
1

An Extension of ETF Arbitrage to Sector Trading
Using ANN

Ramnik Arora, Utkarsh Upadhyay
Indian Institute of Technology, Kanpur

Abstract—We design and deploy a trading strategy that mirrors the Exchange Traded Fund (ETF) arbitrage technique for sector
trading. Artificial Neural Networks (ANNs) are used to capture pricing relationships within a sector using intra-day trade data. The fair
price of a target security is learnt by the ANN. Significant deviations of the true price from the computed price (ANN predicted price) are
exploited. To facilitate arbitrage, output function of the trained ANN is locally linearly approximated. The strategy has been backtested
on intra-day data from September 2005. Results are very promising, with a high percentage of profitable trades. With low average trade
durations and ease of computation, this strategy is well suited for algorithmic trading systems.

Index Terms—ETF Arbitrage; Neural Networks; Sector Trading; Statistical Arbitrage

F

1 INTRODUCTION

ANNS have been used for several years in the se-
lection of investments because of their ability to

identify patterns of behavior that are not readily observ-
able. These include business forecasting, credit scoring,
bond rating and business failure prediction. Of particular
interest to financial researchers is the deployment of
neural networks for forecasting economic time series
data, and as predictors for future share prices.

Since most of the development and deployment of
trading strategies is undertaken for commercial use and
is thereby proprietary, there are not many statistically
profitable strategies in the public domain that deploy
ANNs efficiently. We design and deploy such a strategy
which is based on intra-day data and closely mirrors
ETF arbitrage. This approach hinges on the assumption
that there exist complex, non-linear relationships between
price movements of related securities. Any mispricing or
deviations from this relationship can be exploited to fi-
nancial advantage. Furthermore, due to high correlation
in corporate models, we have assumed that stocks from
a particular sector can be reasonably priced using others
from the same sector.

2 REVIEW OF LITERATURE

ANNs have been shown to be an efficient tool for
non-parametric modeling of data in a variety of differ-
ent contexts. Hornik et al.(1989)(Hornik, Stinchcombe,
and White, 1989) showed that standard neural network

• R. Arora is with the Department of Mathematics and Scientific Computing,
Indian Institute of Technology, Kanpur.
Homepage: see http://home.iitk.ac.in/˜ramnik.

• U. Upadhyay is with the Department of Electrical Engineering, Indian
Institute of Technology, Kanpur.
Homepage: see http://home.iitk.ac.in/˜utkarshu

model using an arbitrary transfer function can approxi-
mate any measurable function in a precise and satisfac-
tory manner, if a sufficient number of hidden neurons
are used.

In the context of financial forecasting, Kuan and Liu
(1995)(Kuan and Liu, 1995) discuss forecasting of foreign
exchange rates using ANNs. They show that a properly
designed ANN has lower out-of-sample mean squared
prediction error relative to the random walk model.
Jasic and Wood(2004)(Jasic and Wood, 2004), discuss
the profitability of trading signals generated from the
out-of-sample short-term predictions for daily returns of
S&P 500, DAX, TOPIX and FTSE stock market indices
evaluated over the period 1965-99. The out-of sample
prediction performance of neural networks was com-
pared against a benchmark linear autoregressive model.
They found that the buy and sell signals derived from
neural network predictions were different from uncon-
ditional one-day mean return and were likely to provide
significant net profits for reasonable decision rules and
transaction cost assumptions.

Huang et al. (2004)(Huang, Chen, Hsu, Chen, and
Wu, 2004) report a comparative study of application of
Support Vector Machines (SVM) and Back propagation
Neural Networks (BNN) for an analysis of corporate
credit ratings. They report that the performances of
SVM and BNN in this problem were comparable and
both these models achieved about 80 per cent prediction
accuracy. Pendharkar (2005)(Pendharkar, 2005) discusses
the application of ANNs for the bankruptcy prediction
problem. He reported that ANNs perform better than
the statistical discriminant analysis both for training and
hold-out samples.

Hence, ANNs have a history of being used for finan-
cial predictions, but yet, haven’t been seen as a possible
regressors for arbitrage strategies. We investigate the
usefulness of ANNs in this area.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://home.iitk.ac.in/~{}ramnik
http://home.iitk.ac.in/~{}utkarshu


2

3 TRADING STRATEGY AND DEPLOYMENT

Arbitrage are a series of long-short trades that yield
risk-free profit. Arbitrage is of two forms: deterministic
arbitrage, whereby risk free profit is assured on each set
of trades, and statistical arbitrage, where market pricing
inefficiencies are exploited under the assumption of con-
vergence to historical or predicted normal prices and it
generates profit with a probability more than random
walk. Developed as early as 1980 as pair trading(Gatev,
Evan, Goetzmann, William, Rouwenhorst, and Geert,
2006), arbitrage has received much attention in recent
times owing to its easy extension to automated trading
systems. A very common strategy based on the idea of
arbitrage is ETF Arbitrage, which we extend to sectoral
trading.

3.1 ETF Arbitrage
An ETF’s Net Asset Value (N.A.V.) is dictated by the
equation:

x =
i=n∑
i=1

ai yi (1)

x is the true NAV
yi is the price of the ith underlying
ai is the weight of the ith component

This NAV decomposition is publicly known. However,
owing to the demand and supply of either the ETF or the
underlying components, often a mispricing between the
ETF price and its NAV may occur. Authorized participants,
who are privileged traders, can exchange the ETF with
the underlying or vice-versa. At this point of mispricing,
they can buy the underpriced security (or short the
overpriced security), exchange it with the other, and then
sell the overpriced one (or buy the underpriced one) to
obtain risk free profit from a self-financing portfolio.

Thus, if we short one unit of the security whose price
is x, we would need to long ai units of the ith security.
For example, if the equation governing the NAV of the
ETF were: x = 3y1 + 4y2, then trades would need to be
made in a ratio of 1 : −3 : −4, where −d would indicate
short selling of d shares.

However, with stocks from a particular sector, such
a relationship does not exist. Nevertheless, it can be
assumed that broad news affects entire sector in a more-
or-less uniform way. Thus, the stocks within a sector
should have a high correlation, though it would be
subject to market change.
Our strategy attempts to learn this pricing relationship
in the following manner:

3.2 Pricing relationship
As will become clear in section 4, we intend to use
ANNs for the task of computing the pricing relationship.
Although ANNs can be readily used for non-parametric

regression, they generally find non-linear relationships
between the input and the output variables. However, in
accordance with ETF arbitrage requirements we would
like to have a linear relationship between the input and
the output variables as was seen in the equation 1.

ANNs invariably yield a non-linear relationship for
which the simple analysis as done for ETF arbitrage
will not hold. We prefer obtaining a linear approximation
instead of the true relationship between the input and
the output variables. This approximation is made using
the Taylor series expansion of the non-linear function of
the ANN. By providing slight perturbations in the input
variables, we can obtain the directional derivatives of the
output variable with respect to each input variable (see
appendix: A). We arrive at the following form (where γi
are the directional derivatives along coordinate i):

dx =
i=n∑
i=1

γi ∂yi (2)

Now integrating both sides, we arrive at the following
equation, which is of the desired form.

x− x̄ =
i=n∑
i=1

γi (yi − ȳi) (3)

On comparison with equation 1 we can easily see that
trades need to made in ratio of 1 : −γ1 : −γ2 : . . . : −γn.

3.3 Profit/Loss Analysis
To calculate the profit/loss of the strategy, consider a
simplified scenario where we have two underlying of a
composite stock. Another simplifying assumption is of
negligible transaction costs.

If we trade only at two points (See figure 1), our
accounts would look as follows:

At time ts:
We short the target security (overpriced security) and
long the composite security (underpriced security). Thus,
our total account currently is:

A(ts) = −λ1(ts)S1(ts)− λ2(ts)S2(ts) + Starget(ts) (4)

A(t) is the investment at time t
Starget(t) is the value of the target stock at time t

λi(t) is the weight of the ith component at time t
Si(t) is the price of the ith stock at time t

Let us say that the composite stock price and the true
target price converge at time tf .

At time tf :
Here we reverse our trades i.e: long the target security
and short the composite security. These trades maybe
summarised as:

A(tf ) = λ1(tf )S1(tf ) + λ2(tf )S2(tf )− Starget(tf ) (5)



3

Fig. 1. We short the target security and long composite security at time ts and reverse the trades at tf .

Analysis
At this point, we have:

Total Cash F low = A(ts) +A(tf ) (6)

Looking at figure 1, A(tf ) = 0. Hence, equation 6
simplifies to:

Total Cash F low = A(ts) (7)

Calculating our open positions or Outstanding Stock
Value (OV) at time tf is

[λ1(ts)− λ1(tf )]S1(tf ) + [λ2(ts)− λ2(tf )]S2(tf ) (8)

Now the importance of the linear approximation
comes into play. If the linear approximation holds good,
then λ1(ts) = λ1(tf ) = λ1 and, similarly, λ2(ts) =
λ2(tf ) = λ2. Under these conditions, the profit would
truly be only A(ts), since the terms with S1(tf ) and
S2(tf ) would completely cancel each other out. How-
ever, in light of equation 8 and non-linearity of the
market, the new profit/loss at time tf is:

[λ1(ts)−λ1(tf )]S1(tf )+[λ2(ts)−λ2(tf )]S2(tf )+A(ts) (9)

It is easy to see that the differences [λ1(ts)−λ1(tf )] and
[λ2(ts)−λ2(tf )] may take positive as well as negative val-
ues with equal probabilities if the linear approximation
fails to hold. However, if the linear approximation holds,
the total profit as seen in equation 9 would be positive
as A(ts) would always be positive. Hence, this strategy
would be statistically profitable.

4 ARTIFICIAL NEURAL NETWORKS

For the design on the neural networks, we rely heavily
on the seminal work of Kaastra and Boyd(Kaastra and
Boyd, 1996). We adapt and fine tune their approach to
arrive at optimal neural network for our work.

4.1 Variable selection
In George Soros(Soros, 1994) words:

One of the major problems faced in modeling finan-
cial market movements is the fact that information
comes in from a very large number of sources.

The pricing of a particular asset can depend on the
specific asset related news and broad news(or macro-
economic news). Thus, for example, share prices of
the steel industry would be directly affected by news
pertaining to the steel industry but also by a change in
interest rates or a change in the cement prices. Owing
to the large volume of broad news that could impact
the stock prices, we need a reliable proxy. The impact
of broad news on other elements in the target securities
sector will be used to this effect in our study. The impact
of a development or news, in general, would have a
similar impact on the all elements of the sector. As input
variables, we select the prices of those companies stocks
which closely resemble the business model and size of
our target company.

It is interesting to note that we cannot use lagged stock
prices or any other inputs which cannot be traded upon.
For example, if we had made our system dependent



4

on any variable other than the current prices of the
other underlying, while attempting to perform linear
decomposition of the target price into its components,
we would have encountered a components which corre-
sponded to an entity (a previous price, or difference of
two prices) which we cannot trade on, thereby making
arbitrage impossible. Therefore, for stock price forecast-
ing, we have used real-time prices of companies of the
same sector that have a similar structure and size as the
target company.

4.2 Data Preprocessing
Deployment issues, relating to arbitrage, forbid us from
taking technical indicators and ratio of stock prices for
forecasting. We have used feasible data vectors to the
neural network as inputs (see appendix B). For opti-
mal results, inputs to neural networks must be nor-
malised. There exist multiple ways to normalise the
input data(Kaastra and Boyd, 1996) which could be
further explored.

4.3 Neural Network Topology
The properties of an individual neuron such as its trans-
fer function and how the inputs are combined along with
the structure including the number of neurons per layer
and the number of hidden layers define the network
topology. There is no accepted literature that defines
the optimal topology of an arbitrary neural network
and most networks are fine tuned with experimentation.
It is widely believed that one or two hidden layers
with sufficient number of hidden neurons are enough to
approximate any function. However, many suggestions
for this ‘sufficient number’ have been proposed; varying
from half the number of input neurons(Katz, 1992) to
iterative doubling to the point of deterioration of results
on testing data set(Ersoy, 1990). We keep one output
neuron, the forecasted price of target security based on
the independent input prices.

4.4 Neural Network Training
We do not intend to model our neural networks in the
conventional sense of being a regressor which can best
fit all data to date; they will be trained and deployed on
each day independent of previous days.

As can be seen in figure 2, the data that we have
will be segmented into different sections on a day-to-
day basis. To evaluate the performance of our network
on the ith day, one would need to train it on the initial
subset of the data available for the ith day and test it on
the remaining data. Daily training is necessary since the
exact relationship between the input variables and the
output variable may differ from day to day.

This way, we perform hyper parameter tuning to come
up with the parameters of a model that captures well
the daily relationship between the input and the output
variables, rather than attempting to realise a universal

Fig. 2. Division of training data

relationship that holds across days. This tuning theo-
retically can be performed everyday using the immedi-
ately collected data but this task can be computationally
arduous and suitable adjustments maybe made while
deployment.

4.4.1 Training, testing and validation sets
Levenberg-Marquardt algorithm(Levenberg, 1944; Mar-
quardt, 1963), implemented using MATLAB Neural Net-
work Toolbox has been used for training the ANN. The
testing datasets would consist of a set of observations
immediately following the training set from the same
day, much like real-time deployment would entail(see
figure 2). Each intra-day segment of data can be divided
into training and testing data in two ways:

1) Trades limiting: Up to a minimum number of
trades, say 100,000, train the system and then test
on all ensuing data. This also ensures that on days
when the data is not enough (days of low volume),
the model does not trade.

2) Time limiting: Use the intra-day data collected
unto a pre-determined time of the day for training
and deploy on remaining trading day.

4.5 Evaluation Criterion
ANNs are usually evaluated on root mean square error
(RMSE), and a minimisation of the sum of squared errors
is desired. Hereby, the different models will be compared
on their average RMSE and we will choose the model
that gives us minimum average RMSE over the testing
dataset, the average being taken across all training days.
These different models are chosen from different pre-
defined network topologies and normalization schemes.

5 EXPERIMENTAL RESULTS

5.1 Data and Neural Network
Back-testing is performed using intra-day data from
September 2005. Stocks under consideration are Apple



5

TABLE 1
Neural Network Topology

No. Hidden Layers Neurons Transfer Functions
1 3 [7 5 1] [‘tansig’, ‘purelin’, ‘purelin’]
2 3 [6 10 1] [‘tansig’, ‘tansig’, ‘purelin’]
3 2 [6 1] [‘tansig’, ‘purelin’]
4 3 [5 7 1] [‘purelin’, ‘purelin’, ‘purelin’]

(AAPL), Amazon (AMZN), Cisco (CSCO), E-Bay (EBAY),
Google (GOOG), IBM (IBM), Microsoft (MSFT), News
Corporation (NWSA), Oracle (ORCL), Time Warner
(TWX) and Yahoo (YHOO). Consolidated trades from
New York Stock Exchange have been used. Data has
been downloaded from Wharton Research Data Services.
The target security for our study is YHOO. Input and
target data is component-wise linearly scaled to [0, 1].
We have chosen the neural network amongst those in
table 1 which gave us the minimum mean squared error
on the training set.

There is nothing sacrosanct about the above chosen
neural network topologies nor the linear normalisation
used.

5.2 Trading Rules
Each trade consists of a combination of long and short
positions based on the whether the target security is
overpriced or underpriced with respect to the ANN
computed fair value. Standard deviation of the target
security price is calculated(say σ). As explained in sec-
tion 3.3 trades are opened only once and we refrain
from trading continuously. The volume of trade would
be restricted to only one unit of target security and
the corresponding components. 80% of a day’s data is
used for training while the ANN is deployed for the
remaining 20% of the day. Only unique feasible vectors
are used in the training. Fixed point approximation (see
appendix C) is used. The two models tested are:

5.2.1 Model 1
Trades are opened when the difference between the
target price and the computed fair value exceeds 1.25σ
and closed when the computed fair price and the target
price come within 0.75σ.

5.2.2 Model 2
Trades are opened when the difference between the
target price and the computed fair value exceeds 1σ and
closed when the computed fair price and target come
within 0.75σ.

5.3 Results
Results are presented without transaction costs for both
short and long trades. Furthermore, for sake of conve-
nience, it is assumed that quantity of shares bought may
take continuous real values instead of integer values.

Results consist of the number of trades, average profit per
trade, standard deviation of profit, percentage of profitable
trades, maximum profit and loss, average length of trade,
maximum draw-down, maximum money put in, and the
neural network chosen. Results are compiled in tables 2
and 3 for model 1 and 2 respectively.

It is noted that the strategy generates net profit on
most number of days, albeit the maximum money put
in is fairly high. Also, as we make the conditions to be
met for trading more and more stringent, the number
of trades reduce, which explains the greater number of
trades in model 2. 22nd September, 2005 is particularly
noticeable because of the high volume of trades commit-
ted. On this particular day, the target security (YHOO)
was very volatile and, hence, the conditions for trading
were met several times. A threshold on the maximum
tolerable volatility can be employed to keep such ex-
cessive trading in check. Moreover, another interesting
observation is that the neural network with parameter
set 4 (see table 1) is, in effect, a linear regressor, as all
its transfer functions are ‘purelin’. It is the network with
the minimum MSE for several days, which indicates that
on some days, there exists a strong linear relationship
between the price movements of the target security and
the rest of the sector throughout the day.

6 CONCLUSION AND FURTHER WORK

Strategy similar to ETF arbitrage has been developed
for sector trading, where a linear pre-specified pricing
relationship does not exist. Local linear pricing rela-
tionship has been developed between the input and
target security. The experimental results (see tables 2
and 3) are encouraging though extensive back-testing is
advised. Even after accounting for transaction cost, like
commissions and slippage costs, this strategy is likely to
be profitable. With low average trade duration, high per-
centage of profitable trades, and ease of deployment this
strategy is well suited for automated trading systems.

Further work may look into optimal network topology
or use of more reliable proxies for macro-economic news
impact. Neuronal parameters of the model which adapt
best to the intra-day pricing relationships, using pa-
rameter space exploration may be further investigated.
Clearly, the strategy can be applied to any collection of
stocks bearing strong correlation with the target security.

APPENDIX A
CALCULATION OF DERIVATIVE USING DISCRETE
DATA

Let F : <n → < be the neural network function. Direc-
tional derivative at a point u, in the direction of ψ is
defined as:

dF (u, ψ) = lim
τ→0

F (u+ τψ)− F (u)
τ

(10)

http://wrds.wharton.upenn.edu/


6

TABLE 2
Results: Fixed Point Approximation - Model 1

Date 1 2 6 7 8 9 12 13 14 15 16
Trades 3 2 0 0 1 2 1 1 1 2 0
Avg Profit/Trade 0.12 0.03 NaN NaN 1.24 0.30 0.62 0.06 0.06 0.15 NaN
Std. Profit ×10−3 2.24 0.37 0.00 0.00 9.10 3.97 4.13 0.45 0.43 1.58 0.00
Percentage Profitable 100 100 NaN NaN 100 100 100 100 100 100 NaN
Max Profit 0.25 0.03 0.00 0.00 1.24 0.44 0.62 0.06 0.06 0.20 0.00
Max Loss 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average Trade Duration (sec) 351.67 46.50 NaN NaN 0.00 5.00 0.00 14.00 39.00 0.00 NaN
Max Drawdown 0.10 0.02 0.00 0.00 0.00 0.10 0.00 0.05 0.17 0.13 0.00
Max money 130.39 48.41 0.00 0.00 29.88 42.37 167.60 137.97 138.46 607.62 0.00
ANN chosen 1 2 4 2 4 4 1 3 3 3 1

Date 19 20 21 22 23 26 27 28 29 30
Trades 1 5 4 209 1 6 2 1 0 1
Avg Profit/Trade 0.43 0.19 0.58 0.86 0.14 0.07 -0.08 0.04 NaN 0.01
Std. Profit ×10−3 3.18 3.22 9.04 111.16 1.03 1.25 1.39 0.29 0.00 0.09
Percentage Profitable 100 100 100 98.56 100 100 50 100 NaN 100
Max Profit 0.43 0.32 0.82 2.24 0.14 0.10 0.02 0.04 0.00 0.01
Max Loss 0.00 0.00 0.00 1.30 0.00 0.00 0.18 0.00 0.00 0.00
Average Trade Duration (sec) 0.00 0.20 56.25 1.18 2.00 54.00 49.50 3.00 NaN 7.00
Max Drawdown 0.00 0.00 0.15 1.56 0.04 0.04 0.84 0.01 0.00 0.01
Max money 41.42 11.85 122.87 125.55 59.97 29.80 180.41 84.34 0.00 48.99
ANN chosen 1 4 2 4 4 4 4 1 3 2

TABLE 3
Results: Fixed Point Approximation - Model 2

Date 1 2 6 7 8 9 12 13 14 15 16
Trades 7 2 1 0 46 2 7 0 0 2 3
Avg Profit/Trade 0.10 0.03 0.06 NaN 0.07 0.30 0.71 NaN NaN 0.08 -0.01
Std. Profit ×10−3 3.51 0.56 0.47 0.00 11.32 3.97 21.90 0.00 0.00 0.89 0.42
Percentage Profitable 85.71 100.00 100.00 NaN 86.96 100.00 71.43 NaN NaN 100.00 66.67
Max Profit 0.38 0.06 0.06 0.00 1.47 0.44 2.70 0.00 0.00 0.12 0.02
Max Loss 0.00 0.00 0.00 0.00 0.12 0.00 0.33 0.00 0.00 0.00 0.05
Average Trade Duration (sec) 36.29 1.00 24.00 NaN 20.96 5.00 18.29 NaN NaN 0.00 6.00
Max Drawdown 0.06 0.01 0.00 0.00 0.26 0.10 0.55 0.00 0.00 0.12 0.05
Max money 181.79 46.03 73.71 0.00 197.80 42.37 1041.59 0.00 0.00 290.30 100.46
ANN chosen 3 3 4 2 2 4 2 3 3 3 3

Date 19 20 21 22 23 26 27 28 29 30
Trades 1 5 9 311 1 12 3 4 0 0
Avg Profit/Trade 0.43 0.19 0.33 0.73 0.14 0.03 -0.07 0.03 NaN NaN
Std. Profit ×10−3 3.18 3.22 9.76 121.53 1.03 0.99 1.59 0.45 0.00 0.00
Percentage Profitable 100.00 100.00 77.78 98.71 100.00 91.67 33.33 100.00 NaN NaN
Max Profit 0.43 0.32 0.83 2.24 0.14 0.08 0.03 0.04 0.00 0.00
Max Loss 0.00 0.00 0.16 1.30 0.00 0.01 0.20 0.00 0.00 0.00
Average Trade Duration (sec) 0.00 0.20 60.78 1.64 2.00 56.83 38.00 15.50 NaN NaN
Max Drawdown 0.01 0.00 0.41 1.56 0.04 0.12 0.78 0.03 0.00 0.00
Max money 26.90 11.85 236.89 125.55 59.97 29.75 180.45 12.47 0.00 0.00
ANN chosen 2 4 2 4 4 4 4 1 3 1

We need directional derivatives along the coordinate
axis. We would need a suitable value of h which we can
substitute in equation 13 to compute γi.

~ei = (0, 0, . . .︸ ︷︷ ︸
i−1

, 1, 0, 0, . . . , 0)︸ ︷︷ ︸
n−i

T (11)

γi = dF (~u, ei) (12)

= lim
h→0

F (~u+ h~ei)− F (~u)
h

(13)

APPENDIX B
CREATION OF FEASIBLE DATA VECTORS
Feasible data vectors are a set of true prices that have at
some point in time been achieved. Their construction is
as follows:

1) Wait till at least one trade is committed for each
input and output variable. No data vector would
be available before that point in the day.

2) The first data vector would hold the latest traded
price of each input and output data variable.

3) For each subsequent trade, where there is a change



7

in traded security price, we would generate a new
data vector, with the updated value of the traded
stock.

APPENDIX C
LINEAR APPROXIMATION

• Localised approximations: The numerical deriva-
tives are calculated at each point while trading. This
results in the change of the derivative and thus, the
calculated relationships are local to only the point.
Between opening and closing of a series of trades
we could be looking at different coefficients or a
different local pricing relationship. Yet, at all points
there has been a mispricing, allowing us to explore
market inefficiency.

• Fixed Point approximations: The numerical deriva-
tives are calculated only once for each arbitrage
trade sequence, at the point where trade is opened,
and the derivatives are kept constant until the trade
is eventually closed. This assumes that the values of
the derivatives remains constant for an entire trade
duration. The fixed point approximation may not be
the best pricing relationship for the entire duration
of the trade; yet, this could lead to useful insights
and simplifications.

REFERENCES

Ersoy, O. (1990). Tutorial at hawaii international confer-
ence on systems sciences.

Gatev, Evan, Goetzmann, N. William, Rouwenhorst, and
K. Geert (2006). Pairs trading: Performance of a
relative-value arbitrage rule. Review of Financial Stud-
ies 19(3), 797–827.

Hornik, K., M. Stinchcombe, and H. White (1989). Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks 2(5), 359–366.

Huang, Z., H. Chen, C.-J. Hsu, W.-H. Chen, and S. Wu
(2004). Credit rating analysis with support vector
machines and neural networks: a market comparative
study. Decision Support System 37(4), 543–558.

Jasic, T. and D. Wood (2004). The profitability of daily
stock market indices trades based on neural network
predictions: Case study for the s&p 500, dax, topix
and ftse in the period 1965-1999. Applied Financial
Economics 14, 285–297.

Kaastra, I. and M. S. Boyd (1996). Designing a neural
network for forecasting financial and economic time
series. Neurocomputing 10(3), 215–236.

Katz, J. (1992, April). Developing neural network fore-
casters for trading. Technical Analysis of Stocks and
Commodities, 58–70.

Kuan, C.-M. and T. Liu (1995, Oct.-Dec.). Forecasting ex-
change rates using feedforward and recurrent neural
networks. Journal of Applied Econometrics 10(4), 347–64.

Levenberg, K. (1944). A method for the solution of
certain nonlinear problems in least squares. Quarterly
of Applied Mathematics 2(2).

Marquardt, D. W. (1963). An algorithm for least-
squares estimation of nonlinear parameters. J. Soc. In-
dustr. Appl. Math. 11(1), 431–444.

Pendharkar, P. C. (2005). A threshold-varying artificial
neural network approach for classification and its
application to bankruptcy prediction problem. Comput.
Oper. Res. 32(10), 2561–2582.

Soros, G. (1994). The Alchemy of Finance: Reading the Mind
of the Market. John Wiley & Sons.


	Introduction
	Review of Literature
	Trading Strategy And Deployment
	ETF Arbitrage
	Pricing relationship
	Profit/Loss Analysis

	Artificial Neural Networks
	Variable selection
	Data Preprocessing
	Neural Network Topology
	Neural Network Training
	Training, testing and validation sets

	Evaluation Criterion

	Experimental Results
	Data and Neural Network
	Trading Rules
	Model 1
	Model 2

	Results

	Conclusion and Further Work
	Appendix A: Calculation of derivative using discrete data
	Appendix B: Creation of feasible data vectors
	Appendix C: Linear approximation

