offered in 1982 by the DES. Disregarding the
effect of the constant of proportionality, this is synonymous with security

level 56 in 1982. In the remainder of this section it is discussed what
security level can be expected to offer adequate protection until the year
of one’s choice. It is left to the reader to determine how the definition of
adequate protection compares to one’s own security requirements and, if
desired, to change the default choice made above. The paragraphs below
may be helpful for this purpose.

The cost of breaking the DES. To put the definition of adequate pro-
tection in a different light, in 1980 it was estimated that, in 1980 money
and technology, an exhaustive key search attack against the DES would
require on average 2 days on a device that would cost approximately
US$50 million to build. The design underlying this estimate is fully par-
allelizable in the sense that a w times slower (or faster) device would
be w times cheaper (or more expensive), for any reasonable w. As first
suggested in this context in [2], this implies that an appropriate way to
measure an attack effort is obtained by multiplying the time required by
the equipment cost; see also [26] and [49] where this measure is referred
to as the throughput cost and full cost, respectively. Below it is simply
referred to as the cost of an attack effort. This cost will be measured in
dollardays: in 1980 the DES could be broken in approximately 100M dol-
lardays. The cost does not include the one time overhead for the detailed
design specifications.

Modelling the effect of changes in the computational environ-

ment. Technical progress had a profound effect on the security of the
DES. In 1993 a DES key search engine was proposed that would require
about 150K dollardays, down from the 100M dollardays required by the
1980 design [48]. And in 1998 a parallel hardware device was built for
US$130K including design overhead, and used to crack the DES in a
matter of days [11, 19]. Thus, though security level 56 may have offered
adequate protection for commercial applications in 1982, this is no longer
the case in 2004.

The effect of changes in the computational environment is modelled
using Moore’s law. Traditionally, it says that the computing power per
chip doubles every 18 months. To make Moore’s law less technology de-
pendent the following variant is adopted for this chapter:

Moore’s law. The cost of any fixed attack effort drops by a factor 2
every 18 months.

5

This can be seen to be in reasonable correspondence with the various DES
cracking devices referred to above. It is also an acceptable compromise
between those who argue that this rate of progress cannot be sustained
and those who find it prudent to expect more rapid progress. It follows
that the 100M dollardays cost of the 1980 DES cracker would be reduced
to 40M dollardays in 1982, because 40 ≈ 100/224/18 .

Obviously, all estimates of this sort based on Moore’s law have to be
taken with a grain of salt and interpreted appropriately: the approximate
values and growth rates matter, not the precise figures.

The cost of adequate protection. Irrespective of the speed or type
of the cryptosystem, a cryptosystem is said to offer adequate protection
until a given year if the cost of a successful attack measured in that year
can be expected to be approximately 40M dollardays. See below how to
change the cost figure corresponding to adequate protection from 40M to
x ∗ 40M if 40M is felt to be inadequate (x > 1) or overkill (0 < x < 1).
For reasonable values of x the effect of the resulting corrections is mostly
negligible, since only the approximate values matter.

For asymmetric systems based on the factoring problem or the gen-
eral problem of computing discrete logarithms in multiplicative groups of
finite fields the 40M dollardays cost measure will be used to determine
adequate protection. For other asymmetric systems based on the discrete
logarithm problem, symmetric systems, and cryptographic hash functions
one can instead use the approach based on security levels combined with
Moore’s law. To allow comparison with DES security levels the effect of
the constant of proportionality must be taken into account, at least in
principle. Below it is shown how this is done.

The effect of Moore’s law. It follows from Moore’s law that to main-
tain the same amount of protection once every 18 months the security
level should be incremented by one, assuming the speed is not affected.
Thus, assuming the same speed as the DES, a symmetric system of se-
curity level 56 + 10 = 66 would offer adequate protection in 1997, since
1997 − 1982 = 15 years covers 10 periods of 18 months. Under the same
assumption, security levels 76 and 86 should be adequate until 2012 and
2027, respectively.

More in general, a symmetric system of speed comparable to the DES
would offer adequate protection until the year y = 1982+15x if its security
level is λ = 56 + 10x. Given a year security level λ, the year y(λ) until
which it offers adequate protection is thus calculated as

y(λ) = 1982 +
3(λ − 56)

2
.(1)

6

Conversely, given a year y, the security level λ(y) that offers adequate
protection until year y is

λ(y) = 56 +
2(y − 1982)

3
.(2)

Although this may be a reasonable model that leads to a useful compu-
tational tool, it would stretch the imagination to use it beyond, say, the
year 2050. But it is, for instance, not unreasonable to conclude that the
widely used security level λ = 80 offers adequate protection until the year

y(80) = 1982 +
3(80 − 56)

2
= 2018

(cf. equation (1)).

The effect of the constant of proportionality. If a symmetric system
is s > 0 times faster than the DES, exhaustive key search and thus general
attacks are s times faster as well. To compensate, either for the same year
log2 s should in principle be added to the security level, or for the same
security level 1.5 log2 s has to be subtracted from the year. Ciphers faster
than the DES (s > 1) require a higher security level, or the same security
level does not last as long. But for slower ciphers (s < 1) a lower security
level suffices, or the same security level lasts longer.

In theory this correction based on the speed compared to the DES
takes care of the unspecified constant of proportionality mentioned above.
In practice, however, the effect of this correction is mostly negligible. Not
only is | log2 s| typically small, but also making such corrections would
lead to a misleading sense of precision contradictory to the way these
estimates should be interpreted.

Alternative definitions of adequate protection. Defining adequate
protection as the security offered by security level 56 in 1982 may be a
reasonable compromise. But it is a subjective choice. If ‘security level 56
in year Y ’ better reflects one’s feelings, then one should replace in the
sequel all occurrences of ‘1982’ by Y . Furthermore, in the ‘40M dollar-
days cost’ associated with adequate protection, the ‘40’ must be divided
by 22(Y −1982)/3. For instance, if the DES was still felt to offer adequate
protection in the year 1990, replace 1982 by 1990 throughout, and ‘40M’
by 1M , since 22(1990−1982)/3 ≈ 40.

Similarly, if one is more comfortable with interpretation of cost figures
and finds the ‘40M dollardays’ inappropriate, replace the ‘40’ in the sequel
by x ∗ 40 for any x 6= 1 of one’s choice. As a consequence, all occurrences
of the year 1982 must be replaced by 1982 − 1.5 log2(x).

7

Modelling the effect of changes in cryptanalytic capabilities.

Moore’s law may act as a self-fulfilling prophesy by influencing and con-
trolling the development of the steady stream of improvements required
to sustain it. There is no similar mechanism controlling the rate of crypt-
analytic progress.

Moore’s law affects all cryptosystems across the board in the same way
by lowering the cost of attacks. Cryptanalytic progress, on the other hand,
usually affects the security level of one particular type of cryptosystem
while leaving that of others untouched. An advance in factoring does not
affect the security level of symmetric cryptosystems, and a newly found
peculiarity in the design of an S-box used by some symmetric cryptosys-
tem has no effect on the security level of RSA or of symmetric systems
using non-affected designs. Furthermore, the overall effect of cryptana-
lytic progress may vary from system to system. When a new weakness in
a symmetric system or cryptographic hash function is discovered, it may
be possible to modify or simply retire it, because relatively small mod-
ifications often render new attacks useless and, if not, there are enough
equivalent alternative systems and functions to choose from. In the asym-
metric case the situation is different. The luxury of a quick switch to an
alternative system can generally not be afforded because there are not
that many different equivalent schemes. As a result, adapting key lengths
may be the only option to compensate for the effects of a new cryptana-
lytic insight such as a new algorithm to solve the mathematical problem
underlying an asymmetric system.

There are cryptographic applications, however, where system modi-
fication or retirement and key length adaptations are not feasible, and
where adequate protection must be maintained for an extended period
of time, even in the presence of cryptanalytic progress discovered after
the application was put to use. For instance, in long term confidential
data storage in an environment that is not necessarily adequately pro-
tected, the fixed stored data must remain undecipherable as long as the
confidentiality must last. With the present state of the art of cryptology
disasters can always happen, and adequate long term protection cannot
be fully guaranteed. Barring disastrous cryptanalytic progress, however,
proper application of suitably modelled cryptanalytic progress leads to
an acceptable practical solution for long term protection as well.

It remains to model cryptanalytic progress. A priori it is unclear how
this should be done. However, since there is no reason to expect sig-
nificant changes in the global research community that is interested in
cryptanalysis, it is assumed that the rate of cryptanalytic progress in

8

the future is the same as it was since cryptography became more of a
mainstream public-domain activity. Because past cryptanalytic progress
varied considerably between different cryptographic systems, a specific
cryptanalytic progress model is defined for each of the various systems.
The details of each model are described in the relevant sections below.

3 Symmetric cryptosystems

Symmetric cryptosystems are encryption methods where sender and re-
ceiver share a key for encryption and decryption, respectively. Examples
are block and stream ciphers. There is a great variety of such systems, but
only a few of them are generally accepted and widely used. The popular
block ciphers, with the exception of the original DES, can be expected to
offer adequate protection (cf. Section 2) for the foreseeable future. Thus,
from a pragmatic point of view, key length selection for block ciphers is
hardly an issue as long as one sticks to widely used modern schemes. In
this section some issues are discussed concerning security levels and key
lengths for a number of popular block ciphers.

Stream ciphers are more problematic. They are not considered here
for a variety of reasons. Often their design is proprietary or their usage
subject to licensing restrictions. Their cryptanalysis is too much in a state
of flux and their security level influenced by the way they are used. For
instance, the strong version A5/1 of a stream cipher used in the European
cellphone industry can trivially be broken [4], a similar application of the
stream cipher RC4 was found to be completely insecure [12], and the
stream cipher SEAL has been revised several times [15]. Finally, all six
stream ciphers submitted to the NESSIE initiative [33] were found to be
too weak and none was selected, illustrating the apparent difficulty of
designing stream ciphers.

Block ciphers. Table 1 lists some common block ciphers along with their
key length choices, block lengths, and the most up-to-date information
about their security levels under general attacks. The list is for illustrative
purposes only and is not, nor is it meant to be, exhaustive. In- or exclusion
of a cipher in no means indicates the author’s support for that cipher
or lack thereof. Although other types of attacks are not considered to
determine the security level (cf. Section 2), the more recent block ciphers
are designed to have strong resistance against those attacks as well.

For triple DES the lower security levels are of mostly theoretical sig-
nificance as they assume that memory costs are ignored, but the higher
ones are more realistic. For DESX (cf. [17]) and IDEA (cf. [3]) the secu-

9

rity levels in Table 1 are based on the fact that even after many years no
effective cryptanalysis has been published, as far as general attacks are
concerned. For the Advanced Encryption Standard (AES) they may be
based on wishful thinking because at the time of writing of this chapter
the AES has been scrutinized for only a few years. But this is combined
with the expectation (based on the sudden replacement of SHA by SHA-
1, see Section 4) that if anytime soon something serious affecting the AES
would be found, a modification would be introduced.

Table 1. Common block ciphers.

name key length block length security level
DES 56 64 56

two key triple DES 112 64 95-100
three key triple DES 168 64 112-116

DESX 120 64 120
IDEA 128 64 128

AES-128 128 128 128
AES-192 192 128 192
AES-256 256 128 256

Cryptanalytic developments. Table 1 illustrates two points. In the
first place, two and three key triple DES are the only ciphers in the ta-
ble for which the security level is smaller than the key length. This is the
case for multiple encryption in general (cf. [49]). Nevertheless, despite the
fact that their security level can never equal their key length, multiple
encryption methods may be a convenient way to boost security by re-
peated application of an available cipher when replacement by a stronger
one is not an option. Secondly, Table 1 shows that, other than for legacy
reasons, there is in principle no reason to settle for a cipher that offers a
security level lower than its key length.

Performance considerations. As indicated in Section 2 a proper in-
terpretation and comparison of the security levels in Table 1 in principle
requires knowledge of the relative speeds of the various block ciphers. It is
also mentioned, however, that this type of ‘overprecision’ has no practical
relevance. This is illustrated here.

According to equation (1) from Section 2, security level λ offers ad-

equate protection until the year y(λ) = 1982 + 3(λ−56)
2 , disregarding the

effect caused by the speed relative to the DES. A block cipher of security
level λ ≥ 128 leads to an un-corrected year estimate of y(128) = 2090
and beyond. Proper interpretation of this result is that security level 128
should suffice for, say, the next three decades and probably even longer.

10

Incorporation of the effect of the speed compared to the DES has no
effect. For instance, IDEA and the DES have comparable hardware per-
formance but in software IDEA is approximately twice faster (i.e., s = 2
in the notation of Section 2). So, in principle it would be ‘correct’, and
may be even believed to be prudent, to subtract 1.5 log2 2 = 1.5 from
the year 2090, as set forth in Section 2. But the practical conclusion that
IDEA should offer adequate security for the foreseeable future remains
untouched by this correction. The same practical conclusion would be
reached for block ciphers of security level 128 that would be a million
times faster or slower than the DES.

Other considerations. Another issue with block ciphers is their block
length. With b-bit blocks, and under reasonable assumptions regarding
randomness of the inputs and the cipher’s output behavior, a dupli-
cate output block may be expected after about 2b/2 blocks have been
encrypted. A duplicate generated with the same key may facilitate crypt-
analysis and should be avoided.

When b = 64, this implies that the key should be refreshed well before
232 blocks of 64-bits (i.e., 32 Gigabytes) have been encrypted—say after 10
gigabytes. When b = 128, the likelihood is negligible that duplicate blocks
are encountered for any realistic amount of data properly encrypted with
the same key.

Symmetric key lengths that offer adequate protection. With the
exception of the DES, all ciphers listed in Table 1 offer adequate pro-
tection with respect to general attacks at least until the year 2030: even
the weakest among them, two key triple DES, may be expected to offer
adequate security until 2040 since, according to equation (1) in Section 2,

y(95) = 1982+ 3(95−56)
2 = 2040.5 (with, if s = 1/3 is thought to reflect its

performance degradation compared to the DES, an overzealous correc-
tion to the year 2040.5− log2 1/3 ≈ 2042). Furthermore, given the virtual
lack of cryptanalytic progress with respect to general attacks and assum-
ing current cryptanalytic trends persist (i.e., that cryptanalysis remains
relative ineffective), the ciphers of security level ≥ 128 can be expected
to offer adequate protection for any conceivable commercial application,
including long term data storage, and as long as anyone can reasonably
predict. Thus, most ciphers from Table 1 with the exception of the DES
can safely be recommended, as long as the amount of data that will be
encrypted with a single key is limited. If the latter cannot be guaranteed,
the AES should be used.

In [5], which dates back from 1996, it is recommended that for ade-
quate protection for the next 20 years, i.e., until the year 2016, keys in

11

newly-deployed symmetric cryptosystems should be at least 90 bits long.
According to the estimates presented here, security level λ = 90 would
offer adequate security until the year y(90) = 1982 + 3(90−56)

2 = 2033 and

security level λ(2016) = 56 + 2(2016−1982)
3 = 782

3 would suffice until the
year y = 2016 (cf. equations (1) and (2) in Section 2). Thus, the recom-
mendation of [5] is conservative and can be followed without hesitation.

It may seem wasteful to use a key length such as 128 that leads to a
security level that is so much larger than necessary. As far as the speed
of the cryptosystem is concerned, this is not an issue because the key
size does not have a major impact on the speed. If the ‘overlong’ key
is problematic because of other concerns such as cost of key exchange
or storage, a sufficiently shortened but still adequately long version may
be used and padded with a fixed sequence of bits known as salt. This
recommendation should not be followed blindly in case of triple DES,
unless one knows what one is doing.

4 Cryptographic hash functions

Given an input consisting of an arbitrary sequence of bits, a cryptographic
hash function efficiently produces a fixed length output, the hash of the
input. In this section H denotes the bit-length of the hash. The output
is intended as a ‘fingerprint’ of the input in data integrity and authen-
tication applications. Therefore, cryptographic hash functions must have
a number of properties that make them suitable for these applications.
In the first place given any output value for which the corresponding in-
put is unknown, it must be computationally infeasible to find any input
that hashes to that output. Secondly, for a known (input, output) pair,
it must be computationally infeasible to find another input that hashes
to the same output. Although these two properties suffice for many ap-
plications (cf. [1]) it is common to assume a stronger version of the last
property, namely that it must be computationally infeasible to find two
distinct inputs that hash to the same output. This last requirement is
often referred to as collision resistance.

The issue at discussion here are the requirements on H without which
a cryptographic hash function cannot have the desired properties, i.e.,
the length requirements that must be met irrespective of any of the other
properties of the hash function. Obviously, satisfying the requirements
on H does not guarantee proper design of the hash function, it is just a
necessary first step.

12

Assume that the output of a hash function behaves as a uniformly dis-
tributed random H-bit value. It follows from the first two requirements
that H must be chosen such that it is computationally infeasible to per-
form 2H applications of the hash function (for random inputs). Thus, to
achieve security level λ and to satisfy the first two requirements, it must
be the case that H ≥ λ.

The collision resistance requirement, however, has more severe conse-
quences for H. If values are drawn at random from a set of cardinality
C then the expected number of draws before an element is drawn twice
(a so-called collision) is approximately 1.25

√
C. This fact is commonly

known as the birthday paradox. If follows that if the hash is computed of
different randomly selected inputs, a duplicate output can be expected
after about 1.25∗2H/2 attempts. To achieve security level λ and to satisfy
the third requirement, it must therefore be the case that H ≥ 2λ.

The search for a collision as described above is commonly known as
a collision attack. Resistance against exhaustive key search and collision
attacks play comparable roles in the contexts of symmetric cryptosystems
and cryptographic hash functions, respectively: well-designed symmetric
systems do not allow general attacks faster than exhaustive key search,
and well-designed cryptographic hash functions do not allow discovery
faster than by collision attacks of a distinct pair of inputs with identical
outputs.

Cryptographic hash functions. Table 2 lists some common hash func-
tions along with their output lengths and the most up-to-date information
about their security levels under collision attacks.

Table 2. Common cryptographic hash functions.

name H security level
RIPEMD-160 160 80

SHA-1 160 80
SHA-256 256 128
SHA-384 384 192
SHA-512 512 256

Cryptanalytic developments. Well-known precursors of the crypto-
graphic hash functions in Table 2 are MD4, MD5, and RIPEMD-128,
all with H = 128, and SHA, with H = 160. Significant deficiencies were
found in their design. MD4 is considered to be broken and it is widely sus-
pected that the security levels of MD5 and RIPEMD-128 are both lower
than 64. Furthermore, a sufficiently serious problem was found in SHA to

13

replace it by SHA-1. For a discussion of these developments see [10], [38],
and also [8].

The results of those cryptanalytic findings were incorporated in the
design of the cryptographic hash functions in Table 2. That is no guaran-
tee that those functions do not allow faster attacks than collision attacks.
But it indicates that the functions from Table 2 were designed with a
great deal of care and that an unanticipated new weakness most likely
requires new cryptanalytic insights. Given how infrequently such insights
occur, it is reasonable at this point to assume that the security levels in
Table 2 are accurate for the foreseeable future. This should be combined
with a conservative choice of cryptographic hash function and, where pos-
sible, application of the methods from [1] to design one’s protocols in such
a way that the cryptographic hash function does not have to be collision
resistant, i.e., does not have to meet the third requirement. If the latter
is properly done it effectively doubles the security level.

Performance considerations. Whether or not a cryptographic hash
function of hash length H offers adequate protection until a certain year,
as defined in Section 2, in principle depends on the relatively speed of the
hash function compared to the DES. With inputs of comparable length,
the speed of all common cryptographic hash function is comparable to
the speed of common blockciphers, such as the DES. Thus, the effect
of incorporating the speed is negligible to begin with. Furthermore, as
argued in Section 3, for the larger H values the effect is best neglected
anyhow because it would lead to inappropriately accurate interpretation
of inherently inaccurate figures.

Cryptographic hash lengths that offer adequate protection. In
combination with the findings of Sections 2 and 3 it follows that arbitrary
application of cryptographic hash functions of security level λ (i.e., with
H = 2λ unless weaknesses exist) offers adequate protection until the year

y(λ) = 1982 + 3(λ−56)
2 (cf. equation (1) in Section 2). More in particular,

the above cryptographic hash functions with H = 160, assuming they
remain unbroken, may be expected to offer adequate protection until the
year y(160/2) = 1982. All functions listed in Table 2 can be expected to
offer adequate protection at least until the year 2030, very conservatively
estimated, under the proviso that the functions of security level 80 are
used in combination with the methods from [1]. As a rule of thumb, hash
lengths must be chosen twice longer than symmetric key lengths.

14

5 Asymmetric methods

Private key and public key. In asymmetric cryptosystems each user,
say A, has its own pair of keys: A’s private key sA and the corresponding
public key pA. Typically, the public key pA can be used by any party to
encrypt information intended for user A, which can then be decrypted
by A using sA. Alternatively, A may use sA to digitally sign documents,
and any party can use pA to verify the resulting digital signatures. For
some systems a single private/public key pair allows both en-/decryption
and digital signatures, but great care has to be taken when doing so.

Performance deterioration. For symmetric cryptosystems and cryp-
tographic hash functions the number of realistic alternatives is fairly lim-
ited, and their speed hardly depends on the key or hash length one set-
tles for. For asymmetric cryptosystems the situation is different. There
the performance of both the public operation (encryption or signature
verification) and the private one (decryption or signature generation) de-
teriorates markedly, and possibly to different degrees, as the security level
increases. Therefore, for asymmetric cryptosystems it is more important
than for symmetric cryptosystems and cryptographic hash functions to
determine the smallest key lengths that still offers the right amount of
protection, thereby balancing security and performance requirements.

The design of asymmetric cryptosystems. The design of all com-
mon symmetric cryptosystems and cryptographic hash functions is mostly
based on a combination of hard-to-define ingredients such as experience,
avoidance of common errors, incorporation of the latest cryptanalytic in-
sights, taste, sound judgment, and luck. As argued in [20], the design of
the AES is a first attempt to a more scientific, less artful approach to
block cipher design. All common asymmetric cryptosystems, on the other
hand, are based on a well-defined mathematical problem, if at all possible
combined with a proof that solving the latter is equivalent to breaking the
system. The security of an asymmetric system is then based on the hope
and belief that the mathematical problem does not allow an efficient so-
lution. Sometimes that hope turns out to be ill-founded. For instance, the
once popular knapsack-based public key cryptosystems were found to be
susceptible to attacks using lattice basis reduction. Efficient lattice basis
reduction methods thus meant the end for knapsack-based asymmetric
cryptosystems.

Factoring and discrete logarithms. The two mathematical problems
underlying the popular and by now ‘classical’ asymmetric cryptosystems
are integer factorization and computing discrete logarithms, as described

15

below. Both these problems have been the subject of active research dur-
ing the last few decades. Also, the cryptographic protocols they are em-
bedded in have been widely studied, often resulting in provable equiva-
lence of breaking the protocol and solving the mathematical problem. It
turns out that the cryptanalytic progress, or lack thereof, affecting the
corresponding asymmetric cryptosystems displays a smooth pattern with-
out jumps or unwelcome ‘surprises’. Under the assumption that this same
smooth pattern persists, this allows reasonably well-founded analyses of
key lengths required for adequate protection in the future. These analyses
are presented in the subsequent sections.

It should be understood, however, that a clearly discernable and well-
established past pattern in cryptanalytic progress is no guarantee that
the future pattern will be the same or that there will not be any sur-
prising breakthroughs. With the present state of the art there is no hard
proof of the security of any of the popular asymmetric systems, simply
because there are no proofs yet of the difficulty of any of the underlying
mathematical problems: the only evidence of their difficulty is our failure
to solve them. This is independent of any proofs of equivalence between
a cryptosystem and its underlying mathematical problem. To refer to
this provable equivalence as ‘provable security’, as common in the cryp-
tographic literature, may be misleading, since what it actually means is
‘provable equivalence to a problem of unproved hardness’.

Roughly speaking, all common asymmetric cryptosystems are based
on one of the following two problems, or a variation thereof:

Integer factorization. Given a composite integer n > 0, find integers
u > 1 and v > 1 such that n = uv.
In factoring based asymmetric cryptosystems, a user’s public key con-
tains the integer n and the corresponding private key contains (infor-
mation equivalent to) u and v. The integer n is unique per user.

Discrete logarithm. Given an element g of a multiplicative written
group G and an element h in the subgroup 〈g〉 generated by g, find
an integer k such that gk = h. The smallest non-negative such k is
referred to as the discrete logarithm of h with respect to g and denoted
logg h.
For additively written groups one would look for an integer k such
that kg = h. The smallest non-negative such k is again referred to as
logg h.
In discrete logarithm based asymmetric cryptosystems, a user’s public
key contains g and h and the corresponding private key contains logg h.
Different users may share the same g but use different h’s.

16

The traditional discrete logarithm problem refers to the case where G is
chosen as the multiplicative group (Fp`)∗ of a finite field Fp` of cardinal-

ity p`, for some prime p and positive integer `.

Instances of these problems can easily be generated that are suitable
for cryptographic applications and generally believed to be hard to solve.
In the sections below it is discussed how to do this in such a way that the
corresponding cryptosystems offer adequate protection until a specified
year, as defined in Section 2. This has certain consequences for the size of
the integer n and its factors, for the cardinality # 〈g〉 of the subgroup 〈g〉,
and for the cardinality p` − 1 of the group G = (Fp`)∗ if the traditional
discrete logarithm problem is used. Intuitively this is rather obvious, since
small integers are easy to factor, small factors are easy to find, and dis-
crete logarithms are easy to calculate if # 〈g〉 is small. In Section 6 the
requirements on n and its factors are discussed, and in Section 7 the same
is done for g both for the case G = (Fp`)∗ and for more general groups G.

Other asymmetric cryptosystems. There are quite a few asymmet-
ric systems that are based on different mathematical problems than the
currently popular ones mentioned above, but that have not yet gained
general acceptance. The reason for the latter is usually related to the
underlying mathematical problem, the cryptographic protocol it is em-
bedded in, or a combination of these issues. There may be skepticism
about the difficulty of the mathematical problem because it has not been
studied long enough. Or the effectiveness of solution methods may be
hard to judge or in a constant state of flux, making it difficult to recom-
mend secure parameter choices. Also, cryptographic protocols that are
provably equivalent to the mathematical problem may still be lacking,
or the system may simply be too impractical. Asymmetric systems that
have any of these shortcomings are not further discussed in this chapter.
The reader is recommended to consult the recent cryptology literature to
find the latest updates on asymmetric systems that are not treated here.

6 Factoring based systems

There are several types of asymmetric cryptosystems that rely for their
security on the hardness of the integer factorization problem: if the in-
teger factorization problem can be solved for a certain composite integer
referred to as the modulus n, then the cryptosystem using that n can be
broken. Thus, factoring the modulus suffices to break the system. In this
section its is discussed how n should be selected in such a way that the
integer factorization problem for n offers adequate protection until a year

17

of one’s choice. It should be kept in mind, however, that for most com-
mon factoring based cryptosystems (such as RSA) it has, in general, not
been proved that factoring the modulus is also necessary to break them,
although such systems do exist.

Main variants. The way the modulus is constructed depends on the fac-
toring based cryptosystem one uses. In the most common factoring based
cryptosystems the modulus is the product of two primes of approximately
the same size (cf. [39]). A variation, RSA multiprime (cf. [39]), improves
the efficiency of the private operations by allowing more than two fac-
tors of approximately equal size in the modulus. Less common variants
are RSA for paranoids [42], where the private operations are performed
modulo the smallest prime factor of the modulus, and variants where the
modulus contains repeated factors. Requirements on the size of the mod-
ulus and its factors are discussed below. For any of the variants moduli
can be constructed efficiently because primes of any practical size can be
generated quickly.

Trial division. The conceptually most straightforward way to factor a
composite integer n is by trying if n is divisible by 2, 3, 5, 7, 11, 13, . . .,
successively trying all primes until the smallest proper divisor is found.
This process is known as trial division. It remains the method of choice
of amateur-cryptanalysts. For that reason a detailed explanation of the
cryptanalytic ineffectiveness of trial division is provided.

For random composites without known properties, i.e., composites not
stemming from cryptographic applications, trial division is on average
over the inputs the most efficient factoring algorithm because random
composites can be expected to have a small factor: half of the random
composities are even, so the first trial division attempt will be successful
in 50% of the cases, one third of the remaining (odd) numbers is divisible
by three, etc. It is very easy, however, to construct composites for which
trial division is totally ineffective. This can be seen as follows.

According to the prime number theorem the number of primes up to
x is proportional to x

log x . This means that, to find the smallest prime

factor p of n using trial division, on the order of p
log p smaller primes

have to be tested before p is found. Because the cost of each attempt is
at least proportional to the logarithm of the number tested, the overall
computational effort to find p is proportional to p itself. Thus, if n is
constructed as the product of two, say, b-digit primes, the computational
effort to factor n using trial division is on the order of 10b. Even for
moderate b such as 50 a computational effort of this magnitude is out of

18

reach. Furthermore, there are other factoring methods that would factor
such n much faster.

Another consequence of the prime number theorem is that the num-
ber of b-digit primes outnumbers the number of smaller primes. Thus, it
does not help much, as often proposed, to exclude from the search in the
example the primes having fewer than b digits thereby limiting the trial
divisions to b-digit primes.

Exponential-time factoring algorithms. In the worst case where n
has two factors of approximately equal size the computational effort to
factor n using trial division is proportional to

√
n = n1/2 = exp((log n)/2).

With a constant multiple of the input length log2 n in the exponent,
it follows that trial division is an exponential-time algorithm. There are
exponential-time factoring algorithms that are much faster than trial di-
vision. For instance, Pollard’s rho method [35] can be expected to find the
smallest p dividing n after a computational effort that is not proportional
to p but to

√
p, i.e., proportional to n1/4 in the worst case p ≈ √

n.

If exponential-time algorithms were the fastest factoring algorithms,
it would be possible to select moduli n in such a way that log2 n is pro-
portional to the desired security level: if Pollard-rho would be the best
factoring algorithm, then 4λ-bit moduli would offer security level λ. Un-
fortunately for cryptographic applications of factoring based asymmetric
cryptosystems, exponential-time algorithms are by no means the best that
can be done for factoring. As indicated above, much faster factoring al-
gorithms exist. As a consequence, the required modulus bit length grows
much faster than a linear function of the desired security level. In partic-
ular, modulus sizes grow much faster than symmetric cryptosystem key
sizes and cryptographic hash function sizes.

Polynomial-time factoring algorithms. On the opposite side of the
spectrum from exponential-time algorithms are polynomial-time algorithms:
a polynomial-time factoring algorithm would require computational ef-
fort proportional to at most (log n)c, for some constant c. Although a
polynomial-time factoring algorithm has been published in [45], it re-
quires a not-yet-existing type of computer, a so-called quantum computer,
to run it on. If the engineering problems of building a large enough quan-
tum computer can be solved, factoring may be done in polynomial time,
which will most likely mean the end for factoring based asymmetric cryp-
tosystems. Alternatively, development of a polynomial-time factoring al-
gorithm that would run on a traditional computer, a possibility that can-
not yet provably be excluded, would have the same consequence. At this
point there is not sufficient reason to suspect that practical polynomial-

19

time factoring is a realistic prospect. The possibility of practical polyno-
mial time factoring is therefore not included in the analysis below.

What can realistically be done, however, is something that lies be-
tween exponential-time and polynomial-time factoring. These so-called
subexponential-time factoring algorithms are further discussed below.

Subexponential-time factoring algorithms. The computational ef-
fort required for an exponential-time factoring algorithm is bounded from
above by a constant positive power of

n = exp(log n).

For a polynomial-time method the required computational effort would
be bounded from above by a constant power of

log n = exp(log log n).

To express the computational effort of algorithms that are faster than
exponential time but not as fast as polynomial time, both possibilities
are captured in a single formula in the following way. Let

L[n, r, α] = exp(α(log n)r(log log n)1−r).

Exponential time is characterized by r = 1, polynomial time by r = 0,
and everything in between, i.e., 0 < r < 1 is referred to as subexponential

time (with, in all cases, α a positive constant).

There are many factoring algorithms for which the computational ef-
fort is expected to be L[n, 1/2, 1+o(1)] for n → ∞ (i.e., asymptotically for
n to infinity, the value of α approaches 1). For most of these algorithms
the analysis is based on heuristic arguments, for some it can rigorously
be proved. Note that, on the scale from r = 0 to r = 1 suggested above,
L[n, 1/2, 1 + o(1)], i.e., r = 1/2, is exactly halfway between exponential
time and polynomial time. One example is the quadratic sieve factoring
algorithm (QS) which can heuristically be expected to factor n, irrespec-
tive of any properties its factors may have, for a computational effort that
behaves as L[n, 1/2, 1 + o(1)] for n → ∞ (cf. [37]). Another example is
the elliptic curve method (ECM) which can heuristically be expected to
find a factor p of n for a computational effort (log n)2L[p, 1/2,

√
2 + o(1)]

(cf. [29]); in the worst case p ≈ √
n this becomes L[n, 1/2, 1 + o(1)].

Number Field Sieve. Because so many quite different methods all share
essentially the same expected computational effort L[n, 1/2, 1+o(1)], this
was suspected by some to be the ‘ultimate’ complexity of factoring. In

20

1988 these cryptographic dreams were shattered by John Pollard’s in-
vention of a new factoring algorithm, cf. Pollard’s first article in [23].
The original version, now referred to as the Special Number Field Sieve

(SNFS), was intended to factor the ninth Fermat number F9 = 229

+ 1, a
number that was indeed completely factored in 1990 [24]. The SNFS can
be applied to numbers that allow a particularly ‘nice’ polynomial repre-
sentation, such as F9. Based on heuristic arguments the expected com-
putational effort is L[n, 1/3, 1.526 + o(1)]. The generalized version, now
referred to as the Number Field Sieve (NFS), factors any number n for a
(heuristic) expected computational effort L[n, 1/3, 1.923+ o(1)] (cf. [23]),
which was later improved to L[n, 1/3, 1.902 + o(1)] (cf. [9]).

On the scale from exponential time (r = 1) to polynomial time (r = 0)
the NFS represents substantial progress from the halfway point (r = 1/2)
in the direction of polynomial-time algorithms. Since the invention of
the NFS no progress affecting the current best r = 1/3 value has been
published (with the exception of r = 0 for quantum computers).

The cost of the NFS. Let the cost function be as defined in Section 2,
i.e., the product of time (or, equivalently, computational effort) and equip-
ment cost. The NFS has two major stages, the relation collection stage
and the matrix stage. As shown in [2], the cost of the NFS depends
on the way the relation collection stage is carried out. If a memory-
intensive approach based on sieving is used the overall NFS cost behaves
as L[n, 1/3, 2.852 + o(1)] for n → ∞. An ECM-based approach is asymp-
totically considerably less costly: just L[n, 1/3, 1.976 + o(1)] for n → ∞.

NFS results. Compared to the older L[n, 1/2, 1 + o(1)]-methods, the
NFS is conceptually complicated and, originally, suffered from rather large
o(1)-values. Therefore, it was believed by some that the NFS had only
theoretical but no practical value. However, a lot of progress has been
made to improve the method, thereby lowering the o(1)’s. As a result the
NFS eventually surpassed the older methods also from a practical point
of view. At the time of writing of this chapter, the NFS is the method
of choice for actual large-scale factorization experiments (cf. [7] and [13])
and special purpose factoring hardware design proposals (cf. [44], [25],
and [43]). The following results have been obtained using the sieving-
based approach:

– Software implementation: a 576-bit modulus has been factored us-
ing the NFS in about 12 years of computing time on a 1GHz Pentium
III processor [13] (in reality it was done on m such processors in 12/m
years of computing time per processor, for some large m).

21

– Special purpose hardware design proposal: using 90 nanometer
VLSI technology, it can be expected that factorization of a 1024-bit
modulus takes at most one year using a special purpose hardware
device that takes at most US$1 million to build [27].
It follows that in 2004, at the time of writing this chapter, the cost of
factoring 1024-bit moduli can be estimated as at most 400M dollar-
days.

Actually, these results refer to just the relation collection step, in practice
the most cumbersome stage of the NFS factoring process. The other major
stage, the matrix step, although in theory equally costly, is in practice
negligible compared to the relation collection stage (cf. [2] and [26]).

Extrapolation to other modulus lengths. The 400M dollardays cost
to factor 1024-bit moduli in the year 2004 is combined with the asymptotic
cost estimates for NFS to estimate the cost of factoring b-bit moduli in
2004 as

L[2b, 1/3, α]

L[21024, 1/3, α]
· 400M dollardays,

with α = 2.852 + o(1). For the sake of simplicity—and because no bet-
ter alternative is available—it is assumed that upon substitution the two
o(1)’s cancel. From a theoretical point of view this assumption is hardly
acceptable, but for limited range approximations the results of this com-
promise approach have been satisfactory, so far. Although the 400M dol-
lardays for 1024-bit moduli is based on the sieving-based approach, rough
estimates for the ECM-based approach are not that much different. There-
fore one may alternatively replace 2.852 by 1.976 in the above estimate.
For key length estimate purposes α = 1.976 + o(1) is a more prudent
choice than α = 2.852 + o(1), because α = 1.976 + o(1) results in lower
factoring costs and therefore larger and more conservative choices for key
lengths achieving adequate protection.

As an example, 1248-bit moduli are roughly expected to be between

L[21248, 1/3, 1.976]

L[21024, 1/3, 1.976]
≈ 250

and
L[21248, 1/3, 2.852]

L[21024, 1/3, 2.852]
≈ 3000

times costlier to factor than 1024-bit ones. Similarly, 1536-bit moduli are
between 137K and 26M times costlier and 2048-bit moduli are at least 2
billion times costlier to factor than 1024-bit ones.

22

Cryptanalytic developments. During the last three to four decades
there has been a steady stream of developments in integer factorization
algorithms. The practical performance of the best existing algorithms
such as the NFS and the ECM is still constantly fine-tuned and improved.
This smooth progress is, less frequently, combined with more substantial
advances such as, most importantly, the invention of an entirely new
method or, less dramatic but often with important practical consequences,
better ways to handle certain steps of existing methods. It is reasonable
to assume that the trend as observed so far will continue for the years to
come.

Combining the occasional jumps and the regular smooth progress, the
effect of cryptanalytic progress on the difficulty of the integer factorization
problem turns out to be very similar to Moore’s law: overall, and on
the same equipment, the cost of factoring drops by a factor 2 every 18
months. According to Moore’s traditional law as formulated in Section 2,
the equipment cost also drops by a factor 2 every 18 months. These two
effects, cryptanalytic progress and hardware advances, have in the past
been independent and it is reasonable to assume that they will remain
to be so. As a result of the combination of these two independent effects,
the decrease in the cost of factoring is modelled in the following way:

Double Moore factoring law. The cost of factoring any fixed mod-
ulus drops by a factor 2 every 9 months.

As an example, in 2.5 years it can be expected that the cost of factoring
a 1024-bit modulus is reduced to

400M

22.5·12/9
≈ 40M dollardays.

Similarly, over a period of 6 years it is expected that the factoring cost
drops by a factor 26·12/9 = 256. Thus, it would be conservative to expect
that factoring a 1248-bit in 2010 would cost about the same as a 1024-bit
modulus in 2004.

Small factors. In regular RSA the modulus is chosen as the product of
two primes of approximately equal sizes. Asymptotically, and for all reg-
ular RSA moduli commonly in use, the most efficient published method
to factor such moduli is the NFS. As cited above, there are at least two
variants of RSA where the modulus n may have one (RSA for paranoids)
or more (RSA multiprime) prime factors that are substantially smaller
than

√
n. Currently the asymptotically fastest method to find small fac-

tors, if there are any, is the ECM. Therefore, care must be taken to select

23

the factors in such a way that finding them using the ECM can be ex-
pected to be at least as hard as factoring n using the NFS. The reader is
referred to [22] for a further discussion of this point.
RSA modulus lengths that offer adequate protection. According
to the definition in Section 2 an RSA modulus offers adequate protection
until year y if the factorization cost in that year can be expected to be at
least 40M dollardays. Thus, 1024-bit RSA moduli offer adequate protec-
tion for 2.5 more years from the year 2004, when this chapter was written.
More in general, by combining the above extrapolation to other modulus
lengths with the double Moore factoring law it can be determined—to the
best of the current knowledge—if a b-bit RSA modulus offers adequate
protection until the year y: it does if

L(2b, 1/3, α)

L(21024, 1/3, α)
· 400 ≥ 40 · 24(y−2004)/3 ,

where, again, α = 1.976 leads to a conservative, relatively large b-value
and α = 2.852 to a less prudent smaller one.

Table 3 lists the RSA modulus bit-lengths for both choices for α and
for several years, and Table 4 lists the years until which several com-
mon RSA modulus bit-lengths offer adequate protection, again for both
α-values. For each year y in the two tables the security level λ(y) =

56 + 2(y−1982)
3 that offers adequate protection until year y, rounded up-

wards to the nearest integer, is given between parentheses (cf. equation (2)
in Section 2). Note that λ(y) corresponds to the minimally required sym-
metric key length in year y.

Table 3. Minimal RSA modulus bit-lengths for protection until a given year.

(optimistic) bit-length (conservative) bit-length
year y (λ(y)) for α = 2.852 for α = 1.976
2010 (75) 1112 1153
2020 (82) 1387 1569
2030 (88) 1698 2064
2040 (95) 2048 2645
2050 (102) 2439 3314

It follows from the Tables that 2048-bit RSA moduli offer adequate
protection at least until the year 2030, and even until 2040 if one is less
prudent and confident that ECM-based factoring devices will not be able
to outperform the sieving-based approach before the year 2040.

Although this type of estimates is the best that can be done at this
point, it should be understood that actual factoring capabilities may fol-

24

Table 4. Common RSA modulus bit-length life spans.

modulus (conservative) year yc (optimistic) year yo

bit-length for α = 1.976 (λ(yc)) for α = 2.852 (λ(yo))
1024 2006 (72) 2006 (72)
1280 2014 (78) 2017 (80)
1536 2020 (82) 2025 (85)
2048 2030 (88) 2040 (95)
3072 2046 (99) 2065 (112)
4096 2060 (108) 2085 (125)
8192 2100 (135) 2142 (163)

low an entirely different pattern. Any prediction more than a few decades
away about security levels is wishful thinking. The figures in the tables
should be properly interpreted, namely as today’s best estimates that
may have to be revised tomorrow. Anyone using factoring based asym-
metric cryptosystems should constantly monitor and stay ahead of the
developments in the research community.

7 Discrete logarithm based systems

Let g belong to some group G and let h be an arbitrary element of the sub-
group 〈g〉 of G generated by g of known order # 〈g〉. The cryptographic
application of the generator g imposes a unique representation for each el-
ement of G and thus of 〈g〉. Given this representation the group operation
and inversion can be performed efficiently. Using multiplicative notation
for the group operation this implies that for any k the element gk can be
computed in O(log k) group operations and at most a single inversion. On
the other hand, because of the cryptographic application, g and G must
be chosen such that the ‘reverse’ problem of computing logg h offers ade-
quate protection until a year of one’s choice. The resulting requirements
on g and G are discussed in this section.

The discrete logarithm problem can be solved either in the subgroup
〈g〉 directly or in the group G in which 〈g〉 is embedded. For adequate pro-
tection it must be infeasible to solve the problem using either approach.
Of particular practical interest is the traditional discrete logarithm prob-
lem where G = (Fp`)∗.
Unsuitable groups. There are groups in which discrete logarithms are
not hard to compute. An example is the additive group of integers mod-
ulo a positive integer, where computing discrete logarithms is equivalent
to modular division. Obviously, such groups must be avoided in cryp-
tographic applications. Unfortunately, this is not always as easy as it
sounds. There are examples of groups where at first sight the discrete

25

logarithm problem looks hard, but where, after closer scrutiny by the re-
search community, the problem turned out to be easier than expected.
For instance, a certain type of elliptic curve based groups as proposed for
cryptographic applications in [31] was shown to allow trivial discrete log-
arithm computation in [40], [41] and [47]. Interestingly, these groups were
offered as an alternative to another class of elliptic curve based groups
where the discrete logarithm problem allowed an undesirable reduction
to the traditional case G = (Fp`)∗ (cf. [14] and [30]).

Accidents of this sort are impossible to avoid. But, as a general advice,
cryptographic application of newly proposed groups should be postponed
until the mathematical and cryptanalytic communities have scrutinized
the proposed groups and failed to ‘break’ them. In the sequel it is implic-
itly assumed that the groups in question do not allow other attacks than
the generic ones described below.

The discrete logarithm problem in G = (Fp`)∗. If G = (Fp`)∗,
discrete logarithms in G can be calculated using a method that is similar
to the NFS algorithm for integer factorization discussed in Section 6.
Roughly speaking, computing discrete logarithms in (Fp`)∗ is about as

hard as factoring an integer n with log n ≈ log p` using the NFS. Thus,
to achieve adequate protection until a given year the size requirements
on n as presented in Section 6 imply the same size requirements on p`.

This is a rough estimate in the sense that it somewhat underestimates
the difficulty of computing discrete logarithms in (Fp`)∗ and thereby over-

estimates the p` values that would suffice for adequate protection. An
often encountered argument is that the matrix step (cf. Section 6) as
required for the discrete logarithm version of the NFS, is much harder
than the one for the regular factoring NFS. It is true that the matrices,
assuming comparable dimensions, are harder to deal with. But, in the
first place, compared to factoring the cost will not increase by more than
a factor (log # 〈g〉)2, which is, relatively speaking, only a minor effect. In
the second place, the actual cost of the relation collection stage (cf. Sec-
tion 6) may still far outweigh the matrix step cost, further diminishing
the effect of the more expensive matrix step on the overall cost of the
computation. Given the granularity of finite field sizes that are available
in practice, there is no practical need for more accurate estimates.

Reduction to prime order subgroup. Due to the Pohlig-Hellman al-
gorithm, the problem of computing logg h can efficiently be reduced to the
problem of computing logg h modulo each of the prime divisors of # 〈g〉
(cf. [36]). Therefore, and because the complete factorization of # 〈g〉 may
be unknown and hard to find (cf. Section 6), it is assumed that # 〈g〉 has

26

at least one prime divisor that satisfies the further requirements specified
below. For convenience of presentation and without loss of generality, it
is assumed that # 〈g〉 itself is prime. If G = (Fp`)∗ with ` ≥ 2 this prime
〈g〉 must be carefully chosen, as shown in the next paragraphs.
The discrete logarithm problem in a subgroup of G = (Fp`)∗. The
generator g belongs to G = (Fp`)∗ and thus has (prime) order dividing

p` − 1. For ` > 1, however, the number p` − 1 has factors that should be
avoided in the sense that if # 〈g〉 divides such a factor, the difficulty of
the discrete logarithm problem in 〈g〉 is affected. This is explained below.

For each positive integer d dividing ` the finite field Fp` has a subfield
Fpd and the multiplicative group G = (Fp`)∗ has a subgroup (Fpd)∗ of

order pd − 1 dividing p` − 1. If the order # 〈g〉 of g divides pd − 1 for a
d less than and dividing `, then g belongs to the true subgroup (Fpd)∗ of
the multiplicative group G = (Fp`)∗ of the finite field Fp` , and thereby
g belongs to the true subfield Fpd of Fp` . Representations of such sub-
field elements of Fp` can efficiently be mapped back and forth to direct
representations in the finite field Fpd itself. As a result, the discrete log-
arithm problem in 〈g〉 can be solved in the true subfield Fpd , which is a
substantially easier problem than in the ‘large’ field Fp` : in the notation
of Section 6 it reduces the cost of computing discrete logarithms from
L[p`, 1/3, α] to L[pd, 1/3, α], for some constant α > 0.

It follows that g should be chosen in such a way that its order # 〈g〉
does not divide pd − 1 for any d less than and dividing `. This is achieved
as follows. The dth cyclotomic polynomial Φd(X) is recursively defined
by

Xd − 1 =
∏

t dividing d

Φt(X).

For instance, Φ1(X) = X − 1, Φ2(X) = X2
−1

X−1 = X + 1, Φ3(X) = X3
−1

X−1 =

X2 +X +1, etc. Thus, g must be chosen in such a way that # 〈g〉 divides
p` − 1 but does not divide Φd(p) for a d less than and dividing `. This
condition is satisfied if g is chosen so that # 〈g〉 is a prime divisor larger
than ` of Φ`(p), the ‘last’ cyclotomic factor of pd−1 (cf. [21]). For instance,
if ` = 2 the order # 〈g〉 of g must be chosen as a sufficiently large prime
divisor of Φ2(p) = p + 1; and of

Φ6(p) =
p6 − 1

(p − 1)(p + 1)(p2 + p + 1)
= p2 − p − 1

if ` = 6.
Size requirements. Under the general representation assumptions spec-
ified at the beginning of this section (and avoiding unsuitable groups), the

27

best methods to solve the discrete logarithm problem in 〈g〉 require ap-
proximately

√

〈g〉 group operations. There are essentially two methods
that achieve this operation count, Shanks’ baby-step-giant-step method [18,
Exercise 5.17] and Pollard’s rho method [35]. Shanks’ method requires a
substantial amount of memory. This implies that the cost of an attack
effort (as defined in Section 2) by means of Shanks’ methods is much
larger than

√

〈g〉: according to [49] it is approximately (# 〈g〉)2/3.

Pollard’s rho method, on the other hand, requires just a constant
amount of memory when run on a single processor. Although this implies
an attack effort cost of approximately

√

〈g〉, an attack of this sort
does not have any practical significance. However, a variation of Pollard’s
rho method allows efficient parallelization with the same cost (cf. [49]).
Therefore, both from a theoretical as practical point of view, the cost of
Pollard-rho based attack effort is approximately

√

〈g〉.
It follows that the discrete logarithm problem in an order # 〈g〉 sub-

group g offers security level approximately log2

√

〈g〉 = log4 # 〈g〉. To
decide if a certain discrete logarithm security level offers adequate pro-
tection as defined in Section 2, the relative speed of the group operation
compared to the DES must in principle be taken into account. Since in
any standard application the DES will be at least as fast as the group
operation, and considerably faster if g ∈ (Fp`)∗, neglecting this effect
will only increase the level of protection offered by the discrete logarithm
based system.

Cryptanalytic developments. Concerning cryptanalytic methods that
directly attack the subgroup discrete logarithm problem, the most recent
substantial cryptanalytic development was the parallelization of Pollard’s
rho method, as referred to above. This influenced the practical significance
of a Pollard-rho based attack, but had no theoretical effect on the cost.
As far as the choice of the subgroup size # 〈g〉 is concerned, it is therefore
reasonable to assume that for the foreseeable future the cost of subgroup
attack efforts will not be different from the current cost of

√

〈g〉 group
operations. This cost corresponds to the provable lower bound for the
computation of discrete logarithms in generic groups (cf. [34] and [46]).

If special properties of g ∈ (Fp`)∗ are taken into account, there has
been a steady stream of improvements to the NFS method for factoring
that may have comparable effects on the version of the NFS that applies
to the computation of discrete logarithms in (Fp`)∗. As in Section 6 it
is reasonable to assume that in the foreseeable future there will not be
major variations in the rate of cryptanalytic progress observed over the
last few decades.

28

Choices of # 〈g〉 and p` that offer adequate protection. Summariz-
ing the above conditions on g, it is assumed that g is chosen in such a way
that # 〈g〉 is prime, so that the discrete logarithm problem in 〈g〉 cannot
be reduced to a discrete logarithm problem in a smaller group (of order
a proper divisor of # 〈g〉). Furthermore, if g ∈ (Fp`)∗ it is assumed that
〈g〉 is a prime divisor larger than ` of Φ`(p) to make sure that g cannot
be embedded in a smaller multiplicative group (Fpd)∗ for some d < `.

Under these restrictions, g must be chosen such that the discrete log-
arithm problem in 〈g〉 offers adequate protection until the year of one’s
choice. Combining the attack effort cost of

√

〈g〉 with Moore’s law it
follows that a subgroup of prime order # 〈g〉 offers adequate protection
until the year

y(log4 # 〈g〉) = 1982 +
3(log4 # 〈g〉 − 56)

2

(cf. equation (1) in Section 2). This ‘double growth’ compared to sym-
metric key lengths leads to the same rule of thumb as given at the end
of Section 4 for hash function lengths. Since the collision attack in Sec-
tion 4 and the Pollard-rho based attack here are both based on the same
‘birthday paradox’ technique, this is hardly a surprise.

If g ∈ (Fp`)∗ adequate protection until year y also requires to select

p` in such a way that

L(p`, 1/3, α)

L(21024, 1/3, α)
· 400 ≥ 40 · 24(y−2004)/3 ,

with α either 1.976 (prudent) or 2.852 (optimistic) as in Section 6. This
is the same requirement as on regular RSA moduli (cf. Section 6).

It follows that the US Government’s Digital Signature Algorithm
(DSA) with # 〈g〉 ≈ 2160 offers adequate protection against subgroup
attacks until the year

y(log4 # 〈g〉) ≈ y(log4 2160) = y(80) = 2018.

But the fact that the DSA prescribes usage of g ∈ (Fp)
∗ with log2 p ≤

1024 undermines the security level and implies that DSA offers adequate
protection only until 2006 (cf. Table 4 in Section 6). ECDSA (cf. [16]), on
the other hand, does not suffer from an embedding in a finite field and is
believed to offer adequate protection until 2018 when 160-bit prime order
subgroups are used.

29

8 Conclusion

To summarize, adequate protection was defined as the security offered in
1982 by the DES. It was argued that a system offers adequate protection
until a given year if the cost of a successful attack in that year is at least
40M dollardays: a computation that lasts x days on a piece of equipment
that costs 40/x million dollars to build (for any reasonable x).

Given this definition, for the most common cryptographic systems the
following general key length recommendations can be made.

Symmetric cryptosystems. A symmetric cryptosystem with (56 + b)-
bit keys and no known weaknesses offers adequate security until year
1982 + y only if 3b ≥ 2y.

Cryptographic hash functions. A cryptographic hash function of bit-
length 112 + b and without known weaknesses offers adequate security
until year 1982 + y only if 3b ≥ 4y.

Factoring based asymmetric cryptosystems. Refer to Tables 3 for
modulus bit-lengths that should offer adequate protection until year 2000+
10i for 0 < i ≤ 5. Refer to Table 4 for the year until which several common
modulus bit-lengths can be expected to offer adequate protection.

Discrete logarithm based asymmetric cryptosystems. A subgroup
〈g〉 offers adequate security until year 1982 + y only if

3(log4(# 〈g〉) − 56) ≥ 2y.

If g ∈ (Fp`)∗, then log2 p` must satisfy the same requirements as modulus
bit-lengths for factoring based asymmetric cryptosystems. Furthermore,
stay away from newly proposed groups.

Finally, it was shown how the definition of adequate protection can
be tuned to one’s own perception of security and how this changes the
key length recommendations.

References

1. M. Bellare, P. Rogaway, Collision-resistant hashing: towards making UOWHFs
practical, Proceedings Crypto’97, LNCS 1294, Springer-Verlag 1997, 470–484.

2. D.J. Bernstein, Circuits for integer factorization: a proposal, manuscript, Novem-
ber 2001; available at cr.yp.to/papers.html#nfscircuit.

3. E. Biham, O. Dunkelman, V. Furman, T. Mor, Preliminary report on the NESSIE
submissions Anubis, Camelia, IDEA, Khazad, Misty1, Nimbus, Q, available from
https://www/cosic.esat.kuleuven.ac.be/nessie/reports.

4. A. Biryukov, A. Shamir, D. Wagner, Real time cryptanalysis of A5/1 on a PC,
Proceedings of FSE 2000, LNCS 1978, Springer-Verlag 2001, 1–18.

30

5. M. Blaze, W. Diffie, R.L. Rivest, B. Schneier, T. Shimomura, E. Thompson, M.
Wiener, Minimal key lengths for symmetric ciphers to provide adequate commercial
security, www.bsa.org/policy/encryption/cryptographers c.html, January 1996.

6. J.R.T. Brazier, Possible NSA decryption capabilities, jya.com/nsa-study.htm.
7. S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, P.L. Montgomery, B. Murphy,

H.J.J. te Riele, et al., Factorization of a 512-bit RSA modulus, Proceedings Euro-
crypt 2000, LNCS 1807, Springer-Verlag 2000, 1–17.

8. F. Chabaud, A. Joux, Differential collisions in SHA-0, Proceedings Crypto’98,
LNCS 1462, Springer-Verlag 1998, 56–71.

9. D. Coppersmith, Modifications to the number field sieve, J. Crypto. 6 (1993) 169–
180.

10. H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160, a strengthened version of
RIPEMD, Fast Software Encryption, LNCS 1039, Springer-Verlag 1996, 71–82.

11. Electronic Frontier Foundation, Cracking DES, O’Reilly, San Francisco, July 1998.
12. S. Fluhrer, I. Mantin, A. Shamir, Attacks on RC4 and WEP,

RSA Laboratories’ Cryptobytes, v. 5, no 2 (2001) 26–34; also at
www.rsasecurity.com/rsalabs/cryptobytes.

13. J. Franke, personal communication, January 2004.
14. G. Frey, H.-G. Rück, A remark concerning m-divisibility and the discrete logarithm

problem in the divisor class group of curves, Math. Comp. 62 (1994) 865–874.
15. H. Handschuh, H. Gilbert, x2 Cryptanalysis of the SEAL encryption algorithm,

Proceedings of FSE 1997, LNCS 1267, Springer-Verlag 1997, 1–12.
16. D. Johnson, A. Menezes, The elliptic curve digital signature algorithm (ECDSA),

CACR Technical report CORR 99-31, University of Waterloo, 1999.
17. J. Kilian, P. Rogaway, How to protect DES against exhaustive key search, Proceed-

ings Crypto’96, LNCS 1109, Springer-Verlag 1996, 252–267.
18. D.E. Knuth, The art of computer programming, Volume 2, Seminumerical Algo-

rithms, third edition, Addison-Wesley, 1998.
19. P.C. Kocher, Breaking DES, RSA Laboratories’ Cryptobytes, v. 4, no 2 (1999) 1–5;

also at www.rsasecurity.com/rsalabs/cryptobytes.
20. S. Landau, Polynomials in the nation’s service: using algebra to design the advanced

encryption standard, The mathematical society of America monthly, 111 (2004)
89–117.

21. A.K. Lenstra, Using cyclotomic polynomials to construct efficient discrete log-
arithm cryptosystems over finite fields, Proceedings ACISP’97, LNCS 1270,
Springer-Verlag 1997, 127–138.

22. A.K. Lenstra, Unbelievable security, Proceedings Asiacrypt 2001, LNCS 2248,
Springer-Verlag 2001, 67–86.

23. A.K. Lenstra, H.W. Lenstra, Jr., (eds.), The development of the number field sieve,
Lecture Notes in Math. 1554, Springer-Verlag 1993.

24. A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, J.M. Pollard, The factorization of
the ninth Fermat number, Math. Comp. 61 (1993) 319–349.

25. A.K. Lenstra, A. Shamir, Analysis and optimization of the TWINKLE factoring
device, Proceedings Eurocrypt 2000, LNCS 1807, Springer-Verlag 2000, 35–52.

26. A.K. Lenstra, A. Shamir, J. Tomlinson, E. Tromer, Analysis of Bernstein’s fac-
torization circuit, Proceedings Asiacrypt 2002, LNCS 2501, Springer-Verlag 2002,
1–26.

27. A.K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B. Dodson, J. Hughes, P.
Leyland, Factoring estimates for a 1024-bit RSA modulus, Proceedings Asiacrypt
2003, LNCS 2894, Springer-Verlag 2003, 55–74.

31

28. A.K. Lenstra, E.R.Verheul, Selecting Cryptographic Key Sizes, Proceedings PKC
2000, LNCS 1751, Springer-Verlag 2000, 446–465; J. Crypto. 14 (2001) 255–293;
available from www.cryptosavvy.com.

29. H.W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987)
649–673.

30. A.J. Menezes, T. Okamoto, S.A. Vanstone, Reducing elliptic curve logarithms to a
finite field, IEEE Trans. Info. Theory 39 (1993) 1639–1646.

31. A. Miyaji, Elliptic curves over Fp suitable for cryptosystems, Proceedings Auscrypt
92, LNCS 718, Springer-Verlag 1993, 479–491.

32. National Bureau of Standards, NBS FIPS PUB 46, “Data Encryption Standard.”
National Bureau of Standards, U.S. Department of Commerce, January 1997.

33. NESSIE, New European schemes for signatures, integrity, and encryption, 2000–
2003, https: //www.cosic.esat.kuleuven.ac.be/nessie/.

34. V.I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm,
Mathematical Notes, 55 (1994) 155–172; translated from Matematicheskie Za-
metki, 55(2) (1994) 91–101; this result dates from 1968.

35. J.M. Pollard, Monte Carlo methods for index computation (mod p), Math. Comp.
32 (1978) 918–924.

36. S.C. Pohlig, M.E. Hellman, An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance, IEEE Trans. Info. Theory 24 (1978)
106–110.

37. C. Pomerance, Analysis and comparison of some integer factoring algorithms, in
Computational methods in number theory (H.W. Lenstra, Jr., R. Tijdeman, eds.)
Math. Centre Tracts 154, 155, Mathematisch Centrum, Amsterdam (1983) 89–
139.

38. http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html.
39. R.L. Rivest, A. Shamir, L.M. Adleman, Cryptographic communications system and

method, U.S. Patent 4,405,829, 1983.
40. T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete log algorithm

for anomalous elliptic curves, Comm. Math. Univ. Sancti Pauli, 47 (1998) 81–92.
41. I.A. Semaev, Evaluation of discrete logarithms on some elliptic curves, Math.

Comp. 67 (1998) 353–356.
42. A. Shamir, RSA for paranoids, RSA Laboratories’ Cryptobytes, v. 1, no. 3 (1995)

1–4.
43. A. Shamir, E. Tromer, Factoring large numbers with the TWIRL device, Proceed-

ings Crypto 2003, LNCS 2729, Springer-Verlag 2003, 1–26.
44. A. Shamir, Factoring large numbers with the TWINKLE device, Proceedings

CHES’99, LNCS 1717, Springer-Verlag, 1999.
45. P.W. Shor, Algorithms for quantum computing: discrete logarithms and factoring,

Proceedings of the IEEE 35th Annual Symposium on Foundations of Computer
Science, 124–134, 1994.

46. V. Shoup, Lower bounds for discrete logarithms and related problems, Proceedings
Eurocrypt’97, LNCS 1233,

47. N.P. Smart, The discrete logarithm problem on elliptic curves of trace one, J.
Crypto. 12 (1999) 193–196.

48. M.J. Wiener, Efficient DES key search, manuscript, Bell-Northern Research, Au-
gust 20, 1993.

49. M.J. Wiener, The full cost of cryptanalytic attacks, accepted for publication in J.
Crypto.

32

