
Towards a Systematic Approach for Driving Micro-Level Software Development
Process

Salman Mirghasemi, Olivier Buchwalder, Claude Petitpierre
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne
Lausanne 1015, Switzerland

{salman.mirghasemi, olivier.buchwalder, claude.petitpierre}@epfl.ch

Abstract

Software developers encounter many new and usually
difficult problems in their every day work. Solving every
new problem requires taking an appropriate strategy and
careful planning, that needs full concentration and focus on
the problem and enough consciousness about the current
state of development. However, due to many factors, such
as working on more than one task at the same time, the high
degree of granularity of tasks, interruptions and the com-
plexity of problems, developers usually have difficulties in
obtaining the required concentration and focus on their cur-
rent local problems and making progress in their work. This
paper proposes a novel approach, which lets a developer
follows a systematic step by step problem solving process
in order to be focused on only one target in every moment
while all needed details from the past and future steps are
present to her. Moreover, this approach helps a developer
to better understand her software development process and
discover new ways for improving it.

1. Introduction

In the last two decades, software production has been
greatly facilitated by significant advances in different as-
pects of software engineering. In parallel, tools and meth-
ods used by software developers to produce programs have
immensely improved over time. Nowadays, developers em-
ploy high level modeling and programming languages to
design and write programs, comprehensive integrated de-
velopment environments (IDEs) to edit, navigate and man-
age project artifacts in one place, advanced communication
and collaboration tools to be connected and synchronized
to other teammates and various kinds of online knowledge
repositories to find answers to their questions [5], [6], [13],
[14].

In spite of all mentioned facts software development is
still a hard and challenging job for developers [5], [9]. Al-
though the nature of software development has not changed
a lot in the last decades and, it is still a continual problem
solving process, this process has become more complicated.
Today, in order to solve a problem, due to the larger size of
programs, also the employment of many third party libraries
and programs, a developer has more questions to answer,
more concerns to worry and more options to choose. It has
added more details to the process. Also a developer is not
just a programmer anymore but also a divider, finder and
integrator. She divides a challenging problem to smaller
ones, finds the corresponding appropriate solutions from
many available solutions and integrates partial solutions to
build a complete solution for the primary problem. It has
increased the granularity of the process. Moreover develop-
ers encounter many new and different problems that require
taking different strategies for developing a solution to them.
It has made the process more heterogeneous [9].

Besides the complexity of the development process,
which makes it hard to follow for developers, frequent
task switches and interruptions distract them from their tar-
gets [11]. Developers must remember goals, decisions, hy-
potheses, and interpretations from the task they were work-
ing on and risk inserting bugs if they misremember. The dif-
ficulty of recovering from an interruption have been shown
by many studies [9], [11], and some of them suggested
externalizing developer’s task context - methods they have
examined, decisions in progress, and other information - in
a tool [9], but no method or tool has been provided.

The way developers manage the development process
and the strategies they choose during this process have cru-
cial roles on their performance and productivity [13], [2].
Currently developers keep and manage this complex pro-
cess mostly in their mind [5], [8]. This paper proposes
a discipline that by adopting it, developers can free their
mind from all details of the process and be more focused on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


their local targets while all past and future steps are avail-
able to them and also safe against interruptions. Moreover
this approach changes the complex process of software de-
velopment to a systematic step by step process for software
developers.

The rest of this paper is organized as follows. In the next
section, the issues addressed in this paper are described in
more details. In Section 3, the discipline will be presented.
In Section 4, existing related works are briefly reviewed and
compared to our approach. The last section summarizes the
conclusions and describes our future work.

2. Problem Description

Software development is a heuristic process, in which a
developer accomplishes a task by proceeding through a long
chain of plan-do-check cycles. The details of this path are
not known at the beginning, and as the developer proceeds,
next possible points become more visible and more precise.
Then, she can choose a strategy for reaching them. Devel-
opers usually keep the details of the task’s progress, such as
the past points and their outcomes, also the future points and
the strategies and plans for reaching them, in their minds.
The immediate consequence of this practice is that with any
distraction or gap in work, a developer may lose some parts
of the path or even the whole path completely. It has been
shown by many studies that due to many different sources
of distraction during software development such as various
kinds of interruptions, high degree of granularity of tasks
and blocking, losing the path happens quite often [9], [11].

Keeping the track of tasks’ progress in mind also has a
few other drawbacks. Using this practice, the developer is
not forced to specify the next point clearly and also to de-
fine the strategy and the plan for reaching the next point
precisely and properly. Therefore, she continues with an
implicit vague understanding of the problem and the plan,
which leads to spending more time for reaching the next
point, and therefore more time for accomplishing the task.
This case is less visible when developers add or change a
functionality of a program but it is very prevalent when de-
velopers read code to answer to a few implicit questions, or
they try to find a defect causes a bug [8], [7].

Moreover, because of inherently complicated nature of
software developments, developers are usually completely
drown in their work, and therefore they have not the track
of time. Sometimes, specially in the case of blocking or
very slow progress, it is necessary to stop and rethink about
other possible ways to go through the current step or even
skip it for the moment.

All these facts show that developers need a more effec-
tive way to maintain and manage the process of develop-
ment, which is guarded against interruptions and provide
them enough awareness and consciousness about what have

been done, what is the current goal, what is the current step
and what are the next steps to reach the final goal.

3. Discipline

Before getting into the discipline explanation, it is re-
quired to describe a few concepts with more details. Devel-
opers usually have more than one tasks at hand in a working
session. For example a developer might have these tasks at
hand, ”adding feature X”, ”fixing bug Y” and also ”partici-
pating in an on-line meeting and discussing the next release
design of a module”. An active task is the task that the de-
veloper is working on right now.

If we consider the path traversed by a developer for ac-
complishing a task, we can usually recognize some internal
points. For example for ”adding feature X”, we can see the
following internal points after the developer started the task:

1. She decided about the implementation of this feature.
She decided to use one of the available libraries sup-
port this feature.

2. She found the appropriate library.
3. She has studied the library and knows how it must be

customized and integrated.
4. She has implemented feature X using the library. The

task is done at this point.

Similarly, it is possible to recognize deeper internal points
in the path from one point to the next one. For example if
we consider the path from the first point to the second point,
we can name these internal points :

1.1. The developer searched the Internet and have a list of
libraries that support feature X.

1.2. She read about the differences of these libraries on the
technical forums,

1.3. She chose the appropriate library. At this point, the
developer is at point 2.

If we continue going to deeper internal points, we will fi-
nally reach to atomic actions of the developer. When a
developer starts a task, She has some ideas about the up-
coming next points in her mind and as she goes forward,
she updates these possible future internal points. We name
these future internal points, the strategy of the developer for
reaching the next point or accomplishing the task . Some-
times, the strategy covers all the path between two points,
but there exists also cases in which the developer just knows
a few initial steps of her plan and she will figure out more
details later. For example in order to fix bug Y, this might
be a strategy:

1. Reproduce the bug.
2. Recognize the defect.
3. Fix the defect.



Figure 1. An example of Work Progress Tree (WPT).

The strategy of the developer covers whole the path at the
first level, but once she has reproduced the bug and she is
planning for finding the defect, she just knows a few ini-
tial steps and she will decide about the next steps later. We
name the first strategy a complete strategy and the second
one a partial strategy. Also, we say a developer is in a
blocking situation when she has no strategy for reaching the
next point and she is progressing very slowly.

We can see that all the past points and future points can
be presented as a tree for each task. We name this tree a
Task Progress Tree (TPT). If we put all tasks’ progress trees
under one shared parent node we get a Work Progress Tree
(WPT). An example of one possible WPT three is shown in
Figure 1. In this picture, each main branch shows one task
progress tree. The nodes with gray text show the past points,

the nodes with bold text show the current next point and the
nodes with normal text show future points for each task.
The pen icon marks the current active task in the WPT. We
can see that the developer has written short notes at some
past points about the outcome of the step or the facts she
has found during that step.

The discipline is defined in three levels, where every
level adds new features to the previous one. These levels
are shown in Table 1 .For every level, Goals (the benefits
gained by developer by adopting this level), Principles and
Rules, Guide Lines and Tool Support (the features should
be supported by the tool used by developers to adopt the
discipline) have been described.

At the first level, the developer must keep the WPT out
of her mind. The developer is not required to update WPT



Discipline
Level

Goals Principles and Rules Guide Lines Tool Support

First - Reducing the disruptive effect
of interruptions, task switches
and gaps.
- Employing a systematic ap-
proach for planning and mak-
ing progress.
- Being focused on one target
until it is achieved or cancelled.

- Keep the WPT out of your
mind on a sheet of paper or a
program.
- Update WPT when you finish
one step or switch to another
task.

- Focus on your current target
and just write down everything
else which is not related to that.
- If you are unsuccessful in
reaching the next point (you are
in a blocking situation), define
a strategy for this step.

- Creating and Updating
WPT.

Second - Improving time management - Estimate and specify the re-
quired time for each step you
are going to start.

- Try to be committed to your
estimates.
- Find reasons behind overrun
estimates and improve your es-
timates.

- Accepting time estimates
for each step and Alarm-
ing the developer when the
time is passed.

Third - Improving the process - Gather and Analyze data
about the process.

- Find ways to reduce the time
spent on each step.

- Gathering timing and
programs’ usage data au-
tomatically.

Table 1. The three levels of discipline.

regularly, but she can update it every time she comes back
to the WPT to check her current state and make decision
about next steps. By adopting this level, a developer can
reduce the effect of task switches, interruptions and gaps in
her work. Furthermore, he employs a systematic step by
step approach in order to accomplish her tasks. This let her
free her mind from all details of process while she is only
focused on her current local target.

At the second level, the developer can specify a time esti-
mation for each step, and he will be notified after this period
passed. In this way, the developer has more control on the
time she spends on each step.

At the third level, the developer uses the gathered data of
the process to analyze her performance and improve the de-
velopment process. There is one main question that should
be answered by the developer: ”How could I reach the next
point in a shorter time?”. However, many more specific
questions can be derived from this question. For exam-
ple, ”How good are the strategies I have chosen?”, ”Which
skills can help me to speed up my progress?’, ”Which parts
in the process can be automated or semi-automated?” and
”How much time I would gain from upgrading my com-
puter’s hardware?”.

The first level can be adopted using a simple mind map-
ping tool like Freemind [3] for drawing and updating WPT,
but the second and third levels require a tool that supports
time estimation for each step, alarming, gathering timing
data and profiling programs’ usage in addition to creating
and updating WPT. For this purpose, we have developed
MindRoute [10]. A user interacts with MindRoute through
a command line interface which shows the current active

task and the associated path at every moment and it also pro-
vides the required actions for creating and updating WPT.
To support time estimation and alarming, MindRoute as-
sociates a dedicated timer for each task and, when the de-
veloper switches to another task or pauses the current task
because of an interruption, it stops the current task’s timer
and when she resumes a task, it also resumes its timer. Cur-
rently MindRoute has only a command line interface, but
the addition of a graphical interface has been planned for
the next release.

There are three important questions about the WPT up-
dating mechanism. The first one is ”How much a node’s
description should be self-descriptive?”. The answer of this
question depends on the goal a developer seeks from keep-
ing the WPT. For example, in Figure 1 every node is self-
descriptive enough to be understandable by the reader. At
minimum level, it is enough that a node contains sufficient
information that a developer could remember her mental
state in the same or at most in the next working session (in
case of a gap in work). If a developer seeks other goals
such as reporting, detailed analysis of her work or tagging
changed parts of code by the related subtree of WPT, then
node descriptions should be written with more details.

The second question is that ”How many levels the devel-
oper should go down in the WPT tree?”. There is no strict
rule to be given as the answer of this question but there are
two main factors which should be considered: The com-
plexity of task and the time required for passing the step.
Each one of these factors increases, it is more needed to
split up a step to smaller ones.

The third question is that ”How often the WPT should



be updated?”. It would be ideal if WPT be updated every
time the developer changes her current next point due to a
task switch, an interruption or finishing/canceling the cur-
rent step. At the same time, it should be considered that this
action itself doesn’t distract the developer.

4. Related Work

The Personal Software Process(PSP) [4], [12] was pro-
posed by Watts S. Humphrey to help developers to improve
their personal software process. The main idea of the PSP is
to understand and improve software process thorough plan-
ning, tracking, measuring, and analyzing the defined pro-
cess. The PSP approach is different from our approach in
a few ways. First, PSP doesn’t provide any advantage to
developers in driving the development process. In order
to adopt PSP, developers are required to collect data about
their development process without gaining any benefit from
this data collection at this stage. But by adopting the pro-
posed discipline in this paper, all required timing data will
be collected automatically according to WPT updates. Sec-
ond, using our approach the collected data has more seman-
tic due to the availability of WPT. Third, analyzing the col-
lected data and exploring ways to improve the process is
much simpler. The developer has only one main question to
answer: ”how can I finish steps in shorter time? ” and all
other questions will be derived from this question.

Pair Programming [15] is a software development prac-
tice mainly introduced by Extreme Programming method-
ologies. Pair programming refers to the practice whereby
two programmers work together at one computer, collabo-
rating on the same algorithm, code, or test. One member of
the pair is the driver, who actively types at the computer,
or records a design or architecture. The other plays the role
of navigator. One of the roles of navigator in Pair Program-
ming is keeping and updating the WPT and freeing the mind
of the driver from all details of the process and, from this
perspective it is similar to the proposed discipline. Among
many benefits named for Pair Programming, similar bene-
fits that we are following from adopting the discipline such
as increased work focus, faster work pace and fewer distrac-
tions, can be found [1].

5. Conclusions and Future work

In this paper, we introduced the Work Progress
Tree(WPT) model for micro-level software development
process and based on this model, we have proposed a dis-
cipline for driving and improving the software development
process.

In the future, besides adding a graphical user interface to
MindRoute, we plan to enhance it by adding the ability of

recognizing potential parts of process for improvement and
proposing them to the developer.

References

[1] A. Begel and N. Nagappan. Pair programming: what’s in it
for me? In ESEM ’08: Proceedings of the Second ACM-
IEEE international symposium on Empirical software engi-
neering and measurement, pages 120–128, New York, NY,
USA, 2008. ACM.

[2] B. de Alwis, B. de Alwis, G. C. Murphy, and M. P. Robillard.
A comparative study of three program exploration tools. In
G. C. Murphy, editor, Proc. 15th IEEE International Confer-
ence on Program Comprehension ICPC ’07, pages 103–112,
2007.

[3] Freemind. http://freemind.sourceforge.net.
[4] W. S. Humphrey. A Discipline for Software Engineering.

Addison-Wesley, 1995.
[5] A. Ko, B. Myers, M. Coblenz, and H. Aung. An exploratory

study of how developers seek, relate, and collect relevant in-
formation during software maintenance tasks. Transactions
on Software Engineering, 32(12):971–987, 2006.

[6] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In Proc. 29th Inter-
national Conference on Software Engineering ICSE 2007,
pages 344–353, 20–26 May 2007.

[7] T. D. LaToza. Answering common questions about code. In
ICSE Companion ’08: Companion of the 30th international
conference on Software engineering, pages 983–986, New
York, NY, USA, 2008. ACM.

[8] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. My-
ers. Program comprehension as fact finding. In ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineer-
ing, pages 361–370, New York, NY, USA, 2007. ACM.

[9] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining men-
tal models: a study of developer work habits. In ICSE ’06:
Proceeding of the 28th international conference on Software
engineering, pages 492–501, New York, NY, USA, 2006.
ACM.

[10] Mindroute. http://ltiwww.epfl.ch/˜mirghase/mindroute.
[11] D. E. Perry, N. A. Staudenmayer, and L. G. Votta. Under-

standing and Improving Time Usage in Software Develop-
ment. 1995.

[12] Personal software process (psp).
http://www.sei.cmu.edu/tsp/psp.html.

[13] M. Robillard, W. Coelho, and G. Murphy. How effec-
tive developers investigate source code: an exploratory
study. Transactions on Software Engineering, 30(12):889–
903, 2004.

[14] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An ex-
amination of software engineering work practices. In CAS-
CON ’97: Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative research, page 21.
IBM Press, 1997.

[15] L. Williams and R. Kessler. Pair Programming Illuminated.
Reading, Massachusetts: Addison Wesley, 2003.


