
An overview of the XTR public key system

Arjen K. Lenstra1, Eric R. Verheul2

1 Citibank, N.A., and Technische Universiteit Eindhoven,
1 North Gate Road, Mendham, NJ 07945-3104, U.S.A.,

arjen.lenstra@citicorp.com
2 PricewaterhouseCoopers, GRMS Crypto Group,

Goudsbloemstraat 14, 5644 KE Eindhoven, The Netherlands,
eric.verheul@[nl.pwcglobal.com, pobox.com]

Abstract. XTR is a new method to represent elements of a subgroup
of a multiplicative group of a finite field. Application of XTR in cryp-
tographic protocols leads to substantial savings both in communication
and computational overhead without compromising security. This paper
describes and explains the techniques and properties that are relevant
for the XTR cryptosystem and its implementation. It is based on the
material from [10–12, 27].

1 Introduction

XTR stands for ‘ECSTR’, which is an abbreviation for Efficient and Compact
Subgroup Trace Representation. It is a novel method that makes use of traces to
represent and calculate powers of elements of a subgroup of a finite field. XTR
is not the first method to do so. The LUC cryptosystem (cf. [24], and also [13,
17, 18, 22]) uses the trace over GF(p) to represent elements of the order p + 1
subgroup of GF(p2)∗. Compared to the traditional representation this leads to a
factor 2 reduction in the representation size. The variant described in [7] uses the
subgroup of order p2 +p+1 of GF(p3)∗ instead, but as a result sizes are reduced
by only a factor 1.5. XTR uses the trace over GF(p2) to represent elements of the
order p2−p+1 subgroup of GF(p6)∗, thereby achieving a factor 3 size reduction.
Also, the resulting calculations are appreciably faster than using the standard
representation. The factor 3 size reduction was first achieved – at much lower
speed than XTR, but using the same subgroup – in the predecessor paper [3].

From a security point of view, XTR is a traditional discrete logarithm system:
for its security it relies on the difficulty of solving discrete logarithm related prob-
lems in the multiplicative group of a finite field. Thus, XTR is not based on any
new primitive or new allegedly hard problem – on the contrary, it is based on the
primitive underlying the very first public key cryptosystem, the Diffie-Hellman
key agreement protocol. Other advantages of XTR are its very fast parameter
and key selection (much faster than RSA, orders of magnitude faster than ECC),
small key sizes (much smaller than RSA, comparable with ECC for current se-
curity settings), and speed (overall comparable with ECC for current security

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


settings). Combined with its very easy programmability, this makes XTR an ex-
cellent public key system for a very wide variety of environments, ranging from
smart cards to web servers, without the need to share system parameters with
other users (as is often the case in ECC systems). For actual implementation
results and comparisons with other cryptosystems, see [10, Subsection 4.4].

The purpose of this paper is to present a unified description of the XTR
results obtained so far (cf. [10–12,27]). Proofs are included only inasmuch they
are required to implement XTR; all other proofs can be found in the original
papers on which this survey is based. An outline of the paper is as follows:

– Section 2 introduces the mathematics of XTR including the basic parameters
and the fundamental algorithms to calculate traces of powers.

– Section 3 describes the selection of XTR parameters and keys.
– Section 4 contains XTR-based encryption schemes, providing confidentiality

services.
– Section 5 focuses on XTR-based digital signature schemes, providing au-

thentication and non-repudiation services, and includes methods to reduce
public key sizes for these applications.

– Section 6 describes how to efficiently verify that data exchanged during XTR-
based protocols are correctly formatted. Such checks can be used to prevent
so-called subgroup based attacks.

– Section 7 summarizes the most relevant security properties of XTR. This
includes a result providing evidence that the XTR group is more secure
than an algebraically isomorphic supersingular elliptic curve over GF(p2),
thereby settling a problem posed by [16].

2 Fundamentals of XTR

2.1 XTR supergroup and XTR group

Many cryptographic protocols used to be based on a generator of the full mul-
tiplicative group of a finite field. Schnorr introduced the idea to replace this
generator by the generator of a relatively small subgroup of sufficiently large
prime order q (cf. [25]). This same idea is used in XTR in a specific setting,
namely XTR uses a subgroup of prime order q of the order p2 − p + 1 subgroup
of GF(p6)∗. The latter group is referred to as the XTR supergroup and the order
q subgroup 〈g〉 generated by g is referred to as the XTR (sub)group. The XTR
supergroup is not contained in any proper subfield of GF(p6) (cf. [9]). Combined
with the choice of q it follows that computing discrete logarithms in 〈g〉 is as
hard, in general, as it is in GF(p6)∗ (cf. [10, Section 5]).

The reason that XTR uses this specific subgroup 〈g〉 is not just that it pro-
vides the full GF(p6)∗ security, but also that the elements of the XTR super-
group, and thus of 〈g〉, allow a very efficient representation, at a small cost: if
one is willing to give up the distinction between elements and their conjugates
over GF(p2), then not only elements of the XTR supergroup can be represented
using an element of GF(p2) as opposed to GF(p6) (i.e., just a third of the usual

2



number of bits). But also calculations take place in GF(p2) instead of GF(p6)
and can thus be performed much faster than usual. As shown in Subsection 2.3
below, this is all a consequence of the particularly nice form of the minimal
polynomial over GF(p2) of the elements of the XTR supergroup. First, however,
it is described how computations in GF(p2) can be done efficiently.

2.2 Arithmetic operations in GF(p2)

As set forth in Subsection 2.1 above, a representation of GF(p2) is needed that
allows efficient arithmetic operations, where p is a prime such that p2 − p + 1
has a sufficiently large prime factor q. Here it is indicated how this can be done,
irrespective of the existence of q. Selection of p (and q) is described in Section 3.

Let p be a prime that is 2 mod 3. It follows that (X3−1)/(X−1) = X2+X+1
is irreducible over GF(p) and that the roots α and αp form an optimal normal
basis for GF(p2) over GF(p), i.e., GF(p2) ∼= {x1α+x2α

p: x1, x2 ∈ GF(p)}. With
αi = αi mod 3 it follows that

GF(p2) ∼= {x1α + x2α
2: α2 + α + 1 = 0 and x1, x2 ∈ GF(p)}.

Note that in this representation of GF(p2) an element t of GF(p) is represented
as −tα−tα2, e.g. 3 is represented as −3α−3α2. The cost of arithmetic operations
in GF(p2) follows from Lemma 2.21 below.

Lemma 2.21 [10, Lemma 2.1.1] Let x, y, z ∈ GF(p2) with p ≡ 2 mod 3. Not
counting additions or subtractions in GF(p):
i. computing xp is for free;
ii. computing x2 takes two multiplications in GF(p);
iii. computing x · y takes three multiplications in GF(p);
iv. computing x · z − y · zp takes four multiplications in GF(p).

Proof. Let x = x1α+x2α
2, y = y1α+y2α

2, z = z1α+z2α
2 ∈ GF(p2). To prove i

observe that
xp = xp

1α
p + xp

2α
2p = x2α + x1α

2.

To prove ii, write

(x1α + x2α
2)2 = x2(x2 − 2x1)α + x1(x1 − 2x2)α

2.

Under the reasonable assumption that a squaring in GF(p) takes 80% of the time
of a multiplication in GF(p) (cf. [5]), this is faster than the three squarings in
GF(p) that would result if x2 were computed using the Karatsuba-like approach
that is used for iii. To compute

x · y = (x2y2 − x1y2 − x2y1)α + (x1y1 − x1y2 − x2y1)α
2,

compute x1 · y1, x2 · y2, and (x1 +x2) · (y1 + y2), so that x1 · y2 +x2 · y1 and thus
x · y follow using four subtractions. This proves iii. Finally, iv follows from

x · z − y · zp = (z1(y1 − x2 − y2) + z2(x2 − x1 + y2))α +

(z1(x1 − x2 + y1) + z2(y2 − x1 − y1))α
2.

3



2.3 Traces

The conjugates over GF(p2) of h ∈ GF(p6) are h, hp2

, and hp4

. The sum of the

conjugates over GF(p2) of h ∈ GF(p6) is known as the trace Tr(h) = h+hp2

+hp4

over GF(p2) of h. From this definition and the fact that hp6

= 1 it follows that

Tr(h)p2

= Tr(h), so that Tr(h) ∈ GF(p2). Furthermore,

Tr(h1 + h2) = Tr(h1) + Tr(h2) and Tr(c · h1) = c · Tr(h1)

for h1, h2 ∈ GF(p6) and c ∈ GF(p2). That is, the trace over GF(p2) is GF(p2)-
linear. Unless specified otherwise, conjugates and traces in this paper are over
GF(p2).

Now let g ∈ GF(p6)∗ be of order > 3 and dividing p2 − p + 1. As argued
in Subsection 2.1 the subgroup 〈g〉 is as secure, with respect to the discrete
logarithm related problems, as the full multiplicative group GF(p6)∗, assuming
a sufficiently large prime divides the order of g. For that reason g is later chosen
as an element of order q dividing p2−p+1. For the present purposes, however, q
is not needed and it suffices to take g of order > 3 and dividing p2 − p + 1.

Because p2 ≡ p−1 mod p2−p+1 and p4 ≡ −p mod p2−p+1, the conjugates
of g are g, gp−1 and g−p, so that Tr(g) = g + gp−1 + g−p. It follows that the
product of the conjugates equals 1, so that the polynomial (X−g)(X−gp−1)(X−
g−p) has the form X3 − Tr(g)X2 + uX − 1, where

u = g · gp−1 + g · g−p + gp−1 · g−p = gp + g1−p + g−1 = Tr(g)p ∈ GF(p2)

(the last equality follows from 1 − p ≡ −p2 and −1 ≡ p2 − p, both modulo
p2 − p + 1). Thus

(X − g)(X − gp−1)(X − g−p) = X3 − Tr(g)X2 + Tr(g)pX − 1 ∈ GF(p2)[X ]

is actually the minimal polynomial of g over GF(p2), and this polynomial – and
thereby g’s conjugates – is fully determined by Tr(g). This is the fundamental
observation underlying XTR. The same holds for any power of g: for any integer n
the conjugates of gn are the roots of X3−Tr(gn)X2+Tr(gn)pX−1 ∈ GF(p2)[X ],
and the latter polynomial is fully determined by Tr(gn).

This observation is useful for cryptographic purposes if there is a way to
efficiently compute Tr(gn) given Tr(g): in cryptographic protocols gn ∈ GF(p6)
can then be replaced by Tr(gn) ∈ GF(p2), thereby obtaining a saving of a factor 3
in the representation size. It is shown in Algorithm 2.35 below that Tr(gn) can
indeed be computed quickly given Tr(g) – it turns out that this computation
can be done much faster than computing gn given g, so that a considerable speed
advantage is obtained as well.

Definition 2.31 [10, Definition 2.3.1] For c ∈ GF(p2) define

F (c, X) = X3 − cX2 + cpX − 1 ∈ GF(p2)[X ],

and define τ(c, n) = hn
0 +hn

1 +hn
2 for n ∈ Z, where h0, h1, h2 are the (not neces-

sarily distinct) roots of F (c, X) in GF(p6). The shorthand cn is used for τ(c, n).

4



The definition of F (c, X) for all c in GF(p2) is more general than implied by
the argument before Definition 2.31. There only c are considered of the form
Tr(g) for g of order > 3 and dividing p2 − p + 1. The more general definition
allows the application in Section 3. For the present purposes, if c = Tr(g) then
cn = Tr(gn) (as argued above), which makes fast computation of cn relevant.
This can be done based on the following properties of cn and F (c, X).

Lemma 2.32 [10, Lemmas 2.3.2 and 2.3.4]

i. c = c1.
ii. c−n = cnp = cp

n for n ∈ Z.
iii. cn ∈ GF(p2) for n ∈ Z.
iv. cu+v = cu · cv − cp

v · cu−v + cu−2v for u, v ∈ Z.
v. Either all hj have order dividing p2 − p + 1 and > 3 or all hj ∈ GF(p2). In

particular, F (c, X) is irreducible if and only if its roots have order dividing
p2 − p + 1 and > 3.

vi. F (c, X) is reducible over GF(p2) if and only if cp+1 ∈ GF(p).

Corollary 2.33 [10, Corollary 2.3.5] Let c, cn−1, cn, and cn+1 be given.

i. Computing c2n = c2
n − 2cp

n takes two multiplications in GF(p).
ii. Computing cn+2 = c ·cn+1−cp ·cn +cn−1 takes four multiplications in GF(p).
iii. Computing c2n−1 = cn−1 · cn − cp · cp

n + cp
n+1 takes four multiplications in

GF(p).
iv. Computing c2n+1 = cn+1 · cn − c · cp

n + cp
n−1 takes four multiplications in

GF(p).

Proof. Use Lemmas 2.21 and 2.32.

Definition 2.34 [10, Definition 2.3.6] Let Sn(c) = (cn−1, cn, cn+1) ∈ GF(p2)3.

Algorithm 2.35 (Computation of Sn(c) given n and c)
[10, Algoritm 2.3.7]

– If n < 0, apply this algorithm to −n and c, and apply Lemma 2.32.ii to the
resulting value.

– If n = 0, then S0(c) = (cp, 3, c) (cf. Lemma 2.32.ii).
– If n = 1, then S1(c) = (3, c, c2 − 2cp) (cf. Corollary 2.33.i).
– If n = 2, use Corollary 2.33.ii and S1(c) to compute c3 and thereby S2(n).
– Otherwise, to compute Sn(c) for n > 2 define S̄i(c) = S2i+1(c) and let

m̄ = n. If m̄ is even, then replace m̄ by m̄ − 1. Let m̄ = 2m + 1, k = 1, and
compute S̄k(c) = S3(c) using Corollary 2.33.ii and S2(c).
Let m =

∑r
j=0 mj2

j with mj ∈ {0, 1} and mr = 1. For j = r−1, r−2, . . . , 0
in succession do the following:
• If mj = 0 then use

S̄k(c) = (c2k, c2k+1, c2k+2) to compute S̄2k(c) = (c4k, c4k+1, c4k+2)

(using Corollary 2.33.i for c4k and c4k+2 and Corollary 2.33.iii for c4k+1).

5



• If mj = 1 then use

S̄k(c) = (c2k, c2k+1, c2k+2) to compute S̄2k+1(c) = (c4k+2, c4k+3, c4k+4)

(using Corollary 2.33.i for c4k+2 and c4k+4 and Corollary 2.33.iv for
c4k+3).
Comment The great similarity between the computation for mj = 0

and mj = 1 makes this algorithm much less susceptible to environ-
mental attacks than usual exponentiation routines.

• Replace k by 2k + mj .

After this iteration k = m and Sm̄(c) = S̄m(c). If n is even use

Sm̄(c) = (cm̄−1, cm̄, cm̄+1) to compute Sm̄+1(c) = (cm̄, cm̄+1, cm̄+2)

(using Corollary 2.33.ii) and replace m̄ by m̄+1. As a result Sn(c) = Sm̄(c).

Theorem 2.36 [10, Theorem 2.3.8] Given the sum c of the roots of F (c, X), the
sum cn of the nth powers of the roots of F (c, X) can be computed in 8 log2(n)
multiplications in GF(p).

Thus, given the representation Tr(g) ∈ GF(p2) of the conjugates of g, the rep-
resentation Tr(gn) ∈ GF(p2) of the conjugates of the nth power of g can be
computed at the cost of 8 log2(n) multiplications in GF(p), for any integer n.
This compares quite favorably to the speed of the computation of gn ∈ GF(p6)
given g ∈ GF(p6) (cf. [10, Subsection 2.4]).

Before cryptographic applications of this alternative representation of the
elements of 〈g〉 can be discussed, it remains to show how p, q, and Tr(g) are
chosen.

3 XTR parameter and key selection

3.1 Selection of p and q

As indicated in Subsection 2.1 primes p and q have to be selected in such a way
that q divides p2 − p + 1, and such that the resulting fields and subgroups are
large enough to withstand known attacks. Furthermore, in order to be able to
use the fast GF(p2) arithmetic described in Subsection 2.2, the prime p should
be 2 mod 3. Primes p that are 1 mod 3 can be used as well, but they may not
always achieve the same speed.

Let P and Q denote the bit lengths of the primes p and q to be generated,
respectively. The prime p should be such that the field GF(p6) cannot be effec-
tively attacked using the Discrete Logarithm variant of the Number Field Sieve,
and the prime q should be such that an order q subgroup cannot be effectively at-
tacked using Pollard’s rho method. For current security levels, a choice where 6P
is close to 1024 and Q is close to 160 is acceptable. Choosing P much smaller
than Q cannot be recommended given current cryptanalytic methods.

6



In principle p may also be a non-trivial prime power (cf. [10, Section 6]). This
is, however, incompatible with the first two methods presented in this Subsection,
and makes selection of a proper p and q in general much harder. It can be used
in conjunction with Algorithm 3.13, but not efficiently if q must be much smaller
than intended there.

A detailed analysis of the run times of the algorithms in this Subsection is
straightforward and left to the reader.

Algorithm 3.11 (Selection of q and ‘nice’ p) [10, Algorithm 3.1.1]

1. Find r ∈ Z such that q = r2 − r + 1 is a Q-bit prime.
2. Find k ∈ Z such that p = r + k · q = kr2 +(1− k)r + k is a P -bit prime that

is 2 mod 3.

Algorithm 3.11 is very fast and can be used to find primes p that satisfy a
second degree polynomial with small coefficients. Such p lead to fast arithmetic
operations in GF(p). In particular if the search for k is restricted to k = 1 (i.e.,
search for an r such that both r2 − r + 1 and r2 + 1 are prime and such that
r2+1 ≡ 2 mod 3, thereby slowing down Algorithm 3.11 considerably) the primes
p have a very nice form; note that in this case r must be even and p ≡ 1 mod 4.

On the other hand, such ‘nice’ p may be undesirable from a security point
of view because they may make application of the Discrete Logarithm variant of
the Number Field Sieve easier. Another method to generate p and q that does
not have this disadvantage (and thus neither the advantage of fast arithmetic
modulo p) and that is about equally fast, is the following.

Algorithm 3.12 (Selection of q and p) [10, Algorithm 3.1.2]

1. First, select a Q-bit prime q ≡ 7 mod 12.
2. Find the roots r1 and r2 of X2 − X + 1 mod q.

Comment It follows from q ≡ 1 mod 3 and quadratic reciprocity that r1

and r2 exist. Since q ≡ 3 mod 4 they can be found using a single q+1
4

th

powering modulo q.
3. Find k ∈ Z such that p = ri + k · q for i = 1 or 2 is a P -bit prime that is

2 mod 3.

In Section 3.5 a fast algorithm is given to verify that an element c ∈ GF(p2)
is the trace of an element of the XTR supergroup: according to Theorem 3.55
this can be done at the cost of about 1.8 log2(p) multiplications in GF(p). Ver-
ifying XTR subgroup membership, however, amounts to checking that cq = 3.
This costs 8 log2(q) multiplications in GF(p) (cf. Algorithm 2.35), and is thus
substantially more expensive than XTR supergroup membership verification. In
some applications (and in particular to avoid so-called subgroup attacks, cf. Sub-
section 6.1), XTR subgroup membership verification is required. In that case it
turns out to be practical to choose the size Q of the XTR subgroup close to the
size of the XTR supergroup: the amount of damage can in general be bounded
by 2P −Q, so that only limited damage can be done if 2P −Q is small and the
‘cheap’ XTR supergroup test is carried out instead of the expensive XTR sub-
group test. Furthermore, by using ‘short exponents’ (e.g. of size 170 bits, cf. [23])

7



in this setting, the use of a large XTR subgroup does not have a negative impact
on the speed of cryptographic operations. The best that can be achieved (given
that p = 2 mod 3) is to choose p such that (p2 − p + 1)/3 is prime (and equal
to q). The following straightforward algorithm determines satisfactory primes p
and q for such applications.

Algorithm 3.13 (Selection of large q and p) Select a P -bit prime p until
p2 − p + 1 is of the form q · s where q is a prime number and s is small.

Algorithm 3.13 can be improved by choosing p in such a way that some fixed
number of small primes does not divide (p2 − p + 1)/3.

An alternative way to render subgroup attacks mostly ineffective, is by choos-
ing p and q such that (p2−p+1)/q is a small multiple of a prime of the same order
of magnitude as q. Assuming that Q is only slightly smaller than P , finding such
p and q can be achieved by the following simple (but on average considerably
slower) adaptation of Algorithm 3.12.

Algorithm 3.14 (Selection of subgroup attack resistant q and p)

1. First, select a Q-bit prime q ≡ 7 mod 12.
2. Find the roots r1 and r2 of X2 − X + 1 mod q.
3. Find k ∈ Z such that p = ri + k · q for i = 1 or 2 is a P -bit prime that is

2 mod 3 and (p2 − p + 1)/q is of the form s · q′ for a small s and prime q′ of
at least Q bits.

3.2 Basic subgroup selection

Given p and q > 3, it remains to find an element c ∈ GF(p2) such that c = Tr(g)
for an element g ∈ GF(p6) of order q dividing p2−p+1. Note that finding Tr(g)
suffices and that g itself is not needed. But, given Tr(g), a generator g of the
XTR subgroup (cf. Subsection 2.1) can be found by determining any root of
F (Tr(g), X) (cf. Definition 2.31).

According to Lemma 2.32.v, if c ∈ GF(p2) is such that F (c, X) is irreducible,
then c is the trace of an element h ∈ GF(p6)∗ of order > 3 dividing p2 − p + 1.
Thus, if furthermore c(p2−p+1)/q 6= 3 (cf. Definition 2.31), which can be verified
using Algorithm 2.35 at the cost of 8 log2((p

2−p+1)/q) multiplications in GF(p),
then c(p2−p+1)/q is the trace of an element of order q. Consequently, Tr(g) can
be defined as c(p2−p+1)/q. It remains to find c ∈ GF(p2) such that F (c, X) is
irreducible. According to the following lemma, this can be done by randomly
picking c’s until F (c, X) is irreducible.

Lemma 3.21 [10, Lemma 3.2.1] For a randomly selected c ∈ GF(p2) the prob-
ability that F (c, X) ∈ GF(p2)[X ] is irreducible is about one third.

As shown in Subsections 3.3 and 3.5, testing F (c, X) for irreducibility for a
randomly selected c ∈ GF(p2) can be done very fast, but those methods require
additional code. The following method, based on Lemma 2.32.vi, requires only
Algorithm 2.35 and thus hardly any additional code.

8



Algorithm 3.22 (Computation of Tr(g)) [10, Algorithm 3.2.2]

1. Apply Algorithm 2.35 to n = p + 1 and a random c ∈ GF(p2) \ GF(p) to
compute cp+1.

2. If cp+1 ∈ GF(p) then return to Step 1.
3. Apply Algorithm 2.35 to n = (p2−p+1)/q and c to compute d = c(p2−p+1)/q.
4. If d = 3, then return to Step 1.
5. Let Tr(g) = d.

Theorem 3.23 [10, Theorem 3.2.3] Algorithm 3.22 computes an element of
GF(p2) that equals Tr(g) for some g ∈ GF(p6) of order q. It can be expected
to require 3q

q−1 applications of Algorithm 2.35 with n = p + 1 and q
q−1 applica-

tions with n = (p2 − p + 1)/q.

The next subsection contains a faster method to find the trace of a genera-
tor of the XTR subgroup, based on a more direct method to test F (c, X) for
irreducibility.

3.3 Subgroup selection using an irreducibility test

The roots of a third-degree equation can be computed directly by means of one of
Cardano’s classical formulas, more precisely Scipione del Ferro’s method (cf. [19,
page 559]).

Algorithm 3.31 (Scipione del Ferro, ∼1465-1526) To compute the roots
of f(X) = aX3 + bX2 + dX + e in a field of characteristic p 6= 2, 3, do the
following.

1. Compute the polynomial

f(X − b
3a )

a
= X3 + f1X + f0

with

f1 =
3ad − b2

3a2
and f0 =

27a2e − 9abd + 2b3

27a3
.

2. Compute the discriminant ∆ = f2
0 + 4(f1

3 )3 of the polynomial X2 + f0X −
(f1

3 )3, and compute its roots r1,2 = −f0±
√

∆
2 using the standard method to

compute the roots of a second-degree equation.
3. If r1 = r2 = 0, then let u = v = 0. Otherwise, let r1 6= 0, compute a cube

root u of r1, and let v = − f1

3u be a cube root of r2.
4. The roots of f(X) are

u + v − b

3a
, uw + vw2 − b

3a
, uw2 + vw − b

3a
,

where w ∈ GF(p2) is a non-trivial cube root of unity, i.e., w3 = 1 and
w2 + w + 1 = 0.

9



Lemma 3.32 With Algorithm 3.31 applied to f(X) = F (c, X) ∈ GF(p2)[X ]:

i. ∆ ∈ GF(p) (cf. [11, Lemma 3.3]).
ii. ∆ is a quadratic residue in GF(p) if and only if either F (c, X) is irreducible

in GF(p2)[X ] or all roots in GF(p2) of F (c, X) have order dividing p + 1
(cf. [11, Lemma 3.6]).

iii. F (c, X) ∈ GF(p2)[X ] is reducible over GF(p2) if and only if r1 satisfies

r
p(p+1)/3
1 = r

(p+1)/3
1 (i.e., r1 is a cube in GF(p2)) (cf. [11, Corollary 3.4]).

Algorithm 3.31 and Lemma 3.32 lead to the following irreducibility test.

Algorithm 3.33 (Irreducibility test) [11, Algorithm 3.5] To test F (c, X) ∈
GF(p2)[X ] for irreducibility over GF(p2) with p 6= 2, 3, do the following.

1. Compute

f0 =
−27 + 9cp+1 − 2c3

27
and f1 = cp − c2

3
∈ GF(p2).

2. If ∆ = f2
0 + 4(f1

3 )3 ∈ GF(p) (cf. Lemma 3.32.i) is a quadratic non-residue in
GF(p) then F (c, X) is reducible (cf. Lemma 3.32.ii).
Comment This step requires the computation of a Jacobi symbol.

3. Otherwise, compute r1 = −f0+
√

∆
2 ∈ GF(p2).

4. Compute y = r
(p+1)/3
1 ∈ GF(p2), then F (c, X) is irreducible if and only if

y 6= yp (cf. Lemma 3.32.iii.

Algorithm 3.34 (Computation of Tr(g))

1. Pick a random c ∈ GF(p2) \ GF(p) and use Algorithm 3.33 to test F (c, X)
for irreducibility.

2. If F (c, X) is reducible, then return to Step 1.
3. Apply Algorithm 2.35 to n = (p2−p+1)/q and c to compute d = c(p2−p+1)/q.
4. If d = 3, then return to Step 1.
5. Let Tr(g) = d.

Theorem 3.35 [11, Theorem 3.7] Finding the trace of a generator of the XTR
group, using Algorithm 3.34 takes an expected number

q

q − 1
(7.2 log2(p) + 8 log2((p

2 − p + 1)/q))

plus a small constant number of multiplications in GF(p).

Proof. According to Lemma 3.21, Algorithm 3.33 is called, on average, 3q
q−1

times. For half the calls, on average, ∆ in Step 2 is a quadratic non-residue,
and the cost is a small constant number of multiplications in GF(p). For the
other calls, first

√
∆ is computed at an expected cost of log2(p) squarings and

0.5 log2(p) multiplications in GF(p) (for a total of 1.3 log2(p) multiplications in
GF(p), cf. assumption in the proof of Lemma 2.21). This is followed by the

10



computation of y at an expected cost of log2(p) squarings and 0.5 log2(p) mul-
tiplications in GF(p2) (for a total of 3.5 log2(p) multiplications in GF(p), cf.
Lemma 2.21). Thus, for random c application of Algorithm 3.33 costs

1.3 + 3.5

2
log2(p) = 2.4 log2(p)

plus a small constant number of multiplications in GF(p), on average.

Thus, Algorithm 3.34, based on Scipione del Ferro’s method in Algorithm 3.31,
is more than 50% faster than Algorithm 3.22. Though useful, Algorithm 3.34
and Theorem 3.35 are just a side result of a more important consequence of
Algorithm 3.31, namely the key recovery method from Subsection 5.5. The next
two sections contain two even faster methods to find Tr(g). The first method
poses the additional restriction that p ≡ 2 or 5 mod 9 (i.e., p 6≡ 8 mod 9).

3.4 Subgroup selection when p 6≡ 8 mod 9

If p 6≡ 8 mod 9, then (Z9 − 1)/(Z3 − 1) = Z6 + Z3 + 1 ∈ GF(p)[Z] is irreducible
over GF(p), so that GF(p6) can be represented as GF(p)(ζ) where ζ6+ζ3+1 = 0.
This representation of GF(p6) allows symbolic calculation, i.e., irrespective of the
value of p, of the trace of the (p6 − 1)/(p2 − p + 1)th power of elements of the
form ζ + a, for random a ∈ GF(p). This follows from a more general argument
due to H.W. Lenstra, Jr. In particular (cf. [11, Proposition 4.3]),

Tr((ζ + a)(p
6−1)/(p2−p+1)) =

−3

a6 − a3 + 1

(

(a2 − 1)3α + a3(a3 − 3a + 1)α2
)

,

where it is shown that a6 − a3 + 1 6= 0. It follows that, for any a ∈ GF(p)∗,
a 6= ±1, the right hand side expression is the trace of an element of order
dividing p2−p+1 (cf. [11, Corollary 4.4]). With a = 2 and a = 1/2, this leads to
the following very fast method to initialize Tr(g) – obviously any a ∈ GF(p)∗,
a 6= ±1, can be used instead.

Algorithm 3.41 (Computation of Tr(g)) [11, Algorithm 4.5]

1. Let c = 27α+3α2

19 ∈ GF(p2).
2. Apply Algorithm 2.35 to n = (p2−p+1)/q and c to compute d = c(p2−p+1)/q.
3. If d 6= 3, then let Tr(g) = d and return success.

4. Otherwise, if d = 3, then replace c by −27α−24α2

19 ∈ GF(p2).
5. Apply Algorithm 2.35 to n = (p2 − p + 1)/q and c and recompute d =

c(p2−p+1)/q.
6. If d 6= 3, then let Tr(g) = d and return success.
7. Otherwise, if d = 3, then return failure.

The probability of failure of Algorithm 3.41 may be expected to be q−2, i.e.,
negligibly small. Its expected cost is about 8 log2((p

2 − p +1)/q) multiplications
in GF(p).

11



Although Algorithm 3.41 is a very fast method to find a proper Tr(g), it is
less general than the method from Subsection 3.3, and in particular does not
provide a faster F (c, X) irreducibility test. Because fast irreducibility testing
has other applications than just Tr(g)-initialization, improving the test from
Subsection 3.3 is relevant. In Subsection 3.5 below this is done by reformulating
the third-degree GF(p2)-irreducibility test as a third-degree GF(p)-irreducibility
test, and by carefully analysing the cost of the latter.

3.5 Subgroup selection using a faster irreducibility test

Definition 3.51 [12, Definition 2.1] For c ∈ GF(p2) let

P (c, X) = X3 + (cp + c)X2 + (cp+1 + cp + c − 3)X + c2p + c2 + 2 − 2cp − 2c.

It easily follows that P (c, X) is a polynomial in GF(p). The following result
indicates why it is relevant to consider P (c, X).

Corollary 3.52 [12, Corollary 2.5] F (c, X) is irreducible over GF(p2) if and
only if P (c, X) is irreducible over GF(p).

As shown in [12, Section 3], efficient application of Algorithm 3.31 to P (c, X)
requires an equivalent of Algorithm 2.35 for traces over GF(p). It is well known
how that is done; the details are given in Algorithm 3.53 below.

Algorithm 3.53 [12, Algorithm 3.4] To compute the trace Tr(yn) ∈ GF(p)
over GF(p) of yn ∈ GF(p2), given an integer n > 0 and the trace Tr(y) ∈ GF(p)
over GF(p) of y ∈ GF(p2) of order dividing p+1. This algorithm takes 1.8 log2(p)
multiplications in GF(p) (cf. assumption in the proof of Lemma 2.21).

1. Let n =
∑k

i=0 ni2
i with ni ∈ {0, 1} and nk 6= 0 and let v = Tr(y) ∈ GF(p).

2. Compute w = (v2 − 2) ∈ GF(p).
3. For i = k − 1, k − 2, . . . , 0 in succession, do the following.

– If ni = 1, then first replace v by vw−Tr(y) and next replace w by w2−2.
– If ni = 0, then first replace w by vw−Tr(y) and next replace v by v2−2.

4. Return Tr(yn) = v.

Algorithm 3.54 [12, Algorithm 3.5] To test P (c, X) = X3+p2X
2+p1X+p0 ∈

GF(p)[X ] for irreducibility over GF(p) with p 6= 2, 3, do the following.

1. Compute

f0 =
27p0 − 9p2p1 + 2p3

2

27
, f1 = p1 −

p2
2

3
∈ GF(p).

2. If ∆ = f2
0 + 4(f1

3 )3 ∈ GF(p) is a quadratic residue in GF(p), then P (c, X) is
reducible (cf. [12, Lemma 3.2]).
Comment This step requires the computation of a Jacobi symbol.

3. Otherwise, compute s = 2
f2

0
+∆

f2

0
−∆

∈ GF(p).

12



Comment According to [12, Lemma 3.3], s is the trace of rp−1
1 over GF(p),

where r1 = −f0+
√

∆
2 .

4. Apply Algorithm 3.53 to n = p+1
3 and Tr(y) = s to compute Tr(y(p+1)/3).

If Tr(y(p+1)/3) = 2, then P (c, X) is reducible.
Comment If the trace over GF(p) of (rp−1

1 )(p+1)/3 equals 2, then r1 is a
cube in GF(p2) and thus, according to [12, Lemma 3.2], P (c, X) is not
irreducible.

5. Otherwise, ∆ is a quadratic non-residue and r1 is not a cube in GF(p2) so
that, according to [12, Lemma 3.2], P (c, X) is irreducible over GF(p).

In the worst case Algorithm 3.54 costs 1.8 log2(p) plus a small constant number
of multiplications in GF(p). For half the random c ∈ GF(p2), however, ∆ is a
quadratic residue, and the cost is just a small constant number of multiplications
in GF(p). The proof of Theorem 3.55 below and its corollary follow.

Theorem 3.55 [12, Theorem 3.6] For c ∈ GF(p2) the irreducibility of the poly-
nomial F (c, X) = X3 − cX2 + cpX − 1 over GF(p2) can be tested at the cost of
at most m + 1.8 log2(p) multiplications in GF(p), for some small constant m.

Corollary 3.56 [12, Corollary 3.7] Finding the trace of a generator of the XTR
group can be expected to take about

q

q − 1
(2.7 log2(p) + 8 log2((p

2 − p + 1)/q))

multiplications in GF(p) (cf. Theorem 3.35).

The result of Corollary 3.56 is only about 2.7 log2(p) multiplications in GF(p)
slower than Algorithm 3.41, but is more general since it applies to all p ≡ 2 mod 3
and not only to p ≡ 2, 5 mod 9.

Remark 3.57 Algorithm 3.54 provides an efficient way to test if c ∈ GF(p2) is
the trace of an element of the XTR supergroup. That is, by choosing the size
of the XTR group close to the XTR supergroup, one obtains an efficient way to
determine XTR group membership modulo a small error. In Algorithm 3.13 it
is explained how such XTR parameters p and q can be found. In Section 6 it is
shown that this has an application in the prevention of ‘subgroup based attacks’.

4 XTR cryptographic schemes for confidentiality services

In any cryptosystem that relies on the (subgroup) discrete logarithm problem
the ordinary representation of subgroup elements can be replaced by the XTR
representation of subgroup elements of a multiplicative group of equivalent se-
curity. This section contains a description of some applications of XTR that
provide confidentiality services: Diffie-Hellman key agreement in Subsection 4.1
and ElGamal encryption in Subsection 4.2. In both schemes random exponents
modulo q are used. If q is chosen to be close to p2 − p + 1 (cf. Algorithm 3.13),
then much shorter random exponents, say of 170 bits, can be used instead if that
is desirable for computational efficiency (cf. [23]).

13



4.1 XTR-DH

4.11 XTR-DH key agreement. Let p, q, Tr(g) be shared XTR public key
data. If Alice and Bob want to agree on a secret key K they do the following.

1. Alice selects a random integer a ∈ [2, q− 3], applies Algorithm 2.35 to n = a
and c = Tr(g) to compute

Sa(Tr(g)) = (Tr(ga−1), T r(ga), T r(ga+1)) ∈ GF(p2)3,

and sends Tr(ga) ∈ GF(p2) to Bob.
2. Bob receives Tr(ga) from Alice, selects a random integer b ∈ [2, q−3], applies

Algorithm 2.35 to n = b and c = Tr(g) to compute

Sb(Tr(g)) = (Tr(gb−1), T r(gb), T r(gb+1)) ∈ GF(p2)3,

and sends Tr(gb) ∈ GF(p2) to Alice.
3. Alice receives Tr(gb) from Bob, applies Algorithm 2.35 to n = a and c =

Tr(gb) to compute

Sa(Tr(g)b) = (Tr(g(a−1)b), T r(gab), T r(g(a+1)b)) ∈ GF(p2)3,

and determines K based on Tr(gab) ∈ GF(p2) (but see Remark 7.13).
4. Bob applies Algorithm 2.35 to n = b and c = Tr(ga) to compute

Sb(Tr(g)a) = (Tr(ga(b−1)), T r(gab), T r(ga(b+1))) ∈ GF(p2)3,

and determines K based on Tr(gab) ∈ GF(p2).
Comment The ‘neighboring’ elements Tr(g(a−1)b) and Tr(g(a+1)b) com-

puted by Alice are in general different from Tr(ga(b−1)) and Tr(ga(b+1)),
the neighboring elements computed by Bob.

The communication and computational overhead of XTR-DH key agreement 4.11
are both about one third of traditional implementations of the Diffie-Hellman
protocol that are based on subgroups of multiplicative groups of finite fields, and
that achieve the same level of security (cf. Section 7.1).

4.2 XTR-ElGamal encryption

4.21 XTR-ElGamal encryption (cf. [6]). Let p, q, Tr(g) be XTR public
key data, either owned (and made public) by Alice or shared by all parties.
Furthermore, let Tr(gk) be a value computed and made public by Alice, for
some integer k selected (and kept secret) by Alice. Given (p, q, T r(g), T r(gk)),
Bob can encrypt a message M intended for Alice as follows.

1. Bob selects at random b ∈ [2, q− 3] and applies Algorithm 2.35 to n = b and
c = Tr(g) to compute

Sb(Tr(g)) = (Tr(gb−1), T r(gb), T r(gb+1)) ∈ GF(p2)3.

14



2. Bob applies Algorithm 2.35 to n = b and c = Tr(gk) to compute

Sb(Tr(gk)) = (Tr(g(b−1)k), T r(gbk), T r(g(b+1)k)) ∈ GF(p2)3.

3. Bob determines a symmetric encryption key K based on Tr(gbk) ∈ GF(p2).
4. Bob uses an agreed upon symmetric encryption method with key K to en-

crypt M , resulting in the encryption E.
5. Bob sends (Tr(gb), E) to Alice.

Comment The message sent by Bob consists of an ‘overhead part’ Tr(gb)
and a message part E. The length of the former is independent of the
length of M , but the length of the latter depends strongly on the length
of M and the type of symmetric encryption used.

4.22 XTR-ElGamal decryption. Using her knowledge of k, Alice decrypts
the message (Tr(gb), E) encrypted using XTR-ElGamal encryption 4.21 as fol-
lows.

1. Alice applies Algorithm 2.35 to n = k and c = Tr(gb) to compute

Sk(Tr(gb)) = (Tr(gb(k−1)), T r(gbk), T r(gb(k+1))) ∈ GF(p2)3.

2. Alice determines symmetric encryption key K based on Tr(gbk) ∈ GF(p2).
3. Alice uses the agreed upon symmetric encryption method with key K to

decrypt E, resulting in the encryption M .

The communication and computational overhead of XTR-based ElGamal en-
cryption 4.21 and decryption 4.22 (with communication overhead as explained
in Step 5 of 4.21) are both about one third of traditional implementations of the
ElGamal encryption and decryption protocols that are based on subgroups of
multiplicative groups of finite fields, and that achieve the same level of security
(cf. Section 7.1).

Remark 4.23 The type of encryption described in 4.21 is commonly referred to
as ‘hybrid encryption’, because the key K is used in conjunction with an agreed
upon symmetric key encryption method. In the non-hybrid version the message
is restricted to the key space and ‘encrypted’ using an invertible operation that
takes place in the key space, such as multiplication by the key. In 4.21 and with
K = Tr(gbk) this would amount to requiring that M ∈ GF(p2) and computing
E as K ·M ∈ GF(p2). Compared to non-hybrid traditional ElGamal encryption,
non-hybrid XTR-ElGamal encryption saves a factor three on the length of both
parts of the encrypted message, for messages that fit in the key space (of one
third of the ‘traditional’ size).

Remark 4.24 As is customary it is implicitly assumed in the decryption that
the first component of an ElGamal encrypted message represents a conjugate of
a power of g. In some situations this should be verified explicitly. A value, say c,
can be checked by verifying that c ∈ GF(p2) \ GF(p) (implying, in particular,
that c 6= 3), by applying Algorithm 2.35 to n = q and c to compute Sq(c) =
(cq−1, cq, cq+1), and by verifying that cq = 3. Other and more efficient techniques
are discussed in Section 6.

15



5 XTR cryptographic schemes for non-repudiation

services

5.1 Introduction

In this section two XTR applications are described that provide non-repudiation
services: Nyberg-Rueppel message recovery digital signatures in Subsection 5.3
and XTR-DSA in Subsection 5.4. Both schemes require computation of the prod-
uct of two powers of g. For the standard representation this can easily be done
using well known multi-exponentiation techniques in substantially less time than
required for two separate exponentiations. But if traces are used it is a relatively
complicated operation. In Subsection 5.2 below it is described how this com-
putation may be carried out in common cryptographic applications such as the
ones in Subsections 5.3 and 5.4.

5.11 XTR public key data for signature verification. As in Subsection 4.2,
Alice’s XTR public key data for digital signatures consist of p, q, Tr(g), and
Tr(gk) for a secret integer k that is known only to Alice. However, in addition
it is assumed that not only Tr(gk) but also Tr(gk−1) and Tr(gk+1) (and thus
Sk(Tr(g))) are available to the verifier. These additional GF(p2) elements are
either part of the public key, or they are reconstructed by the verifier. As shown
in Subsection 5.5, Tr(gk−1) (or Tr(gk+1)) can be reconstructed from p, q, Tr(g),
Tr(gk), and Tr(gk+1) (or Tr(gk−1)) using an explicit and easily computed for-
mula. Reconstruction of Tr(gk+1) (or Tr(gk−1)) given just (p, q, T r(g), T r(gk))
requires additional assumptions and a slightly more involved computation (cf.
Subsection 5.5).

5.2 Computing the trace of a product

Let Tr(g) ∈ GF(p2) and Sk(Tr(g)) ∈ GF(p2)3 be given for some secret integer k
with 0 < k < q. In Algorithm 5.27 below it is shown that Tr(ga · gbk) can be
computed efficiently for any a, b ∈ Z given Tr(g) and Sk(Tr(g), i.e., without
knowing k.

Definition 5.21 [10, Definition 2.4.1] Let C(V ) denote the center column of a
3 × 3 matrix V and let

A(c) =





0 0 1
1 0 −cp

0 1 c



 and Mn(c) =





cn−2 cn−1 cn

cn−1 cn cn+1

cn cn+1 cn+2





be 3 × 3-matrices over GF(p2) with c and cn as in Definition 2.31.

Lemma 5.22 [10, Lemma 2.4.2] For n, m ∈ Z

Sn(c) = Sm(c) · A(c)n−m and Mn(c) = Mm(c) · A(c)n−m.

16



Corollary 5.23 [10, Corollary 2.4.3]

cn = Sm(c) · C(A(c)n−m).

Lemma 5.24 [10, Lemma 2.4.4] The determinant of M0(c) equals

D = c2p+2 + 18cp+1 − 4(c3p + c3) − 27 ∈ GF(p).

If D 6= 0 then,

M0(c)
−1 =

1

D
·





2c2 − 6cp 2c2p + 3c − cp+2 cp+1 − 9
2c2p + 3c − cp+2 (c2 − 2cp)p+1 − 9 (2c2p + 3c − cp+2)p

cp+1 − 9 (2c2p + 3c − cp+2)p (2c2 − 6cp)p



 .

Lemma 5.25 [10, Lemma 2.4.5]

det(M0(Tr(g))) = (Tr(gp+1)p − Tr(gp+1))2 6= 0.

Combination of these results leads to the following corollary.

Corollary 5.26 [10, Lemma 2.4.6, Corollary 2.4.7]
Given Tr(g) and Sn(Tr(g)),

C(A(Tr(g))n) = M0(Tr(g))−1 · (Sn(Tr(g)))T

can be computed at the cost of a small constant number of operations in GF(p2).

Algorithm 5.27 (Computation of Tr(ga · gbk)) [10, Algorithm 2.4.8]
Let Tr(g), Sk(Tr(g)) (for unknown k), and a, b ∈ Z with 0 < a, b < q be given.
1. Compute e = a/b mod q.
2. Apply Algorithm 2.35 to n = e and c = Tr(g) to compute Se(Tr(g)).
3. Use Corollary 5.26 to compute C(A(Tr(g))e) based on Tr(g) and Se(Tr(g)).
4. Use Corollary 5.23 to compute Tr(ge+k) = Sk(Tr(g)) · C(A(Tr(g))e).
5. Apply Algorithm 2.35 to n = b and c = Tr(ge+k) to compute Sb(Tr(ge+k)).
6. Return Tr(g(e+k)b) = Tr(ga · gbk).

Theorem 5.28 [10, Theorem 2.4.9] Given M0(Tr(g))−1, Tr(g), and

Sk(Tr(g)) = (Tr(gk−1), T r(gk), T r(gk+1))

the trace Tr(ga · gbk) of ga · gbk can be computed at a cost of

8 log2(a/b mod q) + 8 log2(b) + 34

multiplications in GF(p).

Remark 5.29 Assuming that M0(Tr(g))−1 is computed once and for all (at
the cost of a small constant number of operations in GF(p2)), it follows that
Tr(ga · gbk) can be computed at a cost of 16 log2(q) + 34 multiplications in
GF(p). This is still substantially faster than traditional computation of ga · gbk

in GF(p6) using multi-exponentiation, but the speed-up factor drops from 3 (for
a single exponentiation) to about 1.75.

17



5.3 XTR-Nyberg-Rueppel signatures

This subsection contains a description of the XTR version of the Nyberg-Rueppel
(NR) message recovery signature scheme. XTR can in a similar way be used in
other ‘ElGamal-like’ signature schemes as illustrated in Subsection 5.4 below.

5.31 XTR-NR signature generation. To sign a message M containing an
agreed upon type of redundancy using the XTR version of the NR protocol,
Alice does the following:

1. Alice selects a random integer u ∈ [2, q − 3], and applies Algorithm 2.35 to
n = u and c = Tr(g) to compute

Su(Tr(g)) = (Tr(gu−1), T r(gu), T r(gu+1)) ∈ GF(p2)3.

2. Alice determines a symmetric encryption key K based on Tr(gu) ∈ GF(p2).
3. Alice uses an agreed upon symmetric encryption method with key K to

encrypt M , resulting in the encryption E.
4. Alice computes the (integer valued) hash h of E.
5. Alice computes s = (k · h + u) mod q ∈ {0, 1, . . . , q − 1}.
6. Alice’s resulting signature on M is (E, s).

5.32 XTR-NR signature verification. It is assumed that Alice’s XTR pub-
lic key is as described in 5.11 and thus contains Sk(Tr(g)). To verify Alice’s
signature (E, s) and to recover the signed message M , verifier Bob does the
following.

1. Bob checks that 0 ≤ s < q; if not failure.
2. Bob computes the hash h of E.
3. Bob replaces h by −h mod q ∈ {0, 1, . . . , q − 1}.
4. Bob applies Algorithm 5.27 to Tr(g), Sk(Tr(g)) (with k unknown to Bob),

a = s, and b = h to compute Tr(gs · ghk) (which equals Tr(gu)).
5. Bob determines a symmetric encryption key K based on Tr(gs · ghk) ∈

GF(p2).
6. Bob uses the agreed upon symmetric encryption method with key K to

decrypt E resulting in M .
7. The signature is accepted if and only if M contains the agreed upon redun-

dancy.

XTR-NR signature generation 5.31 and verification 5.32 are both considerably
faster than traditional implementations of the NR scheme that are based on
subgroups of multiplicative groups of finite fields of the same security level:
XTR-NR signature generation 5.31 is about three times faster than traditional
NR signature generation, and XTR-NR signature verification 5.32 is about 1.75
faster than the traditional method (cf. Remark 5.29). The length of the signa-
ture is identical to other variants of the hybrid version of the NR scheme (cf.
Remark 4.23): an overhead part of length depending on the desired security (i.e.,
the subgroup size) and a message part of length depending on the message itself
and the agreed upon redundancy and symmetric encryption.

18



5.4 XTR-DSA signatures

This subsection contains a description of the XTR version of the DSA signature
scheme. As in the original standard, [21], we assume that the size of q is 160
bits, the same size as the SHA-1 secure hash [20].

5.41 XTR-DSA signature generation. To sign a message M using the XTR
version of DSA, Alice does the following:
1. Alice selects a random integer u ∈ [2, q − 3].
2. Alice applies Algorithm 2.35 to n = u and c = Tr(g) to compute

Su(Tr(g)) = (Tr(gu−1), T r(gu), T r(gu+1)) ∈ GF(p2)3.

3. Alice writes Tr(gu) = x1α + x2α
2 and computes r = (x1 + p · x2) mod q. If

r = 0, then Alice goes back to Step 1.
4. Alice computes u−1 mod q.
5. Alice computes the hash h of M .

Comment The secure hash function SHA-1 (cf. [20]) is used in the Digital
Signature Standard (cf. [21]).

6. Alice computes s = u−1(h + k · r) mod q. If s = 0, then Alice goes back to
step 1.

7. Alice’s resulting signature on M is (r, s).

5.42 XTR-DSA signature verification. It is assumed that Alice’s XTR pub-
lic key is as described in 5.11 and thus contains Sk(Tr(g)). To verify Alice’s
signature (r, s) on message M , verifier Bob does the following.
1. Bob checks that 0 < r, s < q; if not failure.
2. Bob computes w = s−1 mod q.
3. Bob computes the hash h of M .
4. Bob computes u1 = w · h mod q and u2 = r · w mod q.
5. Bob applies Algorithm 5.27 to Tr(g), Sk(Tr(g)) (with k unknown to Bob),

a = u1, and b = u2 to compute v0 = Tr(gu1 · gk·u2) (which equals Tr(gu)).
6. Bob writes v0 = z1α + z2α

2 and computes v = (z1 + p · z2) mod q.
7. Bob accepts the signature if and only if v = r.

Remark 5.43 Note that if (r, s) is a valid signature on message M , then so
are (r, s · p2 mod q) and (r, s · p4 mod q). This is similar to the property of the
ECC-DSA signature scheme (cf. [1]) that if (r, s) is a valid signature, then so is
(r,−s mod q). In applications where this may cause problems, uniqueness can
be achieved by selecting the signature for which s · p2i mod q, with i = 0, 1, 2, is
minimal. Of course, the verification should then check this as well.

5.5 Key size reduction

In this subsection it is shown that Tr(gk+1) and Tr(gk−1) can be derived from
Tr(g) and Tr(gk), if the private key k is properly chosen. Throughout this
section let c = Tr(g) and cn = Tr(gn) for n ∈ Z. First of all, ck−1 (or ck+1)
can be computed from c, ck, and ck+1 (or ck−1) in a small constant number of
operations in GF(p). This follows from Theorem 5.51 and Algorithm 5.52 below.

19



Theorem 5.51 [11, Theorem 5.1]

1. If k 6= p, 1 − p mod p2 − p + 1 then cpck−1 − cck 6= 0 and

ck+1 =
cp
k(c2 − 3cp) − cp

k−1(c
2p − 3c) − c2

k−1c + c2
k(cp − c2) + ckck−1c

p+1

cpck−1 − cck
.

2. If k 6= −p, p− 1 mod p2 − p + 1 then cck+1 − cpck 6= 0 and

ck−1 =
cp
k(c2p − 3c) − cp

k+1(c
2 − 3cp) − c2

k+1c
p + c2

k(c − c2p) + ckck+1c
p+1

cck+1 − cpck
.

Algorithm 5.52 (Inversion in GF(p2)) [11, Algorithm 5.2] Let x = x1α +
x2α

2 ∈ GF(p2). Compute t = (x1x2 + (x1 − x2)
2)−1 ∈ GF(p), then 1/x =

t(x2α + x1α
2) ∈ GF(p2).

It follows that under a mild restriction on the private key k, if c and ck are part
of the public key, then either ck+1 or ck−1 suffices to compute ck−1 or ck+1, in
order to reconstruct the value Sk(Tr(g)) required for signature verification. It
is not hard to see that neither ck+1 nor ck−1 must in principle be part of the
public key: they can both be computed by multiplying or dividing the roots
of F (c, X) and F (ck, X), leading to 3 possible representations ck+1 (and ck−1).
Two bits in the public key suffice to indicate which of the representations is
the correct one. In general, finding the roots of F (c, X) and F (ck, X) requires a
more substantial computation than is acceptable for the recipient of the public
key. If p 6≡ 8 mod 9, then this idea can be made to work much more efficiently,
however, and this can be done in such a way that the two additional bits are not
even required. This is shown in the remainder of this subsection. The description
focuses on reconstructing ck+1 from c and ck, but works in a very similar way
for ck−1.

Roughly speaking, Algorithm 3.31 is used to compute explicit representations
of g and gk in GF(p6) = GF(p)[X ]/(X6 + X3 + 1) (cf. Section 3.3) based on
their representations c and ck, respectively. The value of ck+1 then follows as
the trace over GF(p2) of g · gk ∈ GF(p6), where k is chosen in such a way that
ck+1 is ‘minimal’ in some sense. How this is done is shown first, in 5.53 below,
after which the reconstruction of ck+1 is described in 5.54.

5.53 Selecting k. After selecting the private key k, its owner applies Algo-
rithm 2.35 to n = k and c = Tr(g) to compute Sk(Tr(g)) = (ck−1, ck, ck+1).

Because gk, gkp2

, and gkp4

are conjugates, the same ck is obtained for n = k,
n = kp2 mod q, and n = kp4 mod q. The side result ck+1 obtained from the com-
putation of ck, however, is in general not the same for n = k, n = kp2 mod q,
and n = kp4 mod q, simply because Tr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) are,

in general, not the same. Namely, unless k = 0 mod q, the elements gk+1, gkp2+1,
and gkp4+1 are not conjugates over GF(p2), despite the fact that gk, gkp2

, and

gkp4

are conjugates over GF(p2).
It follows that for any pair (c, ck) there are in principle three different pos-

sible values for ck+1: one that corresponds to the selected private key k, and

20



two that correspond to the related but ‘wrong’ values kp2 mod q and kp4 mod q.
This ambiguity, which will have to be resolved by any method to recover ck+1

from (c, ck), is avoided in the following simple manner: the owner of k com-

putes all three values Tr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) for the k of his
choice, and next replaces k by k, kp2 mod q, or kp4 mod q depending on which
of Tr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) is the ‘smallest’. As a consequence, ck+1

is the ‘smallest’ possibility given the pair (c, ck). The security is not affected by
changing the initially selected k in this way. It remains to define what is meant
by ‘smallest’ and how Tr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) are computed.

For x ∈ GF(p) let π0(x) ∈ {0, 1, . . . , p − 1} be the image of x under the
‘natural’ bijection between GF(p) and {0, 1, . . . , p − 1}. For x = x1α + x2α

2 ∈
GF(p2) let π(x) = π0(x1) + p · π0(x2) (cf. Subsection 2.2) be a bijection from
GF(p2) to {0, 1, . . . , p2 − 1}. The mapping π induces an ordering on GF(p2) and
‘smallest’ is defined as smallest with respect to this ordering.

To compute Tr(gk+1), Tr(gkp2+1), and Tr(gkp4+1) the owner of k can simply
apply Algorithm 2.35 three times, namely with n = k, n = kp2 mod q, and
n = kp4 mod q, at a total cost of about 24 log2(q) multiplications in GF(p)
(cf. Theorem 2.36). A conceptually more complicated method that saves about
8 log2(q) multiplications in GF(p) is as follows. Compute (ck−1, ck, ck+1) and
(c−p−1, c−p, c−p+1), at the cost of 16 log2(q) multiplications in GF(p), followed
by ck±2 and c2 = c2 − 2cp (cf. Corollary 2.33.ii and i). Use these values to

compute Tr(gkp2+1) by observing that

Tr(gkp2+1) = Tr(gkp2−p3

) = Tr(g(k−p)p2

) = Tr(gk−p)

and





Tr(gk−p−1)
Tr(gk−p)

Tr(gk−p+1)





T

=





c−p−1

c−p

c−p+1





T 



cp
2 cp 3

cp 3 c
3 c c2





−1 



ck−2 ck−1 ck

ck−1 ck ck+1

ck ck+1 ck+2





(cf. Lemmas 5.22 and 5.25). This takes a small constant number of multiplica-
tions in GF(p). With

Tr(gkp2−1) = Tr(gk+p)

a similar matrix identity involving (cp−1, cp, cp+1) (obtained using c−n = cp
n,

cf. Lemma 2.32.ii) is used to compute Tr(gkp2−1). The same method is then

used to compute Tr(gkp4+1) based on (Tr(gkp2−1), T r(gkp2

), T r(gkp2+1)) (where

Tr(gkp2

) = ck) and (c−p−1, c−p, c−p+1).

5.54 Reconstructing ck+1. Given (c, ck) with k chosen as explained in 5.53,
the correct (i.e., the ‘smallest’) ck+1 is reconstructed by means of repeated ap-
plication of Algorithm 3.31. To get Algorithm 3.31 to work for this specific
application, two auxiliary algorithms are needed.

Algorithm 5.55 (Exponentiation in GF(p2)) [11, Algorithm 5.3] To com-
pute xe ∈ GF(p2) given x ∈ GF(p2) and positive integer e, do the following.

21



1. Let e0, e1 ∈ {0, 1, . . . , p − 1} be such that e0 + e1p = e mod (p2 − 1) and
let ei =

∑

j eij2
j , with eij ∈ {0, 1} for i = 0, 1 and j ≥ 0, be the binary

representations of e0 and e1.
2. Let n be the largest index such that ein 6= 0 for i = 0 or 1.
3. Compute xp+1 = x · xp ∈ GF(p).
4. Let y = 1 in GF(p2). For j = n, n − 1, . . . , 0 in succession do the following:

– if e0j = 1 and eij = 1, then replace y by y · xp+1;
– if e0j = 1 and e1j = 0, then replace y by y · x;
– if e0j = 0 and e1j = 1, then replace y by y · xp;
– if j > 0, then replace y by y2.

Comment Note that this is similar to multi-exponentiation.

5. Return y = xe ∈ GF(p2).

Lemma 5.56 [11, Lemma 5.4] The expected cost of Algorithm 5.55 is 4 log2(p)
multiplications in GF(p).

Algorithm 5.57 (Cube root in GF(p2) if p 6≡ 8 mod 9) [11, Algorithm 5.5]
To compute a cube root in GF(p6) of r ∈ GF(p2) perform the following steps.

1. If p ≡ 2 mod 9, then let e = 8p2−5
9 , otherwise, if p ≡ 2 mod 9 then let

e = p2+2
9 .

2. Apply Algorithm 5.55 to x = r and e to compute t = re ∈ GF(p2).
3. Compute s = t3 ∈ GF(p2) and determine j = 0, 1 or 2 such that αjs = r.
4. Return a cube root ζjt ∈ GF(p6) of r, where ζ is as in Subsection 3.3.

Comment The result is in GF(p2) if j = 0.

Algorithm 5.58 (Key recovery) [11, Algorithm 5.6] To compute the ‘small-
est’ ck+1 corresponding to (c, ck), do the following.

1. Apply Algorithm 3.31 to f(X) = F (c, X) to compute a single root g ∈
GF(p6) = GF(p)(ζ) of F (c, X).
Comment The representation of elements of GF(p6) is explained in Sub-

section 3.3. In Step 3 of Algorithm 3.31 a cube root is computed using
Algorithm 5.57. As a result, u is a GF(p2)-multiple of a power of ζ, so
that Algorithm 5.52 can be used for the division by u in the same step .

2. Apply Algorithm 3.31 to f(X) = F (ck, X) to compute all three roots y1, y2,
y3 ∈ GF(p6) = GF(p)(ζ) of F (ck, X)
Comment Same comments as above. Furthermore, w = α in Step 4 of

Algorithm 3.31.
3. For i = 1, 2, 3 compute the trace ti over GF(p2) of gyi ∈ GF(p6).

Comment The trace over GF(p2) of
∑5

j=0 ajζ
j ∈ GF(p6) equals

3(a3 − a0)α − 3a0α
2 ∈ GF(p2)

(cf. [11, Lemma 4.1])
4. Let ck+1 be the ‘smallest’ of t1, t2, and t3, under the ordering induced by π

as in 5.53.

22



Theorem 5.59 [11, Theorem 5.7] Algorithm 5.58 can be expected to require
10.6 log2(p) multiplications in GF(p).

5.510 Key recovery summary. It follows from 5.53 and 5.54 that Tr(gk−1)
and Tr(gk+1) do not have to be included in the XTR public key data for digital
signature or authentication applications, as long as

1. the private key k is selected as explained in 5.53 above,
2. p, q, Tr(g), and Tr(gk) are included in the public key,
3. the recipient of the public key is willing and able to perform Algorithm 5.58

to compute Tr(gk+1) followed by an application of Theorem 5.51 to compute
Tr(gk−1).

Actually, there are three options for XTR public keys used for digital signatures
or authentication: include one, two, or all three of the values Tr(gk−1), Tr(gk),
Tr(gk+1). In some applications, e.g. issuance of a certificate by a Certificate
Authority, it may be required that the relative correctness of these components
can be verified by a third party. A method to do this is described in Remark 6.210
below.

6 Correctness verification of XTR data formats

6.1 Subgroup based attacks against XTR

Security of cryptographic protocols may be endangered if elements of a certain
group are exchanged but group membership is not properly verified by the recip-
ient. Examples of such attacks can be found in [2, 4, 12, 14]. In XTR, subgroup
attacks refer to attacks that take advantage of the omission to verify membership
of the XTR (sub)group (cf. Subsection 2.1). As argued in [12], subgroup attacks
can be rendered mostly ineffective if either

1. p and q are such that (p2 − p + 1)/q is small (cf. Algorithm 3.13), or
2. p and q are such that (p2 − p + 1)/q is a small multiple of a prime of the

same order of magnitude as q (cf. Algorithm 3.14).

In either case, however, membership of the XTR supergroup, i.e., the order
p2 − p + 1 group containing the XTR group (cf. Subsection 2.1), still must be
verified. In Subsection 6.2 below it is shown how that can be done. Note that
if (p2 − p + 1)/q is small, short exponents may be used in the XTR versions of
cryptographic protocols to maintain efficiency, as mentioned in the introduction
to Section 4 (cf. [23]).

6.2 Prevention of subgroup attacks against XTR

Let G denote the order q XTR group and H the order p2−p+1 XTR supergroup,
as defined in Subsection 2.1. This section contains efficient methods to determine
if an element d ∈ GF(p2) \ GF(p) is the trace of an element of H . As explained
in Subsection 6.1 such methods are useful to prevent XTR subgroup attacks.

23



It follows from Lemma 2.32.v that it suffices to check that F (d, X) is irre-
ducible. According to Theorem 3.55 this can be done at the cost of 1.8 log2(p)
plus a small constant number of multiplications in GF(p). Thus, checking mem-
bership of H can be done at the cost of a small overhead compared to the
cost of the regular XTR cryptographic operations. As shown in the remainder
of this section, the overhead can be reduced to just a small constant number
of operations in GF(p), at the cost however of a small amount of additional
communication: if d, the element to be checked, equals Tr(h) for h ∈ H , and
Tr(h · g) is sent along with d, then the fact that d is indeed the trace of an
element of H can be verified in a small constant number of operations in GF(p)
(cf. Corollary 6.28). Here it is assumed that the trace Tr(g) of an element g ∈ H
is known.

Definition 6.21 [12, Definition 5.1 and Lemma 5.2] For third-degree monic
polynomials

R(X) =

2
∏

i=0

(X − αi) ∈ GF(p2)[X ] and S(X) =

2
∏

j=0

(X − βj) ∈ GF(p2)[X ]

with αi, βj ∈ GF(p6)∗ for 0 ≤ i, j < 3, the root-product ℜ(R, S) is the ninth-
degree polynomial

ℜ(R, S) =

2
∏

i,j=0

(X − αiβj) ∈ GF(p2)[X ]

with non-zero constant term.

Lemma 6.22 [12, Lemma 5.3] With R(X) and S(X) as in Definition 6.21,

ℜ(R, S) = (β0 · β1 · β2)
3R(X · β−1

0 ) · R(X · β−1
1 ) · R(X · β−1

2 ),

and if S(X) is irreducible over GF(p2) then

ℜ(R, S) = β
3(p4+p2+1)
0 R(X · β−1

0 ) · R(X · β−p2

0 ) · R(X · β−p4

0 ).

In the application of Lemma 6.22 the polynomial F (c, X) plays the role of S(X),
where c = Tr(g) for some g ∈ H , so that F (c, X) = S(X) is irreducible (cf.
Lemma 2.32.v). This implies that GF(p6) can be represented as GF(p2)(g), and

ℜ(R, F (c, X)) = R(X/g) · R(X/gp−1) · R(X/g−p)

(since g3(p4+p2+1) = 1, gp2

= gp−1, and gp4

= g−p) can be computed using a
constant number of operations in GF(p6) = GF(p2)(g), if a representation of
gp ∈ GF(p2)(g) is known. The following result shows how such a representation
can be obtained. As before, Tr(gi) is abbreviated to ci.

24



Proposition 6.23 [12, Proposition 5.4 and Corollary 5.5] Let c = Tr(g) for
some g ∈ H and let cp−2 = Tr(gp−2) ∈ GF(p2) be given. Then gp = Kg2 +Lg+
M ∈ GF(p2)(g) can be computed in a small constant number of multiplications
in GF(p) using





M
L
K



 =





c−2 c−1 c0

c−1 c0 c1

c0 c1 c2





−1

·





cp−2

c
cp



 ,

where the inverse of the matrix on the right hand side exists (cf. Lemma 5.25)
and is given in Lemma 5.24.

Theorem 6.24 [12, Theorem 5.6] Let R(X) ∈ GF(p2)[X ] be a monic third-
degree polynomial with non-zero constant term and let c = Tr(g) for some ele-
ment g ∈ H. Given Tr(gp−2) ∈ GF(p2), the root-product ℜ(R(X), F (c, X)) can
be computed at the cost of a small constant number of operations in GF(p).

Proof. As argued above, this follows from Lemma 6.22 and Proposition 6.23.

The value cp−2 plays an important role, so it could be precomputed and stored,
independent of the value d to be checked. Note that cp+1 = c ·cp−cp ·cp−1+cp−2,
cp = cp, and cp−1 = c, so that cp−2 = cp+1. The following results shows that
cp−2 can quickly be recovered from a single bit.

Proposition 6.25 [12, Proposition 5.7] Let c = Tr(g) for some element g ∈ H.
Then Tr(gp−2) = cp−2 can be computed at the cost of a square-root computation
in GF(p), assuming one bit of information to resolve the square-root ambiguity.

Proof. With cp−2 = x1α+x2α
2 it simply follows that (cp−2−cp

p−2)
2 = −3(x1−

x2)
2. Combination with cp−2 = cp+1, the identity for (cp+1 − cp

p+1)
2 given in

Lemmas 5.24 and 5.25, leads to

−3(x1 − x2)
2 = c2p+2 + 18cp+1 − 4(c3p + c3) − 27 ∈ GF(p).

On the other hand cp−2 + cp
p−2 = −(x1 + x2). With cp−2 = gp−2 + g(p−2)p2

+

g(p−2)p4

= gp−2 + g−2p+1 + gp+1, it follows that cp
p−2 = g−p−1 + g−p+2 + g2p−1.

Now,

cp+1 = c · cp = (g + gp−1 + g−p)(gp + g−1 + g−p+1)

= gp+1 + gp−2 + g−2p+1 + g−p−1 + g−p+2 + g2p−1 + 3

= cp−2 + cp
p−2 + 3.

Thus, x1 + x2 = 3 − cp+1 ∈ GF(p). Combining the identities involving x1 − x2

and x1+x2 it follows that cp−2 and its conjugate over GF(p) can be computed at
the cost of a square-root calculation in GF(p). To distinguish cp−2 = x1α+x2α

2

from its conjugate x2α + x1α
2 over GF(p) a single bit that is on if and only if

x1 > x2 suffices.

25



Algorithm 6.26 [12, Proof of Lemma 5.8] Let c = Tr(g) for some element
g ∈ H and let Tr(gp−2) = cp−2 be given. Given d, d′ ∈ GF(p2), to check if there
exists an element h ∈ H such that d = Tr(h) and d′ = Tr(h·g), do the following.

1. If F (d, αi) = 0 for either i = 0, 1, or 2, then the statement is not true.
2. Otherwise, if F (d, αi) 6= 0 for i = 0, 1, 2, then compute the root-product

ℜ(F (d, X), F (c, X)).
3. If ℜ(F (d, X), F (c, X)) is divisible by F (d′, X), then the statement is true,

otherwise it is false.

Lemma 6.27 [12, Lemma 5.8] Algorithm 6.26 takes a small constant number
of operations in GF(p).

Corollary 6.28 [12, Corollary 5.9] Let c = Tr(g) for some element g ∈ H and
let Tr(gp−2) be given. Given the trace values of an alleged element h ∈ H and
its ‘successor’ g · h, it takes a small constant number of operations in GF(p) to
verify that indeed h in H.

Corollary 6.29 [12, Corollary 5.10] Let c = Tr(g) where g is known to be a
generator of the XTR group, let d be the trace of an element that is known
to be in the XTR group 〈g〉, and let d′ be some element of GF(p2). Then it
can efficiently be verified if d and d′ are of the form Tr(gx) and Tr(gx+1),
respectively, for some integer x, 0 < x < q.

Remark 6.210 An XTR public key meant for digital signatures takes the form
(p, q, c, d, d′), where p and q are primes satisfying the usual XTR conditions,
c = Tr(g) for a generator g of the XTR group, d = Tr(gk) for a secret key k,
and d′ = Tr(gk+1) (cf. Section 5). Corollary 6.29 implies that a Certificate
Authority can efficiently verify the consistency of an XTR signature public key
presented by a client, before issuing a certificate on it. More specifically, if a client
provides a Certificate Authority with XTR public key data (p, q, c, d, d′), then the
Certificate Authority checks that these data satisfy the conditions given above,
using the following two step approach. First the Certificate Authority checks
that p and q are well-formed and that c, d ∈ GF(p2) \ GF(p) are indeed traces
of elements of the XTR group by verifying that cq = dq = 3 using standard
XTR arithmetic (cf. Algorithm 2.35). Secondly, the Certificate Authority uses
Corollary 6.29 to verify that d and d′ are traces of consecutive powers of the
generator corresponding to c. Note that the Certificate Authority does not obtain
information about the secret key k.

7 Security of XTR

7.1 Security of the trace representation

In the XTR versions of ‘subgroup discrete logarithm’ based cryptographic pro-
tocols the subgroup elements are replaced by their traces. This implies that the
security is no longer based on the regular and well known subgroup Discrete

26



Logarithm (DL), Diffie-Hellman (DH), or Decision Diffie-Hellman (DDH) prob-
lems, but on their XTR counterparts. The XTR-DH problem is the problem
of computing Tr(gxy) given Tr(gx) and Tr(gy). Given Tr(gx) and Tr(gy), the
XTR-Diffie-Hellman value Tr(gxy) is denoted by XDH(Tr(gx), T r(gy)). The
XTR-DDH problem is the problem of determining whether XDH(a, b) = c
given a, b, c ∈ Tr(〈g〉). The XTR-DL problem is to find 0 ≤ x < q such that
a = Tr(gx) given a ∈ Tr(〈g〉). Note that if x satisfies a = Tr(gx), then so do
x · p2 mod q and x · p4 mod q.

Theorem 7.11 [10, Theorem 5.2.1] The following equivalences hold:

1. The XTR-DL problem is (1, 1)-equivalent to the DL problem in 〈g〉,
2. The XTR-DH problem is (1, 2) equivalent to the DH problem in 〈g〉,
3. The XTR-DDH problem is (3, 2)-equivalent to the DDH problem in 〈g〉,

where A is (a, b)-equivalent to B, if any instance of A (or B) can be solved by
at most a (or b) calls to an algorithm solving B (or A).

Remark 7.12 An algorithm solving DL, DH, or DDH with non-negligible prob-
ability can be transformed in an algorithm solving the corresponding XTR prob-
lem with non-negligible probability, and vice versa (cf. [10, Proof of Theorem
5.2.1]).

Despite the fact that, according to Theorem 7.11, XTR-DH is (1, 2) equiv-
alent to ordinary DH, in many practical situations a single call to an XTR-DH
solving algorithm would suffice to solve a DH problem. An example is DH key
agreement where the resulting key is actually used after it has been established.

Remark 7.13 Theorem 7.11.2 states that determining the (small) XTR-DH
key is as hard as determining the whole DH key in the representation group 〈g〉.
From the results in [26] it actually follows that determining the image of the
XTR-DH key under any non-trivial GF(p)-linear function is also as hard as the
whole DH key. This means that, for example, finding the coefficient of α or α2

of the XTR-DH key is as hard as finding the whole DH key, implying that
cryptographic applications may be based on just one of the coefficients. Note
that in 4.11 both coefficients are used.

7.2 Relation between the XTR group and supersingular elliptic
curves

The number of points over GF(p2) (including the point at infinity) on an elliptic
curve over GF(p2) takes the form p2 − t + 1 for some integer −2p ≤ t ≤ 2p. It is
well known that there exist so-called supersingular elliptic curves over GF(p2)
where this order is equal to p2−p+1 and that there exist efficiently computable
(i.e., in polynomial time and space in the input length), injective homomor-
phisms based on the Weil pairing, of such curves onto the XTR supergroup.
Such homomorphisms are known as MOV embeddings. See for instance [15] for
further reference.

27



At the Crypto 2000 rump session (cf. [16]) it was suggested that the inverses
of these homomorphisms might be efficiently computable too, and it was men-
tioned that this would imply that the XTR (sub)group is just an instance of the
(sub)group of a supersingular elliptic curve. Thus, an attack affecting elliptic
curve cryptosystems would affect XTR-based cryptosystems as well, implying
that the security of XTR cryptosystems would not be not better than that of
elliptic curve cryptosystems.

More precisely, the suggestion made at the Crypt 2000 rump session can be
formulated as the following assumption:

X2C One can efficiently find a supersingular elliptic curve over GF(p2), such
that the group of points C over GF(p2) (including the point at infinity) is
of order p2 − p + 1 and an efficiently computable, injective homomorphism
from the XTR subgroup into C.

A similar problem is posed by N. Koblitz in [8, Remark on page 328]. It was
shown in [27], however, that the suggested assumption is most likely false, be-
cause it would contradict several generally accepted hardness assumptions. The
following is one of the results shown in [27].

Theorem 7.21 Under the X2C assumption, the following problems are effi-
ciently computable:

1. The Diffie-Hellman problem in the XTR subgroup.
2. The Diffie-Hellman problem in the group of points of order q on a supersin-

gular elliptic curve over GF(p2) of order p2 − p + 1.

This result gives evidence that the security provided by the XTR subgroup
is better than that provided by the isomorphic group on supersingular elliptic
curves. Additional evidence is provided by the fact that the Decision Diffie-
Hellman problem is efficiently computable in the latter group, while this problem
is believed to be hard in the XTR subgroup. See [27].

References

1. ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA), 1998.

2. I. Biehl, B. Meyer, V. Müller, Differential fault attacks on elliptic curve cryptosys-
tems, Proceedings of Crypto 2000, LNCS 1880, Springer-Verlag 2000, 131-146.

3. A.E. Brouwer, R. Pellikaan, E.R. Verheul, Doing more with fewer bits, Proceedings
of Asiacrypt99, LNCS 1716, Springer-Verlag 1999, 321-332.

4. M.V.D. Burmester, A remark on the efficiency of identification schemes, Proceed-
ings of Eurocrypt’90, LNCS 473, Springer-Verlag 1990, 493-495.

5. H. Cohen, A. Miyaji, T. Ono, Efficient elliptic curve exponentiation using mixed
coordinates, Proceedings of Asiacrypt’98, LNCS 1514, Springer-Verlag 1998, 51-65.

6. T. ElGamal, A Public Key Cryptosystem and a Signature scheme Based on Discrete
Logarithms, IEEE Transactions on Information Theory 31(4), 1985, 469-472.

7. G. Gong, L. Harn, Public key cryptosystems based on cubic finite field extensions,
IEEE Trans. on I.T., November 1999.

28



8. N. Koblitz, An Elliptic Curve Implementation of the Finite Field Digital Signature
Algorithm, Proceedings of Crypto ’98, LNCS 1462, Springer-Verlag 1998, 327-337.

9. A.K. Lenstra, Using Cyclotomic Polynomials to Construct Efficient Discrete Log-
arithm Cryptosystems over Finite Fields, Proceedings of ACISP97, LNCS 1270,
Springer-Verlag 1997, 127-138.

10. A.K. Lenstra, E.R. Verheul, The XTR public key system, Proceedings of Crypto
2000, LNCS 1880, Springer-Verlag 2000, 1-19; available from www.ecstr.com.

11. A.K. Lenstra, E.R. Verheul, Key improvements to XTR, Proceedings of Asiacrypt
2000, LNCS 1976, Springer-Verlag 2000, 220-233; available from www.ecstr.com.

12. A.K. Lenstra, E.R. Verheul, Fast irreducibility and subgroup membership testing in
XTR, Proceedings of PKC 2001, to appear; available from www.ecstr.com.

13. R. Lidl, W.B. Müller, Permutation Polynomials in RSA-cryptosystems, Proceed-
ings of Crypto ’83, Plenum Press, 293-301.

14. C.H. Lim, P.J. Lee, A key recovery attack on discrete log-based schemes using
a prime order subgroup, Proceedings of Crypto ’97, LNCS 1294, Springer-Verlag
1997, 249-263.

15. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publish-
ers, Boston 1993.

16. A. Menezes, S. Vanstone, ECSTR (XTR): Elliptic Curve Singular Trace Represen-
tation, rump session of Crypto 2000.

17. W.B. Müller, Polynomial functions in modern cryptology, Contributions to general
Algebra 3, Proceedings of the Vienna Conference (1985), 7-32.

18. W.B. Müller, W. Nöbauer, Cryptanalysis of the Dickson-Scheme, Eurocrypt ’85
Proceedings, Springer-Verlag 1986, 50-61.

19. W.K. Nicholson, Introduction to abstract algebra, PWS-Kent Publishing Company,
Boston, 1993.

20. Secure Hash Standard (SHA-1), Federal Information Processing Standards Publi-
cation 180-1, NIST, 1995.

21. Digital Signature Standard, Federal Information Processing Standards Publication
186, NIST, 1994.

22. W. Nöbauer, Cryptanalysis of the Rédei Scheme, Contributions to general Alge-
bra 3, Proceedings of the Vienna Conference (1985), 255-264.

23. P.C. van Oorschot, M.J. Wiener, On Diffie-Hellman key agreement with short ex-
ponents, Proceedings of Eurocrypt ’96, LNCS 1070, Springer-Verlag 1996, 332-343.

24. P. Smith, C. Skinner, A public-key cryptosystem and a digital signature system
based on the Lucas function analogue to discrete logarithms, Proceedings of Asi-
acrypt ’94, LNCS 917, Springer-Verlag 1995, 357-364.

25. C.P. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology,
4 (1991), 161-174.

26. E. Verheul, Certificates of Recoverability with Scalable Recovery Agent Security,
Proceedings of PKC 2000, LNCS 1751, Springer-Verlag 2000, 258-275.

27. E. Verheul, Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems, Proceedings of Eurocrypt 2001, to appear.

29


