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Abstract

These notes informally review the most common methods from com-
putational number theory that have applications in public key cryptology.
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1 Introduction

Cryptology consists of cryptography and cryptanalysis. Cryptography refers to
the design and application of information protection methods. Cryptanalysis is
the evaluation of the strength of cryptographic methods.

Roughly speaking, there are two types of cryptology: symmetric key cryp-
tology and public key cryptology. In the former a single key is shared (and
kept secret) by the communicating parties. It is used for encryption by the
sender, and for decryption by the recipient. Examples are the Data Encryption
Standard (DES) and the Advanced Encryption Standard (AES). In public key
cryptology each party has a key that consists of two parts, a public and a se-
cret (or private) part. The public part can be used to encrypt information, the
corresponding secret part to decrypt. Alternatively, the secret key is used to
sign a document, the corresponding public key to verify the resulting signature.
Furthermore, a widely shared public key can be used to establish a common
secret among two parties, for instance a key for a symmetric system. Examples
of public key cryptosystems are the Diffie-Hellman key agreement protocol and
the ElGamal and RSA encryption and signature schemes (Section 2).

The effectiveness – or security – of symmetric key systems relies on the
secrecy of the shared symmetric key and the alleged infeasibility to decrypt
without access to the key. Similarly, public key systems rely on the secrecy of
the secret key and the infeasibility to decrypt (or sign) without access to the
secret key. For public key systems this implies that it should be infeasible to
derive the secret key from its corresponding public key. On the other hand, it
must be possible to derive the public key from the secret key, or else public key
systems could not be realized. Thus, public key systems involve some type of
function that is effectively one-way. Given the secret key it must be possible to
compute the corresponding public key reasonably efficiently. But deriving the
secret from the public key must be impossible, practically speaking.

All currently popular public key systems rely on problems from computa-
tional number theory that are widely believed to be hard. As a consequence,
computational methods involving integers play an important role in public key
cryptology. They are used both to obtain efficient implementations (cryptogra-
phy) and to provide guidance in key size selection (cryptanalysis). These notes
review some of the most important methods from computational number the-
ory that have applications in public key cryptology. Section 2 briefly outlines
some of the most popular public key cryptosystems. The most important basic
arithmetic methods required for efficient implementations of those systems are
described in Section 3. Cryptanalytic methods relevant for the methods from
Section 2 are sketched in Section 4.
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2 Public Key Cryptography

In this section the basic versions of some of the most popular public key en-
cryption and signature schemes are informally sketched. In Sections 2.2 and 2.4
the same public keys are used for the encryption and signature protocols. This
is done for expository purposes only. In general it cannot be recommended to
use a single key both for encryption and signature purposes. In practical appli-
cations many other peculiarities must be dealt with. They are not taken into
account in the descriptions below, see [80].

2.1 Problems that are widely believed to be hard

So far only two supposedly hard problems have found widespread applications
in public key cryptography:

1. Integer factorization: given a positive composite integer n, find a non-
trivial factor of n.

2. Discrete logarithm: given a generator g of an appropriately chosen group
and h ∈ 〈g〉, find an integer t such that

g × g × . . .× g︸ ︷︷ ︸
t

= gt = h.

Here it is assumed that the group law is written multiplicatively and in-
dicated by the symbol ×. The integer t is unique modulo the order of g,
referred to as the discrete logarithm of h with respect to g, and denoted
by logg(h). In the literature it is also referred to as the index of h with
respect to g.

The integer factorization problem is certainly not always hard, not even if n is
large. Indeed, most randomly selected integers (say of some fixed large size)
have a relatively small non-trivial factor that can quickly be found. The point
is, however, that a hard instance of the integer factoring problem can easily
be generated: just pick two sufficiently large primes (Section 3.5) and compute
their product. Given just the product there does not seem to be an efficient way
to retrieve the primes. In Section 4 the question is addressed what is meant by
‘sufficiently large’.

Similarly, the discrete logarithm problem is not always hard. Computing
discrete logarithms in 〈g〉 is straightforward if g = 1 generates the additive
group of integers Z/mZ, for any positive integer m. A less trivial example
is when g generates the multiplicative group F∗p` of a finite field Fp` . In this
case, the hardness of the discrete logarithm problem in 〈g〉 depends on the size
of the largest prime factor of p` − 1 (Section 4.1), the size of p` itself, and
the characteristic p of Fp` (Section 4.2). Alternatively, g may just generate a
subgroup of F∗p` (see [105]). In that case the security depends on the size of the
largest prime factor of the order of g (which divides p` − 1), the characteristic
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p, and the size of pd for the smallest d ≤ ` (and dividing `) such that the order
of g divides pd − 1 (see [64]). It follows that g should be chosen so that d = `.
It is easy to construct finite fields with multiplicative groups (or subgroups
thereof) in which the discrete logarithm problem is believed to be intractable.
For appropriately chosen subgroups compression methods based on traces such
as LUC [113] and XTR [73] can be used to represent the subgroup elements.

Another popular group where the discrete logarithm problem may be suf-
ficiently hard is the group of points of a properly chosen elliptic curve over a
finite field [59, 81]. This has the advantage that the methods from Section 4.2
do not seem to apply. Therefore it is generally believed that the finite field can
be chosen much smaller than in the earlier example where g ∈ F∗p` . In partic-
ular for high security applications this should lead to more manageable public
key cryptosystems than the ones based on factoring, multiplicative groups, or
anything else that is known to be susceptible to the methods from Section 4.2.
Appropriate elliptic curves are much harder to find than hard to factor inte-
gers or good multiplicative groups. This is a serious obstacle to widespread
deployment of elliptic curves in public key cryptography.

A proof that integer factorization is indeed a hard problem has never been
published. The alleged difficulty of integer factorization is just a belief and, for
the moment at least, nothing more than that. Computing discrete logarithms,
on the other hand, can be proved to be hard. The proof, however, applies only to
an abstract setting without practical relevance [88, 108]. Thus, also the alleged
difficulty of the discrete logarithm problems referred to above is just a belief.

On a quantum computer, factoring and computing discrete logarithms can be
done in polynomial time [107]. Believing that factoring and computing discrete
logarithms are hard problems implies belief in the impossibility of quantum
computing [40].

2.2 RSA

The RSA cryptosystem [102] is named after its inventors Rivest, Shamir, and
Adleman. It relies for its security on the difficulty of the integer factoring
problem. Each user generates two distinct large primes p and q (Section 3.5),
integers e and d such that ed ≡ 1 mod (p−1)(q−1) (Section 3.3), and computes
n = pq. The pair of integers (n, e) is made public. The corresponding p, q, and
d are kept secret. This construction satisfies the requirement mentioned in
Section 1 that the public key can efficiently be derived from the secret key. The
primes p and q can be derived from (n, e) and d. After generation of (n, e)
and d, they are in principle no longer needed (but see 3.3.7).

Encryption. A message m ∈ Z/nZ intended for the owner of public key (n, e)
is encrypted as E = me ∈ Z/nZ. The resulting E can be decrypted
by computing D = Ed ∈ Z/nZ (see also 3.3.7). It follows from ed ≡
1 mod (p− 1)(q − 1), Fermat’s little theorem, and the Chinese remainder
theorem that D = m.

Signature generation. A message m ∈ Z/nZ can be signed as S = md ∈
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Z/nZ. The signature S on m can be verified by checking that m = Se ∈
Z/nZ.

In practice the public exponent e is usually chosen to be small. This is done to
make the public operations (encryption and signature verification) fast. Care
should be taken with the use of small public exponents, as shown in [31, 32,
30, 49]. The secret exponent d corresponding to a small e is in general of the
same order of magnitude as n. There are applications for which a small d (and
thus large e) would be attractive. However, small private exponents have been
shown to make RSA susceptible to attacks [12, 119].

A computational error made in the RSA private operation (decryption and
signature generation) may reveal the secret key [11]. These operations should
therefore always be checked for correctness. This can be done by applying the
corresponding public operation to the result and checking that the outcome is as
expected. So-called fault attacks are rendered mostly ineffective by this simple
precaution. So-called timing attacks [60] can be made less effective by ‘blind-
ing’ the private operation. Blinding factors b and be are selected by randomly
generating b ∈ Z/nZ and computing be = b−e. Direct computation of xd for
some x ∈ Z/nZ is replaced by the computations of the blinded value bex, the
private operation y = (bex)d, and the final outcome by = xd.

2.3 Diffie-Hellman protocol

A key agreement protocol is carried out by two communicating parties to create
a shared key. This must be done in such a way that an eavesdropper does
not gain any information about the key being generated. The Diffie-Hellman
protocol [38] is a key agreement protocol. It is not an encryption or signature
scheme.

Let g be a publicly known generator of an appropriately chosen group of
known order. To create a shared key, parties A and B proceed as follows:

1. A picks an integer a ∈ {2, 3, . . . , order(g) − 1} at random, computes ga,
and sends ga to B.

2. B receives ga, picks an integer b ∈ {2, 3, . . . , order(g) − 1} at random,
computes gb and gab, and sends gb to A.

3. A receives gb and computes gba.

4. The shared key is gab = gba.

The Diffie-Hellman problem is the problem of deriving gab from g, ga, and gb.
It can be solved if the discrete logarithm problem in 〈g〉 can be solved: an
eavesdropper can find a from the transmitted value ga and the publicly known g,
and compute gab based on a and gb. Conversely, it has not been proved in
generality that the Diffie-Hellman problem is as hard as solving the discrete
logarithm problem. If g generates a subgroup of the multiplicative groups of a
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finite field the problems are not known to be equivalent. Equivalence has been
proved for the group of points of an elliptic curve over a finite field [13].

A related problem is the Decision Diffie-Hellman problem of efficiently de-
ciding if gc = gab, given g, ga, gb, and gc. For multiplicative groups of finite
fields this problem is believed to be hard. It is known to be easy for at least
some elliptic curve groups [55].

2.4 The ElGamal family of protocols

Let g be a publicly known generator of an appropriately chosen group of known
order. Let h = gt for a publicly known h and secret integer t. ElGamal encryp-
tion and signature protocols [41] based on a public key consisting of (g, h) come
in many different variations. Basic variants are as follows.

Encryption. A message m ∈ 〈g〉 intended for the owner of public key (g, h) is
encrypted as (gk,m×hk) for a randomly selected k ∈ {2, 3, . . . , order(g)−
1}. It follows that the party with access to t = logg(h) can compute m as

m =
m× hk

(gk)t
.

Signature generation (based on DSA, the Digital Signature Algorithm).
Let order(g) = q for a publicly known prime number q and t = t mod q ∈
Z/qZ. Let f be a publicly known function from 〈g〉 to Z/qZ. To sign a
message m ∈ Z/qZ, compute r = f(gk) ∈ Z/qZ for a randomly selected
k ∈ {2, 3, . . . , q − 1} with f(gk) 6= 0 and

s =
m + tr

k
∈ Z/qZ.

The signature consists of (r, s) ∈ (Z/qZ)2, unless s = 0 in which case
another k is selected. Signature (r, s) ∈ (Z/qZ)2 is accepted if both r and
s are non-zero and r = f(v) where

v = ge × hd,

with w = s−1, e = mw, and d = rw, all in Z/qZ. This follows from

m + tr

s
= k in Z/qZ

and
ge × hd = gmw × gtrw = g

m+tr
s = gk.

The encryption requirement that m ∈ 〈g〉 can be relaxed by replacing m×hk by
the encryption of m using some symmetric key system with key hk (mapped to
the proper key space). In the signature scheme, the usage of m in the definition
of s can be replaced by the hash of m (mapped to Z/qZ), so that m does not
have to be in Z/qZ.
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2.5 Other supposedly hard problems

Most practical public key system are based on one of only two supposedly hard
problems, integer factoring and discrete logarithms. As shown in Section 4
many integer factoring methods allow variants that solve the discrete logarithm
problem. The complexity of the two problems may therefore be related. From
a practical point of view this is an undesirable situation with a potential for
disastrous consequences. If factoring integers and computing discrete logarithms
turn out to be easier than anticipated, most existing security solutions can no
longer be used.

For that reason there is great interest in hard problems that are suitable
for public key cryptography and that are independent of integer factoring and
discrete logarithms. Candidates are not easy to find. Once they have been found
it is not easy to convince the user community that they are indeed sufficiently
hard. Suitable problems for which the hardness can be guaranteed have not
been proposed, so that security is a matter of perception only: the longer a
system survives, i.e., no serious weaknesses are detected, the more users are
willing to believe its security. It will be hard for any newcomer to acquire the
level of trust currently enjoyed by the integer factoring and discrete logarithm
problems. Some of the latest proposals that are currently under scrutiny are
the following.

Lattice based systems. A lattice is a discrete additive subgroup of a fixed
dimensional real vector space. Over the past two decades, lattices have
been used to great effect in cryptanalysis, most notably to attack so-
called knapsack based cryptosystems. More recently, their cryptographic
potential is under investigation. The hard problems one tries to exploit
are the following:

• The shortest vector problem: find a shortest non-zero element of the
lattice, with respect to an appropriately chosen norm.

• The closest vector problem: given an element of the vector space, find
a lattice element closest to it, under an appropriately chosen norm.

See [89] for an overview of lattice based cryptology and references to rel-
evant literature.

NTRU and NSS. Let N > 0, q > 0, and d < N/2 be three appropriately
chosen integer security parameters. Given a polynomial h ∈ (Z/qZ)[X] of
degree < N , it is supposedly hard to find polynomials f, g ∈ (Z/qZ)[X]
of degrees < N , such that

hf = g mod (XN − 1).

Here both f and g have d coefficients equal to 1, another d coefficients
equal to (−1 mod q), and N − 2d zero coefficients. Due to the way h is
constructed, it is known that such f and g exist. The encryption scheme
NTRU [50] and the signature scheme NSS [51] are meant to rely on this
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problem of recovering f and g from h. This problem can be seen as a
lattice shortest vector problem [34]. It was not designed as such. NSS as
proposed in [51] is known to have several independent weaknesses [43, 114].

Braid groups. Let Σn be the group of n-permutations, for an integer n > 0.
Let σi ∈ Σn with i ∈ {1, 2, . . . , n− 1} be the permutation that swaps the
ith and (i + 1)st element. The n-braid group Bn is the subgroup of Σn

generated by σ1, σ2, . . ., σn−1. In [57] public key systems are described
that rely for their security on the difficulty of the following conjugacy
problem in Bn: given x, y ∈ Bn such that y = bxb−1 for some unknown
b ∈ Bm with m ≤ n, find a ∈ Bm such that y = axa−1. See also [6].
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3 Basic Computational Methods

This section reviews some of the computational tools for arithmetic on integers
that are required to implement the methods from Sections 2.2, 2.3, and 2.4. For
a more complete treatment, including runtime analyses, refer to [9, 56, 76, 80].

3.1 Integer arithmetic

The primes used in realistic implementations of number theoretic cryptographic
protocols (Section 2) may be many hundreds, and even thousands, of bits long.
Thus, the elements of the various groups involved in those protocols cannot
be represented by ordinary 32-bit or 64-bit values as available on current com-
puters. Neither can they directly be operated upon using commonly available
instructions, such as addition or multiplication modulo 232 on 32-bit integer
operands (as common in a programming language such as C).

Implementations of many public key cryptosystems therefore have to rely
on a set of multiprecision integer operations that allow arithmetic operations
on integers of arbitrary or sufficiently large fixed sizes. It is assumed that
routines are available implementing addition, subtraction, multiplication, and
remainder with division on integer operands of any size. The design of these
basic routines is not the subject of these notes, because most design decisions
will, to a large extent, depend on the hardware one intends to use. A variety of
different packages is available on the Internet. A basic software only package,
written in C, is freely available from the present author [63]. See [109] for a
more advanced, but also free, C++ package.

Throughout this section it is assumed that non-negative integers are repre-
sented on a computer (or other hardware platform) by their radix B represen-
tation. Here B is usually a power of 2 that is determined by the wordsize of
the computer one is using. On a 32-bit processor B = 232 is a possible, but not
always the best, choice. Thus, an integer m ≥ 0 is represented as

m =
s−1∑
i=0

miB
i for some s > 0 and mi ∈ {0, 1, . . . , B − 1}.

The mi are referred to as the blocks of m. The least and most significant
blocks are m0 and ms−1, respectively. The representation is called normalized
if m = m0 = 0 and s = 1 or if m 6= 0 and ms−1 6= 0. If a representation is
normalized, s is called its block-length. A normalized representation is unique.

For integers m > 0 and n, the quotient q = [n/m] and the remainder r =
n mod m are the unique integers with n = qm+r and r ∈ {0, 1, . . . ,m−1}. The
ring of integers Z/mZ is represented by and identified with the set {0, 1, . . . ,m−
1} of least non-negative residues modulo m. For any integer n, its remainder
modulo m is regarded as an element of Z/mZ and denoted by n mod m. It
follows that for u, v ∈ Z/mZ the sum u + v ∈ Z/mZ can be computed at the
cost of an integer addition and an integer subtraction:

compute w = u + v ∈ Z and x = w −m,

11



then the sum equals x ∈ Z/mZ if x ≥ 0 or w ∈ Z/mZ if x < 0. The inter-
mediate result w = u + v is at most 2m − 2, i.e., still of the same order of
magnitude as m. Similarly, u − v ∈ Z/mZ can be computed at the cost of an
integer subtraction and an integer addition. The computation of the product
uv = (uv) mod m ∈ Z/mZ is more involved. It requires the computation of
a product of non-negative integers < m, resulting in an intermediate result of
twice the order of magnitude of m, followed by the computation of a remainder
of the intermediate result modulo m. Because for large m the latter computa-
tion is often costly (and cumbersome to implement in hardware), various faster
methods have been developed to perform calculations in Z/mZ. The most pop-
ular of these methods is so-called Montgomery arithmetic [82], as described in
Section 3.2 below.

3.1.1 Remark on moduli of a special form. Computing the remainder
modulo m of the intermediate result uv can be done quickly (and faster than
using Montgomery arithmetic) if m is chosen such that it has a special form.
For instance, if the most significant block ms−1 is chosen to be equal to 1, and
mi = 0 for s/2 < i < s− 1, then the reduction modulo m can be done at about
half the cost of the computation of the product uv. Such moduli can be used in
most applications mentioned in Section 2, including RSA [65]. Their usage has
so far seen only limited applications in cryptography.

3.2 Montgomery arithmetic

Let m > 2 be an integer coprime to B and let m =
∑s−1

i=0 miB
i be its normalized

radix B representation. It follows that for common choices of B the integer m
must be odd. In cryptographic applications m is usually a large prime or a
product of large primes, so requiring m to be odd is not a serious restriction.

3.2.1 Montgomery representation. Let R be the smallest power of B that
is larger than m, so R = Bs. This R is referred to as the Montgomery radix.
Its value depends on the value of the ordinary radix B. The Montgomery
representation x̃ of x ∈ Z/mZ is defined as

x̃ = (xR mod m) ∈ Z/mZ.

Montgomery arithmetic in Z/mZ is arithmetic with the Montgomery represen-
tations of elements of Z/mZ (but see 3.2.6).

3.2.2 Montgomery addition and subtraction. Let u, v ∈ Z/mZ be repre-
sented by their Montgomery representations ũ and ṽ. The Montgomery sum of
ũ and ṽ is the Montgomery representation of the sum u + v, i.e., the element
z̃ ∈ Z/mZ for which the corresponding z satisfies z = u + v ∈ Z/mZ. From

z̃ = zR mod m = (u + v mod m)R mod m

≡ (uR mod m + vR mod m) mod m

= (ũ + ṽ) mod m

12



it follows that Montgomery addition is the same as ordinary addition in Z/mZ:

z̃ = (ũ + ṽ) mod m.

It therefore requires just an integer addition and an integer subtraction. Simi-
larly, Montgomery subtraction is the same as ordinary subtraction in Z/mZ.

3.2.3 Montgomery multiplication. The Montgomery product of ũ and ṽ is
the element z̃ ∈ Z/mZ for which z = (uv) mod m:

z̃ = zR mod m = ((uv) mod m)R mod m

= (uR mod m)v mod m

= (uR mod m)(vR mod m)R−1 mod m

= ũṽR−1 mod m.

Thus, the Montgomery product of ũ and ṽ is their ordinary integer product
divided by the Montgomery radix R modulo m. This can be computed as
follows.

Let w ∈ Z be the integer product of ũ and ṽ regarded as elements of Z (as
opposed to Z/mZ) and let

w =
2s−1∑
i=0

wiB
i ≤ (m− 1)2

be w’s not necessarily normalized radix B representation. This w must be
divided by R modulo m. Division by R modulo m is equivalent to s-fold division
by B modulo m, since R = Bs. If w0 = 0, division by B can be carried out by
shifting out the least significant block w0 = 0 of w:

w/B =
2s−2∑
i=0

wi+1B
i.

If wi 6= 0, then a multiple t of m is found such that (w + t) mod B = 0. The
resulting w + t can be divided by B by shifting out its least significant block.
But because w ≡ w + t mod m, dividing w + t by B is equivalent to dividing
w by B modulo m. The same process is then applied to the resulting number
(w/B or (w + t)/B) until the division by B has been carried out s times.

It remains to explain how an appropriate multiple t of m is found with
(w + t) mod B = 0, in the case that w0 6= 0. Because m and B are coprime,
so are m0 = m mod B and B. It follows that there exists an integer m−1

0 ∈
{0, 1, . . . , B − 1} such that m0m

−1
0 ≡ 1 mod B (see 3.2.7). Consider the integer

t = ((B − w0)m−1
0 mod B)m =

s∑
i=0

tiB
i.

13



From m0m
−1
0 ≡ 1 mod B it follows that

t0 = t mod B = ((B − w0)m−1
0 mod B)m0 mod B = B − w0.

The integer t is a multiple of m and

(w + t) mod B = (w mod B + t mod B) mod B

= (w0 + t0) mod B

= (w0 + B − w0) mod B

= 0.

Thus, w + t is divisible by B.
Although the result of the s-fold division by B modulo m is equivalent to

wR−1 modulo m, it is not necessarily an element of Z/mZ. In the course of the
above process at most

∑s−1
i=0 (B − 1)mBi = m(R − 1) is added to the original

w, after which R is divided out. Therefore, the result is bounded by

w + m(R− 1)
R

≤ (m− 1)2 + m(R− 1)
R

< 2m.

It follows that the result can be normalized to Z/mZ using at most a single
subtraction by m.

The division of w by R modulo m requires code that is very similar to
the code for ordinary multiplication of the integers ũ and ṽ. Also, the time
required for the division of w by R modulo m is approximately the same as the
time required for the computation of w itself (i.e., the multiplication). Thus,
the total runtime of Montgomery multiplication modulo m is approximately
equal to the time required for two ordinary multiplications of integers of size
comparable to m.

The multiplication and division by R modulo m can be merged in such a
way that no intermediate result is larger than Bs+1. This makes Montgomery
multiplication ideally suited for fast and relatively simple hardware implemen-
tations.

3.2.4 Montgomery squaring. The Montgomery square of ũ is the Mont-
gomery product of ũ and ũ. The square w = ũ2 (where ũ is regarded as an
element of Z) can be computed in slightly more than half the time of an ordi-
nary product of two integers of about the same size. However, the reduction of
the resulting w by R modulo m cannot take advantage of the fact that w is a
square. It takes the same time as in the general case. As a result it is reasonable
to assume that the time required for a Montgomery squaring is 80% of the time
required for a Montgomery product, with the same modulus [27].

3.2.5 Conversion to Montgomery representation. Given u ∈ Z/mZ, its
Montgomery representation ũ can be computed as the Montgomery product of
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u and R2 mod m. This follows from the fact that the Montgomery product is
the ordinary integer product divided by the Montgomery radix R modulo m:

(uR2 mod m)R−1 mod m = uR mod m = ũ.

Similarly, given ũ, the corresponding u can be computed as the Montgomery
product of ũ and 1 (one):

ũR−1 mod m = uRR−1 mod m = u.

It follows that conversion to and from the Montgomery representation each
require a Montgomery multiplication. It is assumed that the square R2 mod m
of the Montgomery radix is computed once and for all per modulus m. In
typical applications of Montgomery arithmetic conversions are carried out only
before and after a lengthy computation (Section 3.4). The overhead caused by
the conversions is therefore minimal. In some applications conversions can be
avoided altogether, see 3.5.3.

3.2.6 Subtraction-less Montgomery multiplication. If R is chosen such
that 4m < R (as opposed to m < R), then the subtraction that may be needed
at the end of each Montgomery multiplication can be mostly avoided. If Mont-
gomery multiplication with modulus m as in 3.2.3 is applied to two non-negative
integers < 2m (as opposed to < m), then w as in 3.2.3 is ≤ (2m − 1)2. The
result of the division of w by R modulo m is therefore bounded by

w + m(R− 1)
R

≤ (2m− 1)2 + m(R− 1)
R

< 2m

because 4m < R. Thus, if 4m < R and the Montgomery product with modulus
m is computed of two Montgomery representations non-uniquely represented
as elements of Z/2mZ, then the outcome is again an element of Z/2mZ if
the subtraction is omitted. This implies that, in lengthy operations involving
Montgomery products, the subtractions are not needed if all operations are
carried out in Z/2mZ instead of Z/mZ. In this case, all intermediate results
are non-uniquely represented as elements of Z/2mZ instead of Z/mZ. At the
end of the computation each relevant result can then be normalized to Z/mZ
at the cost of a single subtraction.

3.2.7 Computing the auxiliary inverse for Montgomery arithmetic.
The computation of m−1

0 mod B may be carried out once and for all per modu-
lus m, so it does not have to be done very efficiently. As shown in the C-program
fragment in Figure 1, this computation does not require the more involved meth-
ods from Section 3.3.

3.2.8 Montgomery inversion. Given the Montgomery representation ũ of u
with respect to modulus m, the Montgomery representation of u−1 (modulo m,
obviously) is computed by inverting ũ modulo m (Section 3.3) and by Mont-
gomery multiplying the result by R3 mod m (a value that may be computed
once and for all per modulus m).
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Figure 1: Computation of m−1
0 mod B, for B = 2k and k the bit-length of an

unsigned long.

unsigned long m0, m0shift, mask, product, result;
<m0 = ‘the least-significant block of the Montgomery modulus m’>
if (!(m0&1)) exit(0);
for (m0shift=(m0<<1), mask = 2, product = m0, result = 1; mask;

m0shift <<= 1, mask <<= 1)
if (product & mask) {
/* invariant: product == m0 * result */
product += m0shift;
result += mask;

}

3.3 Euclidean algorithms

The greatest common divisor gcd(m,n) of two non-negative integers m and n
(not both zero) is defined as the largest positive integer that divides both m
and n. If m > 0 and n = 0 then gcd(m,n) = m. If m,n > 0, then gcd(m,n) can
be computed by finding the prime factorization of m and n and by determining
the product of all common factors. A method that is in general much faster is
the following algorithm due to Euclid, from about 300 BC.

3.3.1 Euclidean algorithm. The Euclidean algorithm is based on the obser-
vation that d divides m and n if and only if d divides m−kn and n for arbitrary
k ∈ Z. It follows that if n > 0 then

gcd(m,n) = gcd(n, m mod n).

Subsequently, if m mod n = 0, then gcd(m,n) = gcd(n, 0) = n. However, if
m mod n 6= 0, then

gcd(m,n) = gcd(n, m mod n) = gcd(m mod n, n mod (m mod n)).

Thus, gcd(m,n) can be computed by replacing (m,n) by (n, m mod n) until
n = 0, at which point m is the greatest common divisor of the original m and
n.

The integer n strictly decreases per iteration. This guarantees termination.
The most convenient way to prove fast termination is to use least absolute
(as opposed to least non-negative) residues, and to use absolute values. Then
[log2(n)] strictly decreases per iteration, so that O(log(n)) iterations suffice.
If one incorporates the effect of the decreasing size of the operands, then the
overall runtime can be seen to be O(log(m) log(n)).

3.3.2 Extended Euclidean algorithm. If the quotients [m/n] are explicitly
computed in the Euclidean algorithm, then it can be extended so that it not
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only computes d = gcd(m,n), but an integer e such that ne = d mod m as well.
This is particularly useful when m and n are coprime. In that case d = 1 and
e is the multiplicative inverse of n modulo m. The ability to quickly compute
multiplicative inverses is important in many public key cryptosystems (Section 2
and 3.3.7).

If ne = d mod m, then (ne − d)/m is an integer, say f , and ne − fm =
gcd(m,n). In the literature this is the identity that is typically solved by the
extended Euclidean algorithm.

To solve ne = d mod m, proceed as follows. Let s = m and t = n, then the
following two initial equivalences modulo m hold trivially:

n · 0 ≡ s mod m,

n · 1 ≡ t mod m.

This is the initial instance of the following pair of equivalences modulo m:

n · u ≡ s mod m,

n · v ≡ t mod m.

Given such a pair of equivalences, a new pair with ‘smaller’ right hand sides can
be found by applying the ordinary Euclidean algorithm to s and t. If t 6= 0 and
s = qt + r with 0 ≤ r < t, then n · (u− vq) ≡ r mod m, so that the new pair is
given by

n · v ≡ t mod m,

n · (u− vq) ≡ r mod m.

Thus, per iteration the 4-tuple (s, t, u, v) is replaced by (t, s mod t, v, u−v[s/t]).
This terminates with t = 0 and s equal to d = gcd(m,n), at which point u equals
the desired e with ne ≡ d mod m.

3.3.3 Binary Euclidean algorithm. The efficiency of the Euclidean algo-
rithms from 3.3.1 and 3.3.2 depends on the efficiency of the division operations.
On many platforms divisions on small operands are relatively slow compared to
additions, shifts (i.e., division or multiplication by a power of 2), and multiplica-
tions on small operands. The binary variants, here and in 3.3.4, avoid divisions.
They are often faster when the operands are small. For large operands the dif-
ference in efficiency between the binary and ordinary versions is much smaller
– the ordinary version may even turn out to be faster – because the quotients
are on average often quite small. This results in divisions that are often, and
for larger block-lengths, fast compared to shifts over several blocks.

The binary variant of the Euclidean algorithm works as follows. Assume
that m > n are both positive and odd: common factors 2 are removed and
later included in the gcd, any remaining factors 2 can be removed. Because
m and n are odd, m − n > 0 is even and the odd part w > 0 of m − n is at
most equal to (m− n)/2. Furthermore, gcd(m,n) = gcd(n, w), the pair n, w is
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strictly ‘smaller’ than the pair m,n, and n and w are again both odd. As soon
as n = w, then n is the desired gcd. Otherwise replace (m,n) by (n, w) if n > w
and by (w, n) if w > n.

3.3.4 Binary extended Euclidean algorithm. This combines the ideas
from 3.3.2 and 3.3.3. Let m > n be positive and odd, as in 3.3.3, and let

n · u ≡ s mod m,

n · v ≡ t mod m

be a pair of equivalences modulo m as in 3.3.2. Initially u = 0, v = 1, s = m,
and t = n. Let s− t = 2kw for some odd w and k > 0, then

n · ((u− v)/2k mod m) ≡ w mod m.

Because m is odd, (u− v)/2k mod m can be computed quickly by applying the
following k times:

x/2 mod m =
{

x/2 if x is even
(x + m)/2 otherwise.

The resulting iteration is particularly fast for m,n < B (i.e., for m and n
that can, in C, be represented by a single unsigned long each). For larger m
and n it may be faster or slower than the method from 3.3.2, depending on the
characteristics of the computer one is using. For large m and n, however, the
method from 3.3.5 below is often much faster than either the binary or ordinary
method.

3.3.5 Lehmer’s method. Let again

n · u ≡ s mod m,

n · v ≡ t mod m

be a pair of equivalences modulo m, with initial values u = 0, v = 1, s = m,
and t = n. The sequence of operations carried out by the extended Euclidean
algorithm described in 3.3.2 depends on the quotients [s/t]. Each operation
requires an update of s, t, u and v that is relatively costly (since it involves
large integers). D.H. Lehmer observed that the process can be made faster
by postponing the costly updates. This is done by bounding the sequence of
quotients in a cheap way both from below and from above. Only if the two
bounds are different the expensive update steps are performed.

Assume that s and t have the same block-length. Let s̄ and t̄ be the most
significant blocks of s and t, respectively (Section 3.1). Application of extended
Euclidean algorithm 3.3.2 to s̄ and t̄ + 1 leads to a sequence of quotients, and
application to s̄ + 1 and t̄ leads to another sequence of quotients. From

s̄

t̄ + 1
<

s

t
<

s̄ + 1
t̄
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it follows that as long as the two resulting quotient sequences are the same,
the same quotients are obtained if the extended Euclidean algorithm would be
applied to s and t. After k iterations the initial pair (s̄, t̄ + 1) is transformed
into

(aks̄ + bk(t̄ + 1), cks̄ + dk(t̄ + 1)),

for ak, bk, ck, dk ∈ Z that depend on the sequence of quotients. If the first k
quotients are the same, then the initial pair (s̄ + 1, t̄) is transformed into

(ak(s̄ + 1) + bk t̄, ck(s̄ + 1) + dk t̄),

the pair (s, t) would be transformed into

(aks + bkt, cks + dkt),

and therefore (u, v) into

(aku + bkv, cku + dkv).

Thus, in Lehmer’s method the extended Euclidean algorithm is simultaneously
applied to two small initial pairs (without keeping track of the corresponding
u’s and v’s) that depend, as described above, on the ‘true’ large pair (s, t), while
keeping track of the small linear transformation (i.e., the ak, bk, ck, and dk) on
one of the small pairs. As soon as the quotients become different the last linear
transformation for which the quotients were the same is applied to (s, t) and the
corresponding (u, v). If necessary, the process is repeated (by first determining
two new small initial pairs depending on the updated smaller pair (s, t)). The
only ‘expensive’ steps are the occasional updates of the ‘true’ (s, t) and (u, v).
All other steps involve only small numbers. The number of small steps before a
large update is proportional to the number of bits in the radix B (Section 3.1).

For large m and n Lehmer’s method is substantially faster than either the or-
dinary or binary versions of the extended Euclidean algorithm. A disadvantage
is that it requires a much larger amount of code.

3.3.6 Chinese remaindering. Chinese remaindering is not a Euclidean al-
gorithm, but an application of the ability to compute modular inverses that
was not explicitly described in Section 2. Let p and q be two positive coprime
integers, and let r(p) ∈ Z/pZ and r(q) ∈ Z/qZ. According to the Chinese re-
mainder theorem there exists a unique r ∈ Z/pqZ such that r mod p = r(p) and
r mod q = r(q). This r can be computed as follows:

r = r(p) + p
(
(r(q)− r(p))(p−1 mod q) mod q

)
,

where r(p) and r(q) are regarded as elements of Z and the result is regarded as
an element of Z/pqZ. The integer p−1 mod q can be computed using one of the
extended Euclidean algorithms described above, or using the method from 3.3.8
if q is prime.
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If gcd(p, q) = d > 1, a very similar approach can be used, under the necessary
and sufficient condition that r(p) ≡ r(q) mod d, to find r such that r mod p =
r(p) and r mod q = r(q). Apply the above to p′ = p/d, r(p′) = 0, q′ = q/d,
and r(q′) = (r(q) − r(p))/d to find r′ that is 0 modulo p′ and (r(q) − r(p))/d
modulo q′. Then r = r(p)+dr′, since dr′ ≡ 0 mod p and dr′ ≡ r(q)−r(p) mod q.
The resulting r is unique modulo pq/d.

3.3.7 RSA with Chinese remaindering. As an application of Chinese re-
maindering, consider the private RSA operation, described in Section 2.2:

given integers n, d and an element w ∈ Z/nZ, compute r = wd ∈ Z/nZ.

This computation takes about c log2(d) log2(n)2 seconds (Section 3.4), for some
constant c depending on the computer one is using. Since d is usually of the
same order of magnitude as n, this becomes c log2(n)3 seconds. With Chinese
remaindering it can be done about 4 times faster, assuming n = pq for primes
p, q of about the same order of magnitude:

1. Compute d(p) = d mod (p − 1) and d(q) = d mod (q − 1). These values
depend on n and d only, so they can be computed once and for all.

2. Compute w(p) = w mod p ∈ Z/pZ and w(q) = w mod q ∈ Z/qZ.

3. Compute r(p) = w(p)d(p) ∈ Z/pZ and r(q) = w(q)d(q) ∈ Z/qZ.

4. Use Chinese remaindering to compute r ∈ Z/pqZ = Z/nZ such that
r mod p = r(p) and r mod q = r(q). This r equals wd ∈ Z/nZ.

The exponentiations in Step 3 take about

c log2(d(p)) log2(p)2 + c log2(d(q)) log2(q)
2 ≈ 2c log2(p)3

seconds. The other steps are negligible. Since log2(p) ≈ 1
2 log2(n) the total

runtime becomes c
4 log2(n)3 seconds.

If n is the product of t primes, then a total speed-up of a factor t2 is obtained.
For RSA it may therefore be attractive to use moduli that consist of more than
two prime factors. This is known as RSA multiprime. Care should be taken to
make sure that the resulting moduli are not susceptible to an attack using the
elliptic curve factoring method (4.2.3).

3.3.8 Exponentiation based inversion. If m is prime, then multiplicative
inverses modulo m can be computed using exponentiations modulo m (Sec-
tion 3.4), based on Fermat’s little theorem. If x ∈ Z/mZ then xm ≡ x mod m
due to m’s primality, so that, if x 6= 0,

xm−2 ≡ x−1 mod m.

This way of computing inverses takes O(log2(m)3) operations as opposed to just
O(log2(m)2) for the methods based on the Euclidean algorithm. Nevertheless,
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it may be an option in restricted environments where exponentiation must be
available and the space for other code is limited. When combined with Chinese
remaindering it can also be used to compute inverses modulo composite m with
known factorization.

3.4 Exponentiation

As shown in Section 2 exponentiation is of central importance for many pub-
lic key cryptosystems. In this subsection the most important exponentiation
methods are sketched. See [46] for a complete treatment.

Let g be an element of some group G that is written multiplicatively (with
the notation as in Section 2.1). Suppose that ge ∈ G must be computed, for
some positive integer e. Let e =

∑L−1
i=0 ei2i with ei ∈ {0, 1}, L ≥ 1, and

eL−1 = 1.

3.4.1 Square and multiply exponentiation. The most common and sim-
plest exponentiation method is the square and multiply method. It comes in
two variants depending on the order in which the bits ei of e are processed:
left-to-right if the ei are processed for i = L− 1, L− 2, . . . in succession, right-
to-left if they are processed the other way around. The left-to-right variant is
the simplest of the two. It works as follows.

1. Initialize r as g ∈ G.

2. For i = L− 2, L− 3, . . . , 0 in succession, do the following:

(a) Replace r by r × r.

(b) If ei = 1, then replace r by g × r ∈ G.

3. The resulting r equals ge ∈ G.

In some applications it may be hard to access the ei from i = L− 2 downwards.
In that case, it may be more convenient to use the right-to-left variant:

1. Initialize s as g ∈ G and r as the unit element in G.

2. For i = 0, 1, . . . , L− 1 in succession, do the following:

(a) If ei = 1, then replace r by s× r ∈ G.

(b) If i < L− 1, then replace s by s× s.

3. The resulting r equals ge ∈ G.

If G is the group of the integers (under addition, i.e., ge actually equals the
ordinary integer product eg), then the right-to-left method corresponds to the
ordinary schoolbook multiplication method applied to the binary representa-
tions of g and e.

For randomly selected L-bit exponents either method performs L− 1 squar-
ings in G and on average about L

2 multiplications in G. If G = Z/mZ, the
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group law denoted by × is multiplication modulo m, and Montgomery arith-
metic is used, then one may expect that the average runtime of square and
multiply exponentiation is about the same as the time required for 1.3 log2(e)
multiplications in Z/mZ (see 3.2.4). In many practical circumstances this can
be improved using so-called windows exponentiation methods.

3.4.2 Window exponentiation. The window exponentiation method is sim-
ilar to left-to-right exponentiation, except that the bits of e are processed w bits
at a time, for some small window size w ∈ Z>0.

1. Let

e =
L̄−1∑
i=0

ēi2wi, for ēi ∈ {0, 1, . . . , 2w − 1} and ēL̄−1 6= 0,

if ēi 6= 0, let ēi = d̄i2`i with d̄i < 2w odd and 0 ≤ `i < w, and if ēi = 0 let
`i = w.

2. For all odd positive d < 2w compute g(d) = gd.

3. Initialize r as g(d̄L̄−1).

4. For j = 1, 2, . . . , `L̄−1 in succession replace r by r × r.

5. For i = L̄− 2, L̄− 3, . . . , 0 in succession, do the following:

(a) If ēi 6= 0, then

• For j = 1, 2, . . . , w − `i in succession replace r by r × r.
• Replace r by g(d̄i)× r.

(b) For j = 1, 2, . . . , `i in succession replace r by r × r.

6. The resulting r equals ge ∈ G.

For L-bit exponents, the number of squarings in G is L − 1, as in square and
multiply exponentiation. The number of multiplications in G is 2w−1 − 1 for
Step 2 and at most L

w for Step 5a, for a total of about 2w−1 + L
w . It follows

that the optimal window size w is proportional to log log(e). For w = 1 window
exponentiation is identical to left-to-right square and multiply exponentiation.

3.4.3 Sliding window exponentiation. In window exponentiation 3.4.2 the
exponent e is split into consecutive ‘windows’ of w consecutive bits, irrespective
of the bit pattern encountered. A slight improvement can be obtained by break-
ing e up into odd windows of at most w consecutive bits, where the windows
are not necessarily consecutive and may be separated by zero bits. There are
various ways to achieve this. A convenient way is a greedy approach which can
easily be seen to be optimal. It determines the ‘next’ odd window of at most w
consecutive bits in the following way:
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• Scan the exponent (from left to right) for the first unprocessed one bit
(replacing the prospective result r by r× r for each zero bit encountered).

• As soon as a one bit is found, determine the largest odd window of at
most w consecutive bits that starts with the one bit just found. Let d be
the odd integer thus determined, of length k ≤ w.

• Replace r by g(d)× r2k

.

This method and any other variant that determines the w-bit windows in a
flexible way is referred to as sliding window exponentiation. See [24] for a
complete analysis of this and related methods.

3.4.4 Multi-exponentiation. Multi-exponentiation refers to the computa-
tion of ge × hd for some other element h ∈ G and d =

∑L−1
i=0 di2i ∈ Z>0 with

di ∈ {0, 1} (Section 2.4). Obviously, this can be done at the cost of two separate
exponentiations, followed by a multiplication in G. It is also possible to com-
bine the two exponentiations. This results in the following multi-exponentiation
method.

1. Compute f = g × h ∈ G.

2. Initialize r as the unit element in G.

3. For i = L− 1, L− 2, . . . , 0 in succession, do the following:

(a) Replace r by r × r.

(b) If ei = 1, then

• If di = 1 replace r by f × r ∈ G.
• Else if di = 0 replace r by g × r ∈ G.

(c) Else if ei = 0, then

• If di = 1 replace r by h× r ∈ G.

4. The resulting r equals ge × hd ∈ G.

There are L squarings in G and, on average for random L-bit e and d, about 3L
4

multiplications in G. If G = Z/mZ and Montgomery arithmetic is used, then
one may expect that the average runtime of the above multi-exponentiation is
about the same as the time required for 1.55 log2(e) multiplications in Z/mZ
(see 3.2.4). Thus, multi-exponentiation is only about 20% slower than single
square and multiply exponentiation. Improvements can be obtained by using
(sliding) windows. All resulting methods can be generalized to compute the
product of more than two powers.
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3.4.5 Miscellaneous exponentiation tricks. Because exponentiation meth-
ods are of such great importance for public key cryptography, the cryptographic
literature contains a wealth of tricks and special-purpose methods. Some of the
most important are sketched here.
Exponentiation with precomputation. Suppose that ge must be computed
for the same g and many different e’s (of bit-length at most L). In this case it
may be worthwhile to precompute and store the L values g2i

for i = 0, 1, . . . , L−
1. Each application of the right-to-left square and multiply exponentiation then
requires only (

∑L−1
i=0 ei)−1 ≈ (log2(e))/2 multiplications in G. However, storing

L precomputed values may be prohibitive. A single precomputed value has,
relatively speaking, a much higher pay-off. Given h = g2L/2

and writing e = ē+
2L/2¯̄e, the value ge = gē×h¯̄e can be computed using multi-exponentiation 3.4.4.
This takes L

2 squarings and on average about 3L
8 multiplications in G. For

G = Z/mZ and using Montgomery arithmetic this becomes about 0.78 log2(e)
multiplications in G. Because h can be computed at the cost of L

2 squarings in
G, this method can also be used to reduce the runtime for ordinary square and
multiply exponentiation in general (i.e., not for fixed g): it is reduced from L
squarings and about L

2 multiplications to L
2 + L

2 = L squarings and about 3L
8

multiplications in G. See [19] for more involved and efficient precomputation
methods.
Exponentiation with signed exponent representation. Let e =

∑L−1
i=0 ei2i

be the binary representation of an L-bit exponent. Any block of k+1 consecutive
one bits with maximal k > 1, i.e., ei = ei+1 = . . . = ei+k−1 = 1 and ei+k = 0,
can be transformed into ei = −1, ei+1 = . . . = ei+k−1 = 0, and ei+k = 1,
without affecting the value of e. Applying this transformation from right to
left results in a signed-bit representation of e of length ≤ L + 1 where no two
consecutive signed-bits are non-zero (and where a signed-bit is in {−1, 0, 1}).
Such a representation is unique, for random e the number of non-zero signed-
bits (the weight) is log2(e)/3 on average, and it is of minimal weight among the
signed-bit representations of e.

It follows that if g−1 is available, ge can be computed using a variation of
square and multiply exponentiation at the cost of L squarings and on average
log2(e)/3 multiplications in G. This may be worthwhile for groups G where
the computation of g−1 given g ∈ G can be performed at virtually no cost. A
common example is the group of points of an elliptic curve over a finite field.
For a combination with sliding windows, see [24].
Exponentiation with Frobenius. Let Fp` be a finite field of characteristic p.
Often elements of Fp` can be represented in such a way that the Frobenius map
that maps x ∈ Fp` to xp ∈ Fp` is essentially for free (3.6.3). If that is the
case, G = F∗p` or a subgroup thereof, and e > p, the computation of ge can

take advantage of the free Frobenius map. Let e =
∑L′−1

i=0 fip
i be the radix p

representation of e, then gfi for 0 ≤ i < L′ can be computed at the cost of log2(p)
squarings in G and, on average, about L′

2 log2(p) ≈ log2(e)/2 multiplications in
G (using L′-fold right-to-left square and multiply exponentiation). The value ge

then follows with an additional L′−1 multiplications in G and L′−1 applications
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of the Frobenius map.
If G is the group of points over Fp` of an elliptic curve defined over Fp, then

the Frobenius endomorphism on G may be computable for free. As shown in [58]
this may be used to speed-up exponentiation (or rather scalar multiplication,
as it should be referred to (Remark 3.7.2)).

3.5 Prime generation

3.5.1 The prime number theorem. The ability to quickly generate primes
of almost any size is of great importance in cryptography. That this is possible
is in the first place due to the prime number theorem:

Let π(x) be the prime counting function, the number of primes ≤ x.
The function π(x) behaves as x

log(x) for x →∞.

The prime number theorem says that a randomly selected L-bit number has
reasonably large probability, namely more than 1

L , to be prime, for any L of
cryptographic interest. It then remains to find out if the candidate is prime or
not. That can be done quickly, in all practical circumstances, using a variation
of Fermat’s little theorem, as shown in 3.5.2 below. Thus, searching for primes
can be done quickly.

The prime number theorem also holds in arithmetic progressions:

Let π(x, m, a) for integers m,a with gcd(m,a) = 1 be the number
of primes ≤ x that are congruent to a modulo m. The function
π(m,x, a) behaves as x

φ(m) log(x) for x →∞, where φ(m) is the Euler
phi function, the number of positive integers ≤ m which are rela-
tively prime to m.

It follows that primes in certain residue classes, such as (3 mod 4) or 1 modulo
some other prime, can be found just as quickly by limiting the search to the
desired residue class. It also follows that the search can be made more efficient
by restricting it to numbers free of small divisors in certain fixed residue classes.

3.5.2 Probabilistic compositeness testing. Fermat’s little theorem says
that

ap = a for a ∈ Z/pZ and prime p.

It follows that if n and a are two integers for which gcd(n, a) = 1 and

an−1 6≡ 1 mod n,

then n cannot be a prime number. Fermat’s little theorem can thus be used
to prove the compositeness of a composite n without revealing a non-trivial
factor of n. Based on the methods from Section 3.4 this can be done efficiently,
if a suitable a can be found efficiently. The latter is in general, however, not
the case: there are infinitely many composite numbers n, so-called Carmichael
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numbers, for which an−1 ≡ 1 mod n for all a coprime to n. This was shown
in [5].

Suitable a’s always exist, and can easily be found, for Selfridge’s variation
of Fermat’s little theorem (commonly referred to as the Miller-Rabin test):

If p is an odd prime, p− 1 = 2t · u for integers t, u with u odd, and
a is an integer not divisible by p, then

either au ≡ 1 mod p or a2iu ≡ −1 mod p for some i with 0 ≤ i < t.

Let n be an odd composite number and n = 2t · u for integers t, u with u odd.
An integer a ∈ {2, 3, . . . , n− 1} is called a witness to the compositeness of n if

au 6≡ 1 mod n and a2iu 6≡ −1 mod n for i with 0 ≤ i < t.

For odd composite n and a randomly selected a ∈ {2, 3, . . . , n − 1} there is a
probability of at least 75% that a is witness to the compositeness of n, as shown
in [101]. It follows that in practice the compositeness of any composite n can
efficiently be proved:

Probabilistic compositeness test
Let n be an odd positive number, and let k be a positive integer. Randomly
and independently select at most k values a ∈ {2, 3, . . . , n− 1} until an a
is found that is a witness to n’s compositeness, or until all a’s have been
tried and no witness has been found. In the former case a proof of n’s
compositeness has been found and n is declared to be composite. In the
latter case declare ‘failure’.

If n is an odd composite, then the chance that a randomly selected a is not a
witness is less than 1

4 . Therefore, the chance that an odd composite n escapes
to be declared composite by the probabilistic compositeness test with inputs n
and k is less than ( 1

4 )k.

3.5.3 Probabilistic compositeness test using Montgomery arithmetic.
If n is subjected to a probabilistic compositeness test, the computations of
au and a2iu can be carried out in Montgomery arithmetic, even though a is
generated as an ordinary integer in {2, 3, . . . , n − 1} and not converted to its
Montgomery representation. All one has to do is change the ‘6≡ 1’ and ‘6≡ −1’
tests to ‘6≡ R’ and ‘6≡ −R’, respectively, where R is the Montgomery radix
corresponding to n, as in 3.2.1.

3.5.4 Generating industrial primes. Combined with the prime number
theorem (3.5.1), the probabilistic compositeness test from 3.5.2 makes it possible
to generate L-bit primes quickly. Randomly select an odd L-bit number, and
subject it to the probabilistic compositeness test with some appropriately chosen
value k. If the number is declared to be composite, one tries again by selecting

26



another L-bit number at random. Otherwise, if the probabilistic compositeness
test declares ‘failure’, the selected number is called a probable prime, because if
it were composite that would have been proved with overwhelming probability
(namely, larger than 1− ( 1

4 )k).
A probable prime – or, following Carl Pomerance, an industrial prime – is a

number for which many attempts to prove its compositeness failed, not a num-
ber that was proved to be prime. In all practical circumstances, however, it
is a prime number and if k is chosen properly it can be used without reserva-
tions in cryptographic applications. If odd L-bit random numbers are selected
uniformly and independently, then the resulting (probable) primes will be uni-
formly distributed over the L-bit primes. See [80] for a further discussion on
the probability that a probable prime is composite, and the choice of k.

Based on the prime number theorem, one may expect that on average ap-
proximately L

2 log(2) composite n’s are selected before a (probable) prime is
found. It may also be expected that, for the composites, the first attempted
witness is indeed a witness (because for random odd composite n the probabil-
ity that the first choice is a witness is much higher than 75%). It follows that
the total number of exponentiations modulo n (required for the computation of
au mod n) is about L

2 log(2) + k: one for each ‘wrong’ guess, and k for the final
‘correct’ choice. In the remainder of this subsection it is shown how the L

2 log(2)
term can be reduced, at the cost of less costly computations or by giving up the
uniformity of the distribution of the resulting primes.

Similar methods and estimates apply to the generation of primes with specific
properties, such as primes that are 3 mod 4 or 1 modulo some other (large)
prime.

3.5.5 Remark on provable primality. Probable primes can be proved to
be prime – if they are indeed prime – using a general purpose primality test.
Compared to the probabilistic compositeness test from 3.5.2, these tests are
rather involved. They are hardly relevant for cryptology, and are therefore
beyond the scope of these notes. See [9, 67] or [3, 15, 25, 26, 44, 86] for more
details. As shown in [4] primes can be recognized in polynomial time.

It is also possible to generate primes uniformly in such a way that very
simple primality proofs (based on Pocklington’s theorem and generalizations
thereof [9, 15, 67]) can be applied to them. See [77] for details.

3.5.6 Prime generation with trial division. Most random odd numbers
have a small factor. Therefore, most ‘wrong’ guesses in 3.5.4 can be cast out
much faster by finding their smallest prime factor than by attempting to find
a witness. This can, for instance, conveniently be done by subjecting each
candidate to trial division with the primes up to some bound B (rejecting a
candidate as soon as a divisor is found). The ones for which no small factor is
found are subjected to the probabilistic compositeness test. The choice for B
depends on the desired length L and the relatively speeds of trial division and
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modular exponentiation. It is best determined experimentally. This approach
leads to a substantial speed-up.

3.5.7 Prime generation with a wheel. Let P be the product of a small
number of (small) primes. Trial division with the primes dividing P can be
avoided by selecting L-bit random numbers of the form aP +b for appropriately
sized random integers a and b with b coprime to P . Selection of b can be
done by picking random b with 0 < b < P until gcd(b, P ) = 1. For small
P the computation of gcd(b, P ) is very fast, so that this may on average turn
out to be faster than trial division with the primes in P . Alternatively, if
P is small enough, b can be selected from the precomputed and stored set
CP = {c : 0 < c < P, gcd(c, P ) = 1}. Given a candidate value aP + b
that is coprime to P , it can either right away be subjected to the probabilistic
compositeness test, or it may be faster to perform trial division with larger
primes first.

If for each choice of a a value b with 0 < b < P is randomly selected (from
CP or not), the resulting primes are again uniformly distributed. If for each
choice of a all values in CP are tried in order, then this method is referred to
as a wheel. Primes resulting from a wheel-based search are no longer uniformly
distributed. For RSA based cryptography this may be considered to be a (neg-
ligibly small) security risk, since the prime factors are the secrets and should
in principle be indistinguishable from random primes. For discrete logarithm
based cryptography usage of such primes does in general not pose an additional
security risk.

3.5.8 Prime generation with sieving. An even faster way to perform the
trial divisions is by using a sieve. It also results in even greater non-uniformity,
but the security impact (even for RSA) is still negligible. Let (s(i))[cL]−1

i=0 be an
array of [cL] bits, for a small constant c. Initially si = 0 for all i. Let n be a
random L-bit integer and let B′ be the sieving bound. For all primes p ≤ B′,
set the bit s(j) to one if n + j is divisible by p. This is done by replacing
s(kp − (n mod p)) by one for all integers k such that 0 < kp − (n mod p) <
[cL]. For each p this requires the computation of n mod p (once) and about
cL
p additions and bit assignments. This process is referred to as sieving and

the array s is called a sieve. After sieving with all p ≤ B′, the locations j for
which s(j) has not been touched, i.e., s(j) = 0, correspond to integers n + j
that are not divisible by the primes ≤ B′. Those integers n + j are subjected
to the probabilistic compositeness test, until a probable prime is found. Based
on 3.5.1 it may be expected that this will happen if c is large enough (say 2 or
3).

In general sieving works much faster than individual trial division such as
in 3.5.6. As a result the optimal sieving bound B′ is usually substantially larger
than the optimal trial division bound B. Given L, the best B′ is best determined
experimentally.
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3.6 Finite field arithmetic

Fast arithmetic in finite fields plays an important role in discrete logarithm based
cryptography, both using a traditional multiplicative group of a finite field, and
using the group of an elliptic curve over a finite field. For prime fields refer to
Sections 3.1, 3.2, and 3.3 for addition, multiplication, and inversion in Z/mZ
with m prime (so that Z/mZ is a finite field). In principle prime fields suffice
for most cryptographic applications. Extension fields, however, have certain
practical advantages over prime fields because they may allow faster arithmetic
without compromising security. This subsection briefly reviews some of the most
important notions and methods for arithmetic in finite extensions of prime fields.
Let Fp` denote a finite field of p` elements, where p is prime and ` > 1. So, Fp

is the prime field underlying Fp` .

3.6.1 Basic representation. Let f(X) ∈ Fp[X] be an irreducible polynomial
of degree ` and let α be such that f(α) = 0. Then {α0, α1, α2, . . . , α`−1} forms
a basis for Fp` over Fp, i.e., the set

S = {
`−1∑
i=0

aiα
i : ai ∈ Fp}

is isomorphic to Fp` . This follows from the fact that #S = p` (otherwise f would
not be irreducible) and because an addition and a multiplication can be defined
on S that make it into a finite field. For a =

∑`−1
i=0 aiα

i, b =
∑`−1

i=0 biα
i ∈ S the

sum a + b is defined as

a + b =
`−1∑
i=0

(ai + bi)αi ∈ S

and −a =
∑`−1

i=0 −aiα
i ∈ S. The product ab is defined as the remainder modulo

f(α) of the polynomial
(∑`−1

i=0 aiα
i
)
×
(∑`−1

i=0 biα
i
)

of degree 2`− 2 in α. Thus
ab ∈ S. Because f is irreducible, gcd(a, f) = 1 for any a ∈ S \ {0}. The
inverse a−1 ∈ S can therefore be found by generalizing the extended Euclidean
algorithm ( 3.3.2) from Z to Fp[X]. Note that S = (Fp[X])/(f(X)).

To make the reduction modulo f(α) easier to compute it is customary to
assume that f is monic, i.e., that its leading coefficient equals one. Also, it
is advantageous for the reduction to select f in such a way that it has many
zero coefficients, for the same reason that moduli of a special form are advanta-
geous (3.1.1). A ‘Montgomery-like’ approach to avoid the reduction modulo f ,
though easy to realize, is not needed because it would be slower than reduction
modulo a well chosen f .

If g(X) ∈ Fp[X] is another irreducible polynomial of degree ` with, say,
g(β) = 0, then elements of Fp` can be represented as

∑`−1
i=0 biβ

i with bi ∈ Fp.
An effective isomorphism between the two representations of Fp` can be found
by finding a root of g(X) in (Fp[X])/(f(X)). This can be done efficiently using
a method to factor polynomials over finite fields [56].
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To represent the elements of a finite field Fp`k the above construction can
be used with an irreducible polynomial in Fp[X] of degree `k. Alternatively
Fp`k can be constructed as a kth degree extension of Fp` using an irreducible
polynomial in Fp` [X] of degree k. It depends on the circumstances and sizes of
p, `, and k which of these two methods is preferable in practice.

3.6.2 Finding an irreducible polynomial. A random monic polynomial
of degree ` in Fp[X] is irreducible with probability about 1

` . This result is
comparable to the prime number theorem (3.5.1 and the definition of norm
in 4.2.2). Irreducibility of polynomials in Fp[X] can be tested in a variety of
ways [56]. For instance, f ∈ Fp[X] of degree ` is irreducible if and only if

gcd(f,Xpi

−X) = 1 for i = 1, 2, . . . , [`/2].

This follows from the facts that Xpi − X ∈ Fp[X] is the product of all monic
irreducible polynomials in Fp[X] of degrees dividing i, and that if f is irreducible
it has a factor of degree at most [`/2]. This irreducibility condition can be
tested efficiently using generalizations of the methods described in Section 3.3.
Irreducible polynomials can thus be found quickly. In practice, however, it is
often desirable to impose some additional restrictions on f . Some of these are
sketched in 3.6.3 below.

3.6.3 Optimal normal basis. If the elements of Fp` can be represented as∑`−1
i=0 aiα

pi

, with ai ∈ Fp and f(α) = 0 for some irreducible f(X) ∈ Fp[X] of
degree `, then {α, αp, . . . , αp`−1} is called a normal basis for Fp` over Fp. A
normal basis representation has the advantage that pth powering consists of a
single circular shift of the coefficients:(

`−1∑
i=0

aiα
pi

)p

=
`−1∑
i=0

ap
i α

pi+1
=

`−1∑
i=0

a((i−1) mod `)α
pi

,

since ap
i = ai for ai ∈ Fp and αp`

= α. As shown in 3.4.5 this may make
exponentiation in Fp` cheaper.

As an example, let ` + 1 be prime, and let p be odd and a primitive root
modulo ` + 1, i.e., p mod (` + 1) generates (Z/(` + 1)Z)∗. The polynomial

f(X) =
X`+1 − 1

X − 1
= X` + X`−1 + . . . + X + 1

is irreducible over Fp. If f(α) = 0, then f(αpi

) = 0 for i = 0, 1, . . . , ` − 1, and
αi = αi mod (`+1) because α`+1 = 1. With the fact that p is a primitive root
modulo ` + 1 it follows that {αi : 1 ≤ i ≤ `} is the same as {αpi

: 0 ≤ i < `}.
Because the latter is a normal basis, pth powering using the basis {αi : 1 ≤
i ≤ `} is just a permutation of the coefficients. Furthermore, with the basis
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{αi : 1 ≤ i ≤ `} the reduction stage of the multiplication in Fp` is easy.
It takes just ` − 2 additions and ` subtractions in Fp, since αi = αi mod (`+1)

and α0 = −α` − α`−1 − . . . − α. This is an example of an optimal normal
basis. The above construction fully characterizes optimal normal bases for odd
characteristics. For a definition of an optimal basis and characteristic 2 existence
results and constructions, see for instance [79].

3.6.4 Inversion using normal bases. As shown in [52], normal bases can
be used for the computation of inverses in F∗p` . Let p be odd and x ∈ F∗p` then

x−1 = (xr)−1xr−1

for any integer r. The choice r = p`−1
p−1 makes the computation of x−1 particu-

larly fast: first compute xr−1 (as described below), compute xr = xxr−1, note
that xr ∈ Fp because its (p− 1)th power equals 1, compute (xr)−1 ∈ Fp using
a relatively fast inversion in Fp, and finally compute x−1 = (xr)−1xr−1 using `
multiplications in Fp. Since r − 1 = p`−1 + p`−2 + . . . + p2 + p, computation of
xr−1 takes about log2(m − 1) multiplications in Fp` and (free) pjth powerings
for various j, by observing that

(xp+p2+...+pj

)(xp+p2+...+pj

)pj

= xp+p2+...+p2j

.

Refer to [52] for further details on the computation of xr−1 and a similar con-
struction for characteristic 2.

3.6.5 Finding a generator. A primitive normal basis for Fp` over Fp is a
normal basis as in 3.6.3 where α is a generator (or primitive element) of F∗p` .
In this case the irreducible polynomial f(X) with f(α) = 0 is called primitive.
Primitive normal bases always exist. In general there is, however, no fast method
to find a generator of F∗p` . If the factorization of p` − 1 is known, then the best

method is to pick random elements x ∈ F∗q until x(p`−1)/q 6= 1 for all distinct
prime factors q of p` − 1.

In cryptographic applications a generator of the full multiplicative group is
hardly ever needed. Instead, a generator of an order q subgroup of F∗p` suffices,
for some prime q dividing p` − 1. Such a generator can be found by picking
random elements x ∈ F∗q until x(p`−1)/q 6= 1, in which case x(p`−1)/q is the
desired generator. The prime q must be chosen as a factor of the `th cyclotomic
polynomial. For q > ` this guarantees that q does not divide pd − 1 for any
d ≤ ` (and dividing `) so that 〈g〉 cannot be embedded in a proper subfield of
Fp` (see [64]). The `th cyclotomic polynomial φ`(X) is defined as follows:

X` − 1 =
∏

1≤d≤`,d dividing `

φd(X).
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3.7 Elliptic curve arithmetic

Elliptic curves were introduced in cryptanalysis with the invention of the elliptic
curve factoring method (4.2.3) in 1984 [74]. This triggered applications of elliptic
curves in cryptography and primality testing.

Early cryptographic applications concentrated on elliptic curves over fields
of characteristic 2. This restriction was inspired by the relatively high compu-
tational demands of elliptic curve cryptography, and the possibility to realize
competitive hardware implementations in characteristic 2. Nowadays they still
enjoy a wide popularity. However, larger characteristic elliptic curves are be-
coming increasingly common in cryptography. These notes focus on the very
basics of elliptic curves over fields of characteristic > 3. For a more general and
complete treatment refer to [10, 110].

3.7.1 Elliptic curves and elliptic curve groups. Let p > 3 be prime.
Any pair a, b ∈ Fp` such that 4a3 + 27b2 6= 0 defines an elliptic curve Ea,b over
Fp` . Let E = Ea,b be an elliptic curve over Fp` . The set of points E(Fp`) over
Fp` of E is informally defined as the pairs x, y ∈ Fp` satisfying the Weierstrass
equation

y2 = x3 + ax + b

along with the point at infinity O. More precisely, let a projective point (x : y :
z) over Fp` be an equivalence class of triples (x, y, z) ∈ (Fp`)3 with (x, y, z) 6=
(0, 0, 0). Two triples (x, y, z) and (x′, y′, z′) are equivalent if cx = x′, cy = y′,
and cz = z′ for c ∈ F∗p` . Then

E(Fp`) = {(x : y : z) : y2z = x3 + axz2 + bz3}.

The unique point with z = 0 is the point at infinity and denoted O = (0 : 1 : 0).
The other points correspond to solution x

z , y
z ∈ Fp` to the Weierstrass equation.

They may or may not be normalized to have z = 1.
The set E(Fp`) is an abelian group, traditionally written additively. The

group law is defined as follows. The point at infinity is the zero element, i.e.,
P + O = O + P = P for any P ∈ E(Fp`). Let P,Q ∈ E(Fp`) \ {O} with
normalized representations P = (x1 : y1 : 1) and Q = (x2 : y2 : 1). If x1 = x2

and y1 = −y2 then P + Q = O, i.e., the opposite −(x : y : z) is given by
(x : −y : z). Otherwise, let

λ =


y1−y2
x1−x2

if x1 6= x2

3x2
1+a

2y1
if x1 = x2

and x = λ2 − x1 − x2, then P + Q = (x : λ(x1 − x)− y1 : 1). This elliptic curve
addition allows an easy geometric interpretation. If P 6= Q, then −(P + Q) is
the third point satisfying the Weierstrass equation on the line joining P and
Q. If P = Q, then −(P + Q) is the second point satisfying the equation on
the tangent to the curve in the point P = Q. The existence of this point is
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a consequence of the condition that a, b defines an elliptic curve over Fp` , i.e.,
4a3 + 27b2 6= 0.

Two elliptic curves a, b ∈ Fp` and a′, b′ ∈ Fp` are isomorphic if a′ = u4a and
b′ = u6b for some u ∈ F∗p` . The corresponding isomorphism between Ea,b(Fp`)
and Ea′,b′(Fp`) sends (x : y : z) to (u2x : u3y : z).

Computing in the group of points of an elliptic curve over a finite field
involves computations in the underlying finite field. These computations can
be carried out as set forth in Section 3.6. For extension fields bases satisfying
special properties (such as discussed in 3.6.3) may turn out to be useful. In
particular optimal normal bases in characteristic 2 (not treated here for elliptic
curves) are advantageous, because squaring in the finite fields becomes a free
operation.

3.7.2 Remark on additive versus multiplicative notation. In Section 3.4
algorithms are described to compute ge for g in a group G, where ge stands for
g × g × . . . × g and × denotes the group law. In terms of 3.7.1, the group G
and the element g correspond to E(Fp`) and some P ∈ E(Fp`), respectively,
and × indicates the elliptic curve addition. The latter is indicated by + in 3.7.1
for the simple reason that the group law in E(Fp`) is traditionally written
additively. Given the additive notation in E(Fp`) it is inappropriate to denote
P +P +. . .+P as P e and to refer to this operation as exponentiation. The usual
notation eP is used instead. It is referred to as ‘scalar multiplication’ or ‘scalar
product’. In order to compute eP , the methods from Section 3.4 to compute
ge can be applied. Thus, ‘square and multiply exponentiation’ can be used to
compute eP . Given the additive context it may, however, be more appropriate
to call it ‘double and add scalar multiplication’.

3.7.3 Elliptic curve group representations. There are several ways to
represent the elements of E(Fp`)\{O} and to perform the elliptic curve addition.
For the group law as described in 3.7.1 the elements can be represented using
affine coordinates, i.e., as (x, y) ∈ (Fp`)2, where (x, y) indicates the point (x :
y : 1). If affine coordinates are used the group law requires an inversion in
Fp` . This may be too costly. If projective coordinates are used, i.e., elements
of E(Fp`) \ {O} are represented as (x : y : z) and not necessarily normalized,
then the inversion in Fp` can be avoided. However, this comes at the cost of
increasing the number of squarings and multiplications in Fp` per application
of the group law.

Another representation that is convenient in some applications is based on
the Montgomery model of elliptic curves. In the Montgomery model the coordi-
nates of the group elements satisfy an equation that is slightly different from the
usual Weierstrass equation. An isomorphic curve in the Weierstrass model can,
however, easily be found, and vice versa. As a consequence, group elements can
be represented using just two coordinates, as in the affine case. Furthermore,
an inversion is not required for the group law, as in the projective case. The
group law is more efficient than the group law for the projective case, assuming
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that the difference P −Q is available whenever the sum P +Q of P and Q must
be computed. This condition makes it impossible to use the ordinary square
and multiply exponentiation (Remark 3.7.2) to compute scalar products. Refer
to [14, 83] for detailed descriptions of the Montgomery model and a suitable
algorithm to compute a scalar multiplication in this case.

Refer to [27] for a comparison of various elliptic curve point representations
in cryptographic applications.

3.7.4 Elliptic curves modulo a composite. The field Fp` in 3.7.1 and 3.7.3
can be replaced by the ring Z/nZ for a composite n (coprime to 6). An elliptic
curve over Z/nZ is defined as a pair a, b ∈ Z/nZ with 4a3 + 27b2 ∈ (Z/nZ)∗.
The set of points, defined in a way similar to 3.7.1, is again an abelian group.
The group law so far has limited applications in cryptology. Instead, for crypt-
analytic purposes it is more useful to define a partial addition on E(Z/nZ),
simply by performing the group law defined in 3.7.1 in Z/nZ as opposed to
Fp` . Due to the existence of zero divisors in Z/nZ the resulting operation can
break down (which is the reason that it is called partial addition) and produce
a non-trivial divisor of n instead of the desired sum P + Q. As will be shown
in 4.2.3, this is precisely the type of ‘accident’ one is hoping for in cryptanalytic
applications.

3.7.5 Elliptic curve modulo a composite taken modulo a prime. Let
p be any prime dividing n. The elliptic curve a, b ∈ Z/nZ as in 3.7.4 and the
set of points Ea,b(Z/nZ) can be mapped to an elliptic curve ā = a mod p, b̄ =
b mod p over Fp and set of points Eā,b̄(Fp). The latter is done by reducing the
coordinates of a point P ∈ Ea,b(Z/nZ) modulo p resulting in Pp ∈ Eā,b̄(Fp).
Let P,Q ∈ E(Z/nZ). If P + Q ∈ E(Z/nZ) is successfully computed using the
partial addition, then Pp + Qp (using the group law in E(Fp)) equals (P + Q)p.
Furthermore, P = O if and only if Pp = Op.

3.7.6 Generating elliptic curves for cryptographic applications. For
cryptographic applications one wants elliptic curves for which the cardinality
#E(Fp`) of the group of points is either prime or the product of a small number
and a prime. It is known that #E(Fp`) equals p` + 1 − t for some integer
t with |t| ≤ 2

√
p` (Hasse’s theorem [110]). Furthermore, if E is uniformly

distributed over the elliptic curves over Fp` , then #E(Fp`) is approximately
uniformly distributed over the integers close to p` + 1. Thus, if sufficiently
many elliptic curves are selected at random over some fixed finite field, it may
be expected (3.5.1) that a suitable one will be found after a reasonable number
of attempts.

It follows that for cryptographic applications of elliptic curves it is desirable
to have an efficient and, if at all possible, simple way to determine #E(Fp`),
in order to check if #E(Fp`) satisfies the condition of being prime or almost
prime. The first polynomial-time algorithm solving this so-called elliptic curve
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point counting problem was due to Schoof [106]. It has been improved by
many different authors (see [10]). Although enormous progress has been made,
the point counting problem is a problem one tries to avoid in cryptographic
applications. This may be done by using specific curves with known properties
(and group cardinalities), or by using curves from a prescribed list prepared
by some trusted party. However, if one insists on a randomly generated elliptic
curve (over, say, a randomly generated finite field), one will have to deal with the
point counting. As a result, parameter selection in its full generality for elliptic
curve cryptography must still considered to be a nuisance. This is certainly the
case when compared to the ease of parameter selection in RSA or systems relying
on the discrete logarithm problem in ordinary multiplicative groups of finite
fields. Refer to the proceedings of recent cryptographic conferences for progress
on the subject of point counting and elliptic curve parameter initialization.

Let E be a suitable elliptic curve, i.e., #E(Fp`) = sq for a small integer
s and prime q. A generator of the order q subgroup of E(Fp`) can be found
in a way similar to 3.6.5. Just pick random points P ∈ E(Fp`) until sP 6= O
(Remark 3.7.2). The desired generator is then given by sP .

Given an elliptic curve E over Fp` , the set of points E(Fp`k) can be con-
sidered over an extension field Fp`k of Fp` . In particular the case ` = 1 is
popular in cryptographic applications. This approach facilitates the computa-
tion of #E(Fp`k) (based on Weil’s theorem [78]). However, it is frowned upon
by some because of potential security risks. Also, elliptic curves E over Fp` and
their corresponding group E(Fp`) with ` composite are not considered to be a
good choice. See [112] and the references given there.
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4 Factoring and Computing Discrete Logarithms

Let n be an odd positive composite integer, let g ∈ G be an element of known
order of a group of known cardinality #G, and let h ∈ 〈g〉. If required, the
probabilistic compositeness test from 3.5.2 can be used to ascertain that n is
composite. Checking that h ∈ 〈g〉 can often be done by verifying that h ∈ G and
that horder(g) = 1. It is assumed that the elements of G are uniquely represented.
The group law in G is referred to as ‘multiplication’. If G = E(Fp) then this
multiplication is actually elliptic curve addition (Remark 3.7.2).

This section reviews the most important methods to solve the following two
problems:

Factoring
Find a not necessarily prime factor p of n with 1 < p < n.

Computing discrete logarithms
Find logg(h), i.e., the integer t ∈ {0, 1, . . . , order(g)− 1} such that gt = h.

For generic G and prime order(g) it has been proved that finding logg(h) re-
quires, in general, c

√
order(g) group operations [88, 108], for a constant c > 0.

However, this generic model does not apply to any practical situation. For
integer factoring no lower bound has been published.

4.1 Exponential-time methods

In this subsection the basic exponential-time methods are sketched:

Factoring: methods that may take nc operations on integers of size comparable
to n,

Computing discrete logarithms: methods that may take order(g)c multi-
plications in G,

where c is a positive constant. These runtimes are called exponential-time be-
cause nc = ec log(n), so that the runtime is an exponential function of the input
length log(n).

4.1.1 Exhaustive search. Factoring n by exhaustive search is referred to as
trial division: for all primes in succession check if they divide n, until a proper
divisor is found. Because n has a prime divisor ≤

√
n, the number of division

attempts is bounded by π(
√

n) ≈
√

n
log(

√
n)

(see 3.5.1). More than 91% of all
positive integers have a factor < 1000. For randomly selected composite n trial
division is therefore very effective. It is useless for composites as used in RSA

Similarly, logg(h) can be found by comparing gt to h for t = 0, 1, 2, . . . in
succession, until gt = h. This takes at most order(g) multiplications in G.
There are no realistic practical applications of this method, unless order(g) is
very small.
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4.1.2 Pollard’s p − 1 method [92]. According to Fermat’s little theorem
(see 3.5.2), ap−1 ≡ 1 mod p for prime p and any integer a not divisible by p. It
follows that ak ≡ 1 mod p if k is an integer multiple of p − 1. Furthermore, if
p divides n, then p divides gcd(ak − 1, n). This may make it possible to find a
prime factor p of n by computing gcd(ak − 1, n) for an arbitrary integer a with
1 < a < n and a coprime to n (assuming one is not so lucky to pick an a with
gcd(a, n) 6= 1). This works if one is able to find a multiple k of p− 1.

The latter may be possible if n happens to have a prime factor p for which
p−1 consists of the product of some small primes. If that is the case then k can
be chosen as a product of many small prime powers. Obviously, only some of
the primes dividing k actually occur in p−1. But p−1 is not known beforehand,
so one simply includes as many small prime powers in k as feasible, and hopes
for the best, i.e., that the resulting k is a multiple of p − 1. The resulting k
may be huge, but the number ak − 1 has to be computed only modulo n. Refer
to [83] for implementation details.

As a result a prime factor p of n can be found in time proportional to the
largest prime factor in p − 1. This implies that the method is practical only if
one is lucky and the largest prime factor in p−1 happens to be sufficiently small.
For reasonably sized p, such as used as factors of RSA moduli, the probability
that p can be found using Pollard’s p − 1 method is negligible. Nevertheless,
the existence of Pollard’s p − 1 method is the reason that many cryptographic
standards require RSA moduli consisting of primes p for which p−1 has a large
prime factor. Because a variation using p+1 (the ‘next’ cyclotomic polynomial)
follows in a straightforward fashion [121], methods have even been designed
to generate primes p that can withstand both a p − 1 and a p + 1 attack.
This conveniently overlooks the fact that there is an attack for each cyclotomic
polynomial [8]. However, in view of the elliptic curve factoring method (4.2.3)
and as argued in [103] none of these precautions makes sense.

4.1.3 The Silver-Pohlig-Hellman method [91]. Just as p dividing n can
be found easily if p−1 is the product of small primes, discrete logarithms in 〈g〉
can be computed easily if order(g) has just small factors. Assume that order(g)
is composite and that q is a prime dividing order(g). From gt = h it follows
that (

g
order(g)

q

)t mod q

= h
order(g)

q .

Thus, t modulo each of the primes q dividing order(g) can be found by solving
the discrete logarithm problems for the order(g)

q th powers of g and h. If order(g)
is a product of distinct primes, then t follows using the Chinese remainder
theorem (3.3.6). If order(g) is not squarefree, then use the extension as described
in [67].

The difficulty of a discrete logarithm problem therefore depends mostly on
the size of the largest prime factor in order(g). Because the factorization of
#G is generally assumed to be known (and in general believed to be easier to
find than discrete logarithms in G), the order of g is typically assumed to be a
sufficiently large prime in cryptographic applications.
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4.1.4 Shanks’ baby-step-giant-step [56, Exercise 5.17].
Let s = [

√
order(g)] + 1. Then for any t ∈ {0, 1, . . . , order(g) − 1} there are

non-negative integers t0, t1 ≤ s such that t = t0 + t1s. From gt = h it follows
that hg−t0 = gt1s. The values gis for i ∈ {0, 1, . . . , s} are computed (the ‘giant
steps’) at the cost of about s multiplications in G, and put in a hash table.
Then, for j = 0, 1, . . . , s in succession hg−j is computed (the ‘baby steps’) and
looked up in the hash table, until a match is found. The value t can be derived
from j and the location of the match. This (deterministic) method requires at
most about 2

√
order(g) multiplications in G. This closely matches the lower

bound mentioned above. The greatest disadvantage of this method is that it
requires storage for

√
order(g) elements of G. Pollard’s rho method, described

in 4.1.5 below, requires hardly any storage and achieves essentially the same
speed.

4.1.5 Pollard’s rho and lambda methods [93]. The probability that
among a group of 23 randomly selected people at least two people have the
same birthday is more than 50%. This probability is much higher than most
people would expect. It is therefore referred to as the birthday paradox. It
lies at the heart of the most effective general purpose discrete logarithm algo-
rithms, Pollard’s rho and lambda methods. If elements are drawn at random
from 〈g〉 (with replacement) then the expected number of draws before an ele-
ment is drawn twice (a so-called ‘collision’) is

√
order(g)π/2. Other important

cryptanalytic applications are the use of ‘large primes’ in subexponential-time
factoring and discrete logarithm methods (Section 4.2) and collision search for
hash functions (not treated here).
Application to computing discrete logarithms. A collision of randomly
drawn elements from 〈g〉 is in itself not useful to solve the discrete logarithm
problem. The way this idea is made to work to compute discrete logarithms is
as follows. Define a (hopefully) random walk on 〈g〉 consisting of elements of
the form gehd for known e and d, wait for a collision, i.e., e, d and e′, d′ such
that gehd = ge′hd′ , and compute logg(h) = e−e′

d′−d mod order(g). A ‘random’
walk (wi)∞i=1 on 〈g〉 can, according to [93], be achieved as follows. Partition G
into three subsets G1, G2, and G3 of approximately equal cardinality. This can
usually be done fairly accurately based on the representation of the elements
of G. One may expect that this results in three sets Gj ∩ 〈g〉, for j = 1, 2, 3,
of about the same size. Take w1 = g (so e = 1, d = 0), and define wi+1 as a
function of wi:

wi+1 =

 hwi if wi ∈ G1 ((e, d) → (e, d + 1))
w2

i if wi ∈ G2 ((e, d) → (2e, 2d))
gwi if wi ∈ G3 ((e, d) → (e + 1, d)).

This can be replaced by any other function that allows easy computation of
the exponents e and d and that looks sufficiently random. It is not necessary
to compare each new wi to all previous ones (which would make the method
as slow as exhaustive search). According to Floyd’s cycle-finding algorithm it
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suffices to compare wi to w2i for i = 1, 2, . . . (see [56]). A pictorial description
of the sequence (wi)∞i=0 is given by a ρ (the Greek character rho): starting at
the tail of the ρ it iterates until it bites in its own tail, and cycles from there on.

As shown in [115] partitioning G into only three sets does in general not
lead to a truly random walk. In practice that means that the collision occurs
somewhat later than it should. Unfortunately a truly random walk is hard to
achieve. However, as also shown in [115], if G is partitioned into substantially
more than 3 sets, say about 15 sets, then the collision occurs on average almost
as fast as it would for a truly random walk. An improvement of Floyd’s cycle-
finding algorithm is described in [16].
Parallelization. If m processors run the above method independently in par-
allel, each starting at its own point w1 = gehd for random e, d, a speed-up of a
factor

√
m can be expected. A parallelization that achieves a speed-up of a fac-

tor m when run on m processors is described in [118]. Define distinguished points
as elements of 〈g〉 that occur with relatively low probability θ and that have
easily recognizable characteristics. Let each processor start at its own randomly
selected point w1 = gehd. As soon as a processor hits a distinguished point
the processor reports the distinguished point to a central location and starts
afresh. In this way m processors generate ≥ m independent ‘trails’ of average
length 1/θ. Based on the birthday paradox, one may expect that

√
order(g)π/2

trail points have to be generated before a collision occurs among the trails, at an
average cost of (

√
order(g)π/2)/m steps per processor. However, this collision

itself goes undetected. It is only detected, at the central location, at the first
distinguished point after the collision. Each of the two contributing processors
therefore has to do an additional expected 1/θ steps to reach that distinguished
point. For more details, also on the choice of θ, see [118].

Pollard’s parallelized rho is currently the method of choice to attack the
discrete logarithm problem in groups of elliptic curves. Groups of well over 2100

elements can successfully be attacked. For the most recent results, consult [23].
Pollard’s lambda method for catching kangaroos. There is also a
non-parallelized discrete logarithm method that is based on just two trails that
collide, thus resembling a λ (the Greek character lambda). It finds t in about
2
√

w applications of the group law if t is known to lie in a specified interval of
width w. See [93] for a description of this method in terms of tame and wild
kangaroos and [94] for a speed-up based on the methods from [118].
Application to factoring. The collision idea can also be applied in the context
of factoring. If elements are drawn at random from Z/nZ (with replacement)
then the expected number of draws before an element is drawn that is identical
modulo p to some element drawn earlier is

√
pπ/2. Exponents do not have to

be carried along, a random walk in Z/nZ suffices. According to [93] this can be
achieved by picking w1 ∈ Z/nZ at random and by defining

wi+1 = (w2
i + 1) mod n.

With Floyd’s cycle-finding algorithm one may expect that gcd(wi −w2i, n) > 1
after about

√
p iterations. In practice products of |wi −w2i| for several consec-

utive i’s are accumulated (modulo n) before a gcd is computed.
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One of the earliest successes of Pollard’s rho method was the factorization
of the eighth Fermat number F8 = 228

+ 1. It was found because the factor
happened to be unexpectedly small [18]. See also 4.2.6.

4.2 Subexponential-time methods

4.2.1 The L function. For t, γ ∈ R with 0 ≤ t ≤ 1 the notation Lx[t, γ]
introduced in [67] is used for any function of x that equals

e(γ+o(1))(log x)t(log log x)1−t

, for x →∞.

For t = 0 this equals (log x)γ and for t = 1 it equals xγ (up to the o(1) in
the exponent). It follows that for 0 ≤ t ≤ 1 the function Lx[t, γ] interpolates
between polynomial-time (t = 0) and exponential-time (t = 1). Runtimes equal
to Lx[t, γ] with 0 < t < 1 are called subexponential-time in x because they are
asymptotically less than ec log(x) for any constant c.

In this subsection the basic subexponential-time methods for factoring and
computing discrete logarithms in F∗p` are sketched:

Factoring: methods for which the number of operations on integers of size
comparable to n is expected to be Ln[t, γ] for n →∞,

Computing discrete logarithms in F∗p` : methods for which the number of
multiplications in Fp` is expected to be Lp` [t, γ] for p → ∞ and fixed `,
or fixed p and ` →∞,

where γ > 0 and t are constants with 0 < t < 1. For most methods presented
below these (probabilistic) runtimes cannot rigorously be proved. Instead, they
are based on heuristic arguments.

The discrete logarithm methods presented below work only for G = F∗p` ,
because explicit assumptions have to be made about properties of the represen-
tation of group elements. Thus, unlike Section 4.1 it is explicitly assumed that
G = F∗p` , and that g generates F∗p` .

4.2.2 Smoothness.
Integers. A positive integer is B-smooth (or simply smooth if B is clear from
the context) if all its prime factors are ≤ B. Let α, β, r, s ∈ R>0 with s < r ≤ 1.
It follows from [20, 37] that a random positive integer ≤ Lx[r, α] is Lx[s, β]-
smooth with probability

Lx[r − s,−α(r − s)/β], for x →∞.

Polynomials over Fp. Assume that, as in 3.6.1, elements of F∗p` with p prime
and ` > 1 are represented as non-zero polynomials in Fp[X] of degree < `. The
norm of h ∈ F∗p` in this representation is defined as pdegree(h).

A polynomial in Fp[X] is B-smooth if it factors as a product of irreducible
polynomials in Fp[X] of norm ≤ B. Let α, β, r, s ∈ R>0 with r ≤ 1 and
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r
100 < s < 99r

100 . It follows from [90] that a random polynomial in Fp[X] of norm
≤ Lx[r, α] is Lx[s, β]-smooth with probability

Lx[r − s,−α(r − s)/β], for x →∞.

Note the similarity with integer smoothness probability.

4.2.3 Elliptic Curve Method [74]. Rephrasing Pollard’s p−1 method 4.1.2
in terms of 4.2.2, it attempts to find p dividing n for which p−1 is B-smooth by
computing gcd(ak − 1, n) for an integer k that consists of the primes ≤ B and
some of their powers. Most often the largest prime in p− 1 is too large to make
this practical. The elliptic curve method is similar to Pollard’s p − 1 method
in the sense that it tries to take advantage of the smoothness of a group order
(#Z/pZ∗ in Pollard’s p− 1 method): if the group order is smooth a randomly
generated unit in the group (ak) may lead to a factorization. In Pollard’s p− 1
method the groups are fixed as the groups Z/pZ∗ for the primes p dividing the
number one tries to factor. The elliptic curve method randomizes the choice of
the groups (and their orders). Eventually, if one tries often enough, a group of
smooth order will be encountered and a factorization found.

Let a, b ∈ Z/nZ be randomly selected so that they define an elliptic curve E
over Z/nZ (see 3.7.4). According to 3.7.5 an elliptic curve Ep = Ea mod p,b mod p

over Fp is defined for each prime p dividing n, and #Ep(Fp) behaves as a random
integer close to p + 1 (see 3.7.6). Based on 4.2.2 with r = 1, α = 1, s = 1/2,
and β =

√
1/2 it is not unreasonable to assume that #Ep(Fp) = Lp[1, 1] is

Lp[1/2,
√

1/2]-smooth with probability Lp[1/2,−
√

1/2]. Thus, for a fixed p,
once every Lp[1/2,

√
1/2] random elliptic curves over Z/nZ one expects to find

a curve for which the group order #Eb(Fp) is Lp[1/2,
√

1/2]-smooth.
Assume that #Ep(Fp) is Lp[1/2,

√
1/2]-smooth, let k be the product of

the primes ≤ Lp[1/2,
√

1/2] and some of their powers, and let P be a random
element of E(Z/nZ). If one attempts to compute kP in E(Z/nZ) using the
partial addition defined in 3.7.4 and the computation does not break down,
then the result is some point R ∈ E(Z/nZ). According to 3.7.5 the point
Rp ∈ Ep(Fp) would have been obtained by computing the elliptic curve scalar
product of k and the point Pp ∈ Ep(Fp) as defined in 3.7.5. If enough prime
powers are included in k, then the order of Pp ∈ Ep(Fp) divides k, so that
Rp = Op ∈ Ep(Fp), where Op is the zero element in Ep(Fp). But, according
to 3.7.5, Rp = Op implies R = O. The latter implies that Rq = Oq for any
prime q dividing n. It follows that, if R has been computed successfully, k must
be a multiple of the order of P when taken modulo any prime dividing n. Given
how much luck is already involved in picking E such that #Ep(Fp) is smooth
for one particular p dividing n, it is unlikely that this would happen for all
prime factors of n simultaneously. Thus if E was randomly selected in such a
way that #Ep(Fp) is Lp[1/2,

√
1/2]-smooth, it is much more likely that R has

not been computed to begin with, but that the partial addition broke down,
i.e., produced a non-trivial factor of n. From Op = (0 : 1 : 0) it follows that p
divides that factor.
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Since one in every Lp[1/2,
√

1/2] elliptic curves over Z/nZ can be expected
to be lucky, the total expected runtime is Lp[1/2,

√
1/2] times the time required

to compute kP , where k is the product of powers of primes ≤ Lp[1/2,
√

1/2].
The latter computation requires Lp[1/2,

√
1/2] partial additions, i.e., has cost

proportional to log(n)2Lp[1/2,
√

1/2]. The total cost is proportional to

Lp[1/2,
√

1/2] · log(n)2Lp[1/2,
√

1/2] = log(n)2Lp[1/2,
√

2].

It follows that using the elliptic curve method small factors can be found faster
than large factors. For p ≈

√
n, the worst case, the expected runtime becomes

Ln[1/2, 1]. For RSA moduli it is known that the worst case applies. For compos-
ites without known properties and, in particular, a smallest factor of unknown
size, one generally starts off with a relatively small k aimed at finding small
factors. This k is gradually increased for each new attempt, until a factor is
found or until the factoring attempt is aborted. See [14, 83] for implementation
details of the elliptic curve method. The method is ideally parallelizable: any
number of attempts can be run independently on any number of processors in
parallel, until one of them is lucky.

The reason that the runtime argument is heuristic is that #Ep(Fp) is con-
tained in an interval of short length (namely, about 4

√
p) around p + 1. Even

though #Ep(Fp) cannot be distinguished from a truly random integer in that
interval, intervals of short length around p + 1 cannot be proved (yet) to be
smooth with approximately the same probability as random integers ≤ p. The
heuristics are, however, confirmed by experiments and the elliptic curve method
so far behaves as heuristically predicted.

Remarkable successes of the elliptic curve method were the factorizations of
the tenth and eleventh Fermat numbers, F10 = 2210

+ 1 and F11 = 2211
+ 1;

see [17]. Factors of over 50 decimal digits have occasionally been found using
the elliptic curve method. The method is not considered to be a threat against
RSA, but its existence implies that care should be taken when using RSA moduli
consisting of more than two prime factors.

A variant of the elliptic curve method suitable for the computation of discrete
logarithms has never been published.

4.2.4 The Morrison-Brillhart approach. The expected runtimes of all
factoring methods presented so far depend strongly on properties of the factor
to be found, and only polynomially on the size of the number to be factored.
For that reason they are referred to as special purpose factoring methods. All
factoring methods described in the sequel are general purpose methods: their
expected runtimes depend just on the size of the number n to be factored. They
are all based, in some way or another, on Fermat’s factoring method of solving
a congruence of squares modulo n: try to find integers x and y such that their
squares are equal modulo n, i.e., x2 ≡ y2 mod n. Such x and y are useful for
factoring purposes because it follows from x2 − y2 ≡ 0 mod n that n divides
x2 − y2 = (x− y)(x + y), so that

n = gcd(n, x− y) gcd(n, x + y).
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This may yield a non-trivial factorization of n. There is a probability of at least
50% that this produces a non-trivial factor of n if n is composite and not a
prime power and x and y are random solutions to x2 ≡ y2 mod n.

Fermat’s method to find x and y consists of trying x = [
√

n]+1, [
√

n]+2, . . . in
succession, until x2 − n is a perfect square. In general this cannot be expected
to be competitive with any of the methods described above, not even trial
division. Morrison and Brillhart [87] proposed a faster way to find x and y.
Their general approach is not to solve the identity x2 ≡ y2 mod n right away,
but to construct x and y based on a number of other identities modulo n which
are, supposedly, easier to solve. Thus, the Morrison-Brillhart approach consists
of two stages: a first stage where a certain type of identities modulo n are found,
and a second stage where those identities are used to construct a solution to
x2 ≡ y2 mod n. This approach applies to all factoring and discrete logarithm
algorithms described below.

Let B be a smoothness bound (4.2.2) and let P be the factor base: the set
of primes ≤ B of cardinality #P = π(B) (see 3.5.1). In the first stage, one
collects > #P integers v such that v2 mod n is B-smooth:

v2 ≡

∏
p∈P

pev,p

 mod n.

These identities are often referred to as relations modulo n, and the first stage
is referred to as the relation collection stage. Morrison and Brillhart determined
relations using continued fractions (4.2.5). Dixon [39] proposed a simpler, but
slower, method to find relations: pick v ∈ Z/nZ at random and keep the ones
for which v2 ∈ Z/nZ is B-smooth. Let V be the resulting set of cardinality
#V > #P consisting of the ‘good’ v’s, i.e., the relations.

Each v ∈ V gives rise to a #P -dimensional vector (ev,p)p∈P . Because #V >
#P , the vectors {(ev,p)p∈P : v ∈ V } are linearly dependent. This implies that
there exist at least #V −#P linearly independent subsets S of V for which∑

v∈S

ev,p = 2(sp)p∈P with sp ∈ Z for p ∈ P.

These can, in principle, be found using Gaussian elimination modulo 2 on the
matrix having the vectors (ev,p)p∈P as rows. The second stage is therefore
referred to as the matrix step.

Given such a subset S of V and corresponding integer vector (sp)p∈P , the
integers

x =

(∏
v∈S

v

)
mod n, y =

∏
p∈P

psp

 mod n

solve the congruence x2 ≡ y2 mod n. Each of the #V −#P independent subsets
leads to an independent chance of at least 50% to factor n.

There are various ways to analyse the expected runtime of Dixon’s method,
depending on the way the candidate v’s are tested for smoothness. If trial
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division is used, then the best choice for B turns out to be B = Ln[1/2, 1/2].
For each candidate v, the number v2 mod n is assumed to behave as a random
number ≤ n = Ln[1, 1], and therefore B-smooth with probability Ln[1/2,−1]
(see 4.2.2). Testing each candidate takes time #P = π(B) = Ln[1/2, 1/2] (all
log(n) factors ‘disappear’ in the o(1)), so collecting somewhat more than #P
relations can be expected to take time

number
of relations

to be collected︷ ︸︸ ︷
Ln[1/2, 1/2] ·

trial
division︷ ︸︸ ︷

Ln[1/2, 1/2] ·

inverse of
smoothness
probability︷ ︸︸ ︷

(Ln[1/2,−1])−1 = Ln[1/2, 2].

Gaussian elimination on the #V ×#P matrix takes time

Ln[1/2, 1/2]3 = Ln[1/2, 1.5].

It follows that the total time required for Dixon’s method with trial division is
Ln[1/2, 2]. The runtime is dominated by the relation collection stage.

If trial division is replaced by the elliptic curve method (4.2.3), the time to
test each candidate for B-smoothness is reduced to Ln[1/2, 0]: the entire cost
disappears in the o(1). As a result the two stages can be seen to require time
Ln[1/2, 1.5] each. This can be further reduced as follows. In the first place,
redefine B as Ln[1/2,

√
1/2] so that the entire relation collection stage takes

time

Ln[1/2,
√

1/2] · Ln[1/2, 0] · (Ln[1/2,−
√

1/2])−1 = Ln[1/2,
√

2].

Secondly, observe that at most log2(n) = Ln[1/2, 0] entries are non-zero for
each vector (ev,p)p∈P , so that the total number of non-zero entries of the ma-
trix (the ‘weight’) is #V × Ln[1/2, 0] = Ln[1/2,

√
1/2]. The number of oper-

ations required by sparse matrix techniques is proportional to the product of
the weight and the number of columns, so the matrix step can be done in time
Ln[1/2,

√
1/2]2 = Ln[1/2,

√
2]. Thus, using the elliptic curve method to test for

smoothness and using sparse matrix techniques for the second stage, the overall
runtime of Dixon’s method becomes

Ln[1/2,
√

2] + Ln[1/2,
√

2] = Ln[1/2,
√

2].

Asymptotically the relation collection stage and the matrix step take the same
amount of time. Sparse matrix methods are not further treated here; see [29,
61, 84, 100, 120] for various methods that can be applied.

Dixon’s method has the advantage that its expected runtime can be rig-
orously analysed and does not depend on unproved hypotheses or heuristics.
In practice, however, it is inferior to the original Morrison-Brillhart contin-
ued fraction approach (see 4.2.5) and to the other methods described below.
The Morrison-Brillhart method was used to factor the seventh Fermat number
F7 = 227

+ 1 (see [87]).
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4.2.5 Quadratic Sieve. The most obvious way to speed-up Dixon’s method
is by generating the integers v in such a way that v2 mod n is substantially
smaller than n, thereby improving the smoothness probability. In CFRAC,
Morrison and Brillhart’s continued fraction method, the residues to be tested
for smoothness are of the form a2

i −nb2
i , where ai/bi is the ith continued fraction

convergent to
√

n. Thus, v = ai for i = 1, 2, . . . and the residues v2 mod n =
a2

i −nb2
i to be tested for smoothness are only about 2

√
n. However, each residue

has to be processed separately (using trial division or the elliptic curve method).
A simpler way to find residues that are almost as small but that can, in

practice, be tested much faster was proposed by Pomerance [95, 96]. Let v(i) =
i + [

√
n] for small i, then

v(i)2 mod n = (i + [
√

n])2 − n ≈ 2i
√

n.

Compared to Dixon’s method this approximately halves the size of the residues
to be tested for B-smoothness. The important advantage – in practice, not in
terms of Ln – compared to the continued fraction method is that a sieve can be
used to test the values (v(i)2 mod n) for smoothness for many consecutive i’s
simultaneously, in a manner similar to 3.5.8. This is based on the observation
that if p divides (v(r)2 mod n), i.e., r is a root modulo p of f(X) = (X +
[
√

n])2 − n, then p divides (v(r + kp)2 mod n) for any integer k, i.e., r + kp is a
root modulo p of f(X) for any integer k.

This leads to the following sieving step. Let (s(i))L−1
i=0 be a sequence of L

locations, corresponding to (v(i)2 mod n) for 0 ≤ i < L, with initial values
equal to 0. For all p ≤ B find all roots r modulo p of (X + [

√
n])2 − n. For

all resulting pairs (p, r) replace s(r + kp) by s(k + rp) + log2(p) for all integers
k such that 0 ≤ r + kp < L. As a result, values s(i) that are close to the
‘report bound’ log2((i + [

√
n])2 − n) are likely to be B-smooth. Each such

value is tested separately for smoothness. In practice the sieve values s(i) and
(rounded) log2(p) values are represented by bytes.

With B = Ln[1/2, 1/2] and assuming that the (v(i)2 mod n) behave as ran-
dom numbers close to

√
n = Ln[1, 1/2], each is B-smooth with probability

Ln[1/2,−1/2]. This assumption is obviously incorrect: if an odd prime p di-
vides (v(i)2 mod n) (and does not divide n) then (i+[

√
n])2 ≡ n mod p, so that

n is a quadratic residue modulo p. As a consequence, one may expect that half
the primes ≤ B cannot occur in (v(i)2 mod n), so that #P ≈ π(B)/2. On the
other hand, for each prime p that may occur, one may expect two roots of f(X)
modulo p. In practice the smoothness probabilities are very close to what is
näıvely predicted based on 4.2.2.

To find > #P = Ln[1/2, 1/2] relations,

Ln[1/2, 1/2] · (Ln[1/2,−1/2])−1 = Ln[1/2, 1]

different i’s have to be considered, so that the sieve length L equals Ln[1/2, 1].
This justifies the implicit assumption made above that i is small. The sieving
time consists of the time to find the roots (i.e., #P = Ln[1/2, 1/2] times an
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effort that is polynomial-time in n and p) plus the actual sieving time. The
latter can be expressed as∑

{(p,r): p∈P}

L

p
≈ 2L

∑
p∈P

1
p

= Ln[1/2, 1]

because
∑

p∈P
1
p is proportional to log log(Ln[1/2, 1/2]) (see [48]) and disap-

pears in the o(1). The matrix is sparse again. It can be processed in time
Ln[1/2, 1/2]2 = Ln[1/2, 1]. The total (heuristic) expected runtime of Pomer-
ance’s quadratic sieve factoring method becomes

Ln[1/2, 1] + Ln[1/2, 1] = Ln[1/2, 1].

The relation collection and matrix steps take, when expressed in Ln, an equal
amount of time. For all numbers factored so far with the quadratic sieve, how-
ever, the actual runtime spent on the matrix step is only a small fraction of the
total runtime.

The runtime of the quadratic sieve is the same as the worst case runtime of
the elliptic curve method applied to n. The sizes of the various polynomial-time
factors involved in the runtimes (which all disappear in the o(1)’s) make the
quadratic sieve much better for numbers that split into two primes of about
equal size. In the presence of small factors the elliptic curve method can be
expected to outperform the quadratic sieve.

Because of its practicality many enhancements of the basic quadratic sieve
as described above have been proposed and implemented. The most important
ones are listed below. The runtime of quadratic sieve when expressed in terms
of Ln is not affected by any of these improvements. In practice, though, they
make quite a difference.

Multiple polynomials Despite the fact that ‘only’ Ln[1/2, 1] different i’s have
to be considered, in practice the effect of the rather large i’s is quite
noticeable: the larger i gets, the smaller the ‘yield’ becomes. Davis and
Holdridge were the first to propose the use of more polynomials [36]. A
somewhat more practical but similar solution was independently suggested
by Montgomery [96, 111]. As a result a virtually unlimited amount of
equally useful polynomials can be generated, each playing the role of f(X)
in the description above. As soon as one would be sieving too far away
from the origin (i = 0), sieving continues with a newly selected polynomial.
See [67, 96, 111] for details.

Self-initializing For each polynomial all roots modulo all primes ≤ B have
to be computed. In practice this is a time consuming task. In [99] it is
shown how large sets of polynomials can be generated in such a way that
the most time consuming part of the root computation has to be carried
out only once per set.

Large primes In the above description sieve values s(i) are discarded if they
are not sufficiently close to the report bound. By relaxing the report
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bound somewhat, relations of the form

v2 = q ·

∏
p∈P

pev,p

 mod n

can be collected at hardly any extra cost. Here q is a prime larger than
B, the large prime. Relations involving large primes are referred to as
partial relations. Two partial relations with the same large prime can be
multiplied (or divided) to yield a relation that is, for factoring purposes,
just as useful as any ordinary relation. The latter are, in view of the
partial relations, often referred to as full relations. However, combined
partial relations make the matrix somewhat less sparse. It is a consequence
of the birthday paradox (4.1.5) and of the fact that smaller large primes
occur more frequently than larger ones, that matches between large primes
occur often enough to make this approach worthwhile. Actually, it more
than halves the sieving time. The obvious extension is to allow more than
a single large prime. Using two large primes again more than halves the
sieving time [71]. Three large primes have, yet again, almost the same
effect, according to the experiment reported in [75]. Large primes can be
seen as a cheap way to extend the size of the factor base P – cheap because
the large primes are not sieved with.

Parallelization The multiple polynomial variation of the quadratic sieve (or
its self-initializing variant) allows straightforward parallelization of the
relation collection stage on any number of independent processors [21].
Communication is needed only to send the initial data, and to report the
resulting relations back to the central location (where progress is measured
and the matrix step is carried out). This can be done on any loosely
coupled network of processors, such as the Internet [70].

So far the largest number factored using the quadratic sieve is the factorization
of the RSA challenge number, a number of 129 decimal digits [42], reported in [7]
(but see [75]). Since that time the number field sieve (4.2.7) has overtaken the
quadratic sieve, and the method is no longer used to pursue record factorizations.

4.2.6 Historical note. In the late 1970s Schroeppel invented the Linear sieve
factoring algorithm, based on the Morrison-Brillhart approach. He proposed to
look for pairs of small integers i, j such that

(i + [
√

n])(j + [
√

n])− n ≈ (i + j)
√

n

is smooth. Compared to Morrison and Brillhart’s continued fraction method
this had the advantage that smoothness could be tested using a sieve. This
led to a much faster relation collection stage, despite the fact that (i + j)

√
n is

larger than 2
√

n, the order of magnitude of the numbers generated by Morrison
and Brillhart. A disadvantage was, however, that (i + [

√
n])(j + [

√
n]) is not a
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square. This implied that all values i + [
√

n] occurring in a relation had to be
carried along in the matrix as well, to combine them into squares. This led to
an unusually large matrix, for that time at least.

The runtime of the linear sieve was fully analysed by Schroeppel in terms
equivalent to the L function defined in 4.2.1. It was the first factoring method for
which a (heuristic) subexponential expected runtime was shown. The runtime
of Morrison and Brillhart’s continued fraction method, though also subexpo-
nential, had up to that time never been analysed.

Schroeppel implemented his method and managed to collect relations for
the factorization of the eighth Fermat number F8 = 228

+ 1. Before he could
embark on the matrix step, however, F8 was factored by a stroke of luck using
Pollard’s rho method (4.1.5 and [18]). As a result of this fortunate – or rather,
unfortunate – factorization the linear sieve itself and its runtime analysis never
got the attention it deserved. Fortunately, however, it led to the quadratic sieve
when Pomerance, attending a lecture by Schroeppel, realized that it may be a
good idea to take i = j in the linear sieve.

4.2.7 Number Field Sieve [68]. At this point the number field sieve is the
fastest general purpose factoring algorithm that has been published. It is based
on an idea by Pollard in 1988 to factor numbers of the form x3 + k for small k
(see his first article in [68]). This method was quickly generalized to a factoring
method for numbers of the form xd + k, a method that is currently referred
to as the special number field sieve. It proved to be practical by factoring the
ninth Fermat number F9 = 229

+ 1. This happened in 1990, long before F9 was
expected to ‘fall’ [69]. The heuristic expected runtime of the special number
field sieve is Ln[1/3, 1.526], where 1.526 ≈ (32/9)1/3. It was the first factoring
algorithm with runtime substantially below Ln[1/2, c] (for constant c), and as
such an enormous breakthrough. It was also an unpleasant surprise for factoring
based cryptography, despite the fact that the method was believed to have very
limited applicability.

This hope was, however, destroyed by the development of the general number
field sieve, as it was initially referred to. Currently it is referred to as the number
field sieve. In theory the number field sieve should be able to factor any number
in heuristic expected time Ln[1/3, 1.923], with 1.923 ≈ (64/9)1/3. It took a few
years, and the dogged determination of a handful of true believers, to show that
this algorithm is actually practical. Even for numbers having fewer than 100
decimal digits it already beats the quadratic sieve. The crossover point is much
lower than expected and reported in the literature [98].

The number field sieve follows the traditional Morrison-Brillhart approach
of collecting relations, based on some concept of smoothness, followed by a
matrix step. The reason that it is so much faster than previous smoothness
based approaches, is that the numbers that are tested for smoothness are of
order no(1), for n → ∞, as opposed to nc for a (small) constant c for the older
methods. One of the reasons of its practicality is that it allows relatively easy
use of more than two large primes, so that relatively small factor bases can be
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used during sieving. The relation collection stage can be distributed over almost
any number of loosely coupled processors, similar to quadratic sieve.

For an introductory description of the number field sieve, refer to [66, 69,
97]. For complete details see [68] and the references given there. The latest
developments are described in [22, 85].

The largest ‘special’ number factored using the special number field sieve is
2773 + 1 (see [35]). This was done by the same group that achieved the cur-
rent general number field sieve record by factoring a 512-bit RSA modulus [22].
Neither of these records can be expected to stand for a long time. Consult [35]
for the most recent information. Such ‘public domain’ factoring records should
not be confused with factorizations that could, in principle or in practice, be
obtained by well funded agencies or other large organizations. Also, it should
be understood that the computational effort involved in a 512-bit RSA mod-
ulus factorization is dwarfed by DES cracking projects. See [72] for a further
discussion on these and related issues.

4.2.8 Index calculus method. As was first shown in [1], a variation of the
Morrison-Brillhart approach can be used to compute discrete logarithms in Fp` .
First use the familiar two stage approach to compute the discrete logarithms
of many ‘small’ elements of F∗p` . Next use this information to compute the
discrete logarithm of arbitrary elements of F∗p` . The outline below applies to
any finite field Fp` . The expected runtimes are for p →∞ and ` fixed or p fixed
and ` → ∞, as in 4.2.2. See also [2]. If ` = 1 the ‘norm’ of a field element is
simply the integer representing the field element, and an element is ‘prime’ if
that integer is prime. If ` > 1 the ‘norm’ is as in 4.2.2, and an element is ‘prime’
if its representation is an irreducible polynomial over Fp (see 3.6.1).

Let B be a smoothness bound, and let the factor base P be the subset of
F∗p` of primes of norm ≤ B. Relations are defined as identities of the form

gv =
∏
p∈P

pev,p ,

with v ∈ {0, 1, . . . , p` − 2} and where g generates F∗p` . This implies that

v ≡

∑
p∈P

ev,p logg(p)

 mod (p` − 1).

It follows that with more than #P distinct relations, the values of logg(p) for
p ∈ P can be found by solving the system of linear relations defined by the
vectors (ev,p)p∈P .

Given an arbitrary h ∈ F∗p` and logg(p) for p ∈ P , the value of logg(h) can
be found by selecting an integer u such that hgu is B-smooth, i.e.,

hgu =
∏
p∈P

peu,p ,
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because it leads to

logg(h) =

∑
p∈P

eu,p logg(p)

− u

 mod (p` − 1).

With B = Lp`−1[1/2,
√

1/2] and Dixon’s approach to find relations (i.e., pick
v at random and test gv for B-smoothness) the relation collection stage takes
expected time Lp` [1/2,

√
2]. This follows from the smoothness probabilities

in 4.2.2, the runtime of the elliptic curve method (4.2.3) if ` = 1, and, if ` > 1,
the fact that polynomials over Fp of degree k can be factored in expected time
polynomial in k and log(p) (see [56]). Solving the system of linear equations
takes the same expected runtime Lp` [1/2,

√
2] because the relations are sparse,

as in 4.2.4. Finally, an appropriate u can be found using the same Dixon ap-
proach. This results in an expected runtime Lp` [1/2,

√
1/2] per discrete loga-

rithm to be computed (given the logg(p) for p ∈ P ).
Variations. Various asymptotically faster variants of the same basic idea
have been proposed that reduce the heuristic expected runtime to Lp` [1/2, 1]
for the preparatory stage and Lp` [1/2, 1/2] per individual discrete logarithm;
see [33, 62, 90] for details. One of these methods, the Gaussian integers method
for the computation of discrete logarithms in Fp is of particular interest. It
not only gave Pollard the inspiration for the (special) number field sieve integer
factoring method, but it is also still of practical interest despite asymptotically
faster methods that have in the mean time been found (see below).
Coppersmith’s method. Another important variant of the index calculus
method is Coppersmith’s method. It applies only to finite fields of small fixed
characteristic, such as F2` . It was the first cryptanalytic method to break
through the Lx[1/2, c] barrier, with an expected runtime L2` [1/3, 1.588]. This
is similar to the runtime of the number field sieve, but the method was found
much earlier. Refer to [28] for details or to [67] for a simplified description.

Coppersmith’s method has proved to be very practical. Also, the constant
1.588 is substantially smaller than the constant 1.923 in the runtime of the
number field sieve integer factoring method. For those reasons RSA moduli of
a given size s are believed to offer more security than the multiplicative group
of a finite field Fp` with small constant p and p` ≈ s. If such fields are used,
then p` must be chosen considerably larger than s to achieve the same level of
security.

In [47] an (incomplete) application of Coppersmith’s method to the finite
field F2503 is described. A description of a completed discrete logarithm com-
putation in F2607 can be found in [116] and [117].
Discrete logarithm variant of the number field sieve. For p →∞ and `
fixed discrete logarithms in Fp` can be computed in heuristic expected runtime
Lp` [1/3, 1.923]. For small fixed p this is somewhat slower than Coppersmith’s
method. However, the method applies to finite fields of arbitrary characteristic.
The method is based on the number field sieve. For details refer to [45, 104].
See also [54].
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The current record for finite field discrete logarithm computation is a 399-bit
(120 decimal digit) prime field, reported in [53].
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