
Compact incremental Gaussian elimination over 72127Z

A.K. Lenstra and M.S. Manasse
The University of Chicago

Technical Report 88-16, October 1988

Address for copies of technical reports:

Department of Computer Science
University of Chicago
Ryerson Hall
1100 East 58th Street
Chicago IL 60637

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Compact incremental Gaussian elimination over f2Z

Arjen K. Lenstra
Department of Computer Science

The University of Chicago
1100 E 58th Street
Chicago, IL 60637

Mark S. Manosse
DEC Systems Research Center

13a Lytton Avenue
Palo Alto, CA 94301

Abstract. This note describes a simple algorithm for Gaussian elimination over Z/2Z. To find
dependencies among n rows of length m each, the algorithm needs storage for at most
n m+O (m logn) bits. The algorithm is row-oriented, and the computation on the first n0 rows, for
any integer n0 n, does not depend on rows n0+1 through n. This makes it possible to start the
elimination process given any number of rows of the mauix, and to proceed with the computation as
more rows become available. The algorithm has been successfully applied to find dependencies
among about 50000 rows of 50000 bits each. The method is well suited for implementation on vector
computers or multi-processor machines.

Compact incremental Gaussian elimination over 71/27Z

Let r• = (r11,r2, ..., r,,,1)E(,,2Z)m for 1 I n ben rows of length m over 71/271. It is
well known that the problem to decide whether there exist c1, c2, ..., c 72t27Z such that
1c1•r1 0 mod 2 for 1 j m, and to find the c, if they exist, can be solved by means

of Gaussian elimination over 711271. For ordinary Gaussian elimination, however, one has to
keep track of a so-called ‘history matrix’, requiring extra storage of 2(n2) elements of 711271.

For the application we had in mind, reduction of matrices with tens of thousands of rows
and columns resulting from Carl Pomerance’s quadratic sieve algorithm [4, 5], this extra
storage could easily become problematic. It is straightforward to alter the ordinary Gaussian
elimination in such a way that the history matrix does not occupy any extra space. In this note
we describe this compact Gaussian elimination algorithm.

Here we should note that, in our application, the matrices are very sparse. Gaussian elimi
nation will rapidly cause fill-in of the matrix. As a result the matrix becomes dense, which
will not only lead to storage problems, but also to a very slow performance of the algorithm.
These two problems can be avoided by using sparse matrix techniques [2, 6]. Indeed, we are
working on implementations of those sparse matrix algorithms. In the mean time, however, we
had to reduce several huge matrices, so we needed an algorithm that was easy to implement
and that would not cause storage problems. Slow performance of this algorithm was not a
major consideration.

After the elimination algorithm had been implemented and successfully reduced the matrices
we got [1], Carl Pomerance brought a paper by Parkinson and Wunderlich to our attention [3].
Our algorithm appears to be a slight variation of their Algorithm A. Algorithm A in [3] looks
for the ith pivot in column I of the matrix for I = 1, 2, ..., m in succession, our algorithm
looks for the ith pivot in the ith row. As a consequence, our algorithm is completely row-
oriented, and therefore incremental, by which we mean the following. If only the first n0 n
rows of the matrix are known at a given moment, then we can begin the elimination on those

version 19881031.
Key words: Gaussian elimination, factorization.



-2-

first n0 rows. The elimination process can then be continued without any loss of efficiency as
soon as rows number n0-i-i through n1 become available, for any n0 < n1 n, and so on, until
sufficiently many dependencies have been found, or until the matrix is complete. For our
application, where the rows become available over a period of several weeks, this has the
advantage that the algorithm can be applied, say, once a day to process the newly found rows.
Once the matrix is complete the elimination is completed almost immediately, and one does not
have to wait a long time for the final result.

Algorithm A as described in [3] does not have this advantage, although it could easily be
changed. Parkinson and Wunderlich change Algorithm A along different lines into an algo
rithm that operates on the columns of the complete n xm -matrix. They recommend using this
later algorithm, but since it requires the whole matrix to be available before the elimination can
be carried out, it is less useful for our purposes.

We now describe the algorithm. Suppose that rows r1 through rflb have been processed
already in b previous applications of the algorithm, for some integer b 0 and b b n.
So, initially we will have b = 0 and n0 = 0. Let rflb+1, rflb+1, ...,

rfl1 with b+1 n be the
rows that have to be processed next. Put e• = 0 for 1 i m. Perform steps (a) and (b).

(a) Eliminate with the first b rows.
Put d equal to r1 for flb+l j nb+1. For I = 1, 2, ..., nb in succession perform step
(al)ifu1 >0.

(al) Replace e. by 1. For n-t-i j nJ).4 do the following: if = 1, then replace d
by d-I-d1, where the addition is done coordinate-wise modulo 2. (Here means the
uth coordinate of di.)

(b) Final elimination of the new rows.
For j = nb+i, nb+2, nb+1 in succession perform step (bl).

(bi) Ifthereis ant with 1 i m suchthatd, =1 ande1=0,thenputu equalto such
an i and perform step (bla). Otherwise, perform step (bib).

(bia) Replace e by j and by 0. For j+1 k nb÷1 do the following: if dk, =
then replace dk by dk-I-dJ, where the addition is done coordinate-wise modulo 2.

(bib) Put c• equal to 0 for 1 i n and u1 equal to 0. Replace c by 1, replace Cek by 1
for those k with 1 k m for which d1, = 1, and output the solution c1, C2, ..., c4.

Some explanation might be helpful to understand the algorithm. If e = j we know that the
i th coordinate of d is used as a pivot to eliminate non-zero entries in the i th coordinates of
d÷1, d÷2, ..., d,. This ith coordinate has not been used before because in step (bl) a coordi
nate is selected for which eL still equals zero (the initial situation, meaning that no row took
care of the i th coordinate yet), and it is a valid pivot because, again in step (bi), we also have
that d,1 equals 1. Before the elimination step is carried out in (bi a), however, the d1

,
for the

i that has been chosen in step (bl), is set to zero. In this way the non-zero entry in the ith
coordinate in later rows will not be set to zero; instead, this 1 will from then on mean ‘the I th
coordinate in this row is eliminated using row number e = j’. So, the meaning of a one in
coordinate I of a row depends on the value of e1: if e = 0, then it is a ‘real’ one, otherwise it
means that coordinate i has already been cleaned by de.. Clearly, if no i can be found with a
1 in the i th coordinate and e 0, it means that the row under consideration is completely
cleaned, and the dependency can then be found as in step (bib).

Some remarks about implementations of this algorithm are in order. Clearly, it is not at all
necessary that the whole matrix (or the part that is known) resides in core. In step (a) it
suffices to read the ci, and u, for I = 1, 2,

..., b in succession into core, one at a time. For



-3-

rows that have been processed Cr1 through rflb), it suffices therefore to store the corresponding

rows d1 through dflb with their corresponding u1 through Unb in some external file (where the

d, needs only be present if u, > 0). After completion of step (b) for a certain j, the row d
and its corresponding u can be appended at the end of this file. In that way the processed
rows can successively be retrieved during later applications of step (a). Each row can be
stored in sparse or dense representation, depending on its number of non-zero coordinates.
The cross-over point between sparse and dense representation is implementation-dependent.

If m is huge it may be useful, as it was in our case, to determine some integer s such that s
densely-represented rows will fit in core at the same time. If b+1—b > s, the new rows can
then be processed in blocks of at most s rows at a time.

In our application the rows are much sparser at one end than at the other. In such cases it is
advisable to look for pivots from the sparsest end (the I that will be selected in step (bi)), as it
will lead to fewer eliminations and consequently slower fill-in. Although this strategy certainly
delays fill-in of the matrix, it is by no means able to prevent it. While we have not considered
it carefully, it is possible that the techniques described by A.M. Odlyzko [2] can be used as a
strategy to select pivots and reduce fill-in.

In a dense representation the vectors can of course be represented by one bit per coordinate,
and consecutive bits can be packed into one word. Notice that the actual elimination step, the
vector additions modulo 2 in steps (al) and (bla), can be implemented by XOR-ing the con
secutive words of both vectors if both vectors are densely represented. On vector machines
these steps can be carried out very fast. Also notice that the algorithm can be parallelized in
various ways (by assigning different coordinate ranges to different processors, or by assigning
different blocks of new rows to different processors, or a combination of these two).

We conclude this note with the same example that was given in [3]. Let n1 = 4 and

= (0,0,1,0,0,1,0),
r2 = (0,1,0,0,0,1,1),
r3 = (1,0,0,0,1,0,0),

= (0,0,1,1,0,0,1).

We immediately proceed to step (b), and find for j = 1

= 3, e3 = 1,
d1 = (0,0,0,0,0,1,0),
d2 = (0,1,0,0,0,1,1),
d3 = (1,0,0,0,1,0,0),
d4 = (0,0,1,1,0,1,1),

for j = 2

u2 = 2, e2 = 2,
d2 = (0,0,0,0,0,1,1),
d3 = (1,0,0,0,1,0,0),
d4 = (0,0,1,1,0,1,1),

for j = 3

U3 = 1, e1 = 3,
d3 = (0,0,0,0,1,0,0),
d4 = (0,0,1,1,0,1,1),

and for j = 4

u4 = 4, e4 = 4,
d4 = (0,0,1,0,0,1,1).



-4-

No dependency has been found yet, and we can store u1, d1, U2, d, u3, d3, u4, and d4 for
later use.

Let n2 = 9 and

= (1,1,0,0,1,0,0),
r6 = (0,0,0,1,0,0,1),

= (0,0,0,1,1,0,0),
r8 = (1,0,1,0,0,1,0),
r9 = (0,1,0,1,0,0,1).

Step (a) gives for i =1

d5 = (1,1,0,0,1,0,0),
d6 = (0,0,0,1,0,0,1),
d-, = (0,0,0,1,1,0,0),
d8 = (1,0,1,0,0,0,0),
d9 = (0,1,0,1,0,0,1),

for i = 2

d5 = (1,1,0,0,1,1,1),
d6 = (0,0,0,1,0,0,1),
d7 = (0,0,0,1,1,0,0),
d8 = (1,0,1,0,0,0,0),
d9 = (0,1,0,1,0,1,0),

for i = 3

d5 = (1,1,0,0,0,1,1),
d6 = (0,0,0,1,0,0,1),
d7 = (0,0,0,1,1,0,0),
d8 = (1,0,1,0,1,0,0),
r9 = (0,1,0,1,0,1,0),

and for i = 4

d5 = (1,1,0,0,0,1,1),
d6 = (0,0,1,1,0,1,0),
d7 = (0,0,1,1,1,1,1),
d8 = (1,0,1,0,1,0,0),
d9 = (0,1,1,1,0,0,1).

We now have that e1 = 3, e2 = 2, e3 = 1, e = 4, and that e5, e6, and e7 are equal to zero.
Next, we proceed to step (b), and find for j = 5

= 6, e6 = 5,
d5 = (1,1,0,0,0,0,1),
d6 = (1,1,1,1,0,1,1),
d7 = (1,1,1,1,1,1,0),
d8 = (1,0,1,0,1,0,0),
d9 = (0,1,1,1,0,0,1),

for j = 6

U6 = 7, e7 = 6,
d6 = (1,1,1,1,0,1,0),
d7 = (1,1,1,1,1,1,0),
d8 = (1,0,1,0,1,0,0),



-5-

d9 = (1,0,0,0,0,1,1),

for j = 7

u7 = 5, e5 = 7,
d7 = (1,1,1,1,0,1,0),
d8 = (0,1,0,1,1,1,0),
d9 = (1,0,0,0,0,1,1),

for j = 8 we find that r2 = r2, re4 = r4, re5 = r7, re6 = r5, and r8 are linearly dependent over

71127Z, and for j = 9 finally we find that = r3, re6 = r5, r = r6 and r9 are linearly depen

dent over 71/27Z.

References

1. A.K. Lenstra, M.S. Manasse, Factoring by electronic mail, in preparation.

2. A.M. Odlyzko, “Discrete logarithms and their cryptographic significance,” pp. 224-
314; in: T.Beth, N. Cot, I. Ingemarsson (eds), Advances in cryptology, Springer Lecture
Notes in Computer Science, vol. 209, 1985.

3. D. Parkinson, M. Wunderlich, “A compact algorithm for Gaussian elimination over
GF(2) implemented on highly parallel computers,” Parallel Computing, v. 1, 1984, pp.
65-73.

4. C. Pomerance, “Analysis and comparison of some integer factoring algorithms,” pp.
89-139; in: H.W. Lenstra, Jr., R. Tijdeman (eds), Computational methods in number
theory, Mathematical Centre Tracts 154, 155, Mathematisch Centnim, Amsterdam,
1982.

5. R.D. Silverman, “The multiple polynomial quadratic sieve,” Math. Comp., v. 48, 1987,

pp. 329-339.

6. D.H. Wiedemann, “Solving sparse linear equations over finite fields,” IEEE Transac
tions on Information Theory, v. 32, 1986, pp. 54-62.


