-

brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

IEEE SIGNAL PROCESSING LETTERS, VOL. 18, NO. 5, MAY 2011 331

Compressive Sampling of Multiple Sparse
Signals Having Common Support Using
Finite Rate of Innovation Principles

Ali Hormati, Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—In sensor networks and communication systems, one
is often confronted with sampling multiple sparse signals having
a common support set. Multipath channels in a multiple-input
multiple-output (MIMO) wireless communication setting is an
interesting example where one generally needs to perform channel
estimation for each transmit-receive antenna pair. MIMO multi-
path channels are usually (approximately) sparse and satisfy the
common-support property whenever the distances between the
antennas are small compared to the distance the electromagnetic
wave can travel in the time corresponding to the inverse band-
width of the communication system. This assumption is satisfied
by small and medium bandwidth communication systems like
OFDM and CDMA.

This leads us to extend the finite rate of innovation sampling
and reconstruction scheme to the sparse common-support scenario
(SCS-FRI), in which input signals contain Diracs with common
locations but arbitrary weights. The goal is to efficiently recon-
struct the input signals from a set of uniform samples, making use
of the common-support property to improve robustness. We first
find the best theoretical performance for the SCS-FRI setup by de-
riving the Cramér—Rao lower bound. Our results show that for a
set of well-separated Diracs, it is the total energy of the Diracs at
each common position which determines the bound. We then pro-
pose a multichannel reconstruction algorithm and compare its per-
formance with the Cramér—Rao lower bound. Numerical results
clearly demonstrate the effectiveness of our proposed sampling and
reconstruction scheme in low SNR regimes.

Index Terms—Annihilating filter, compressed sensing,
Cramér—Rao bound, finite rate of innovation, MIMO channel
estimation, multichannel sampling.

I. INTRODUCTION

ONSIDER a set of continuous-time sparse signals, each
C composed of K Diracs, which are sampled by a set of
independent sampling devices and then reconstructed jointly.
If the signals are totally independent, independent sensing and
recovery scheme would be optimal. However, in the presence
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Fig. 1. SCS-FRI sampling and reconstruction scheme in a multi-antenna
channel estimation setting with P receiving antennas.

of some common information, a carefully designed sampling
and reconstruction procedure would be able to reduce the total
number of measurements and/or make it more robust to the un-
certainties in the system.

Classical finite rate of innovation (FRI) sampling scheme
provides efficient and robust solutions to sample and reconstruct
special classes of continuous-time signals having finite degrees
of freedom per unit of time, such as, for example, stream of
Diracs or piecewise polynomials [1]. In this paper, we extend
the FRI sampling and reconstruction technique to a sparse
common-support setup (SCS-FRI). In this model [2], the sparse
signals, each consisting of K continuous-time Diracs, share
common nonzero locations but can have arbitrary weights.
We propose special distributed sensing and joint recovery
mechanisms which employ the common location property to
efficiently estimate the positions and the weights of the Diracs
in the input signals. More specifically, in the SCS-FRI setup,
each signal is first passed through a lowpass sampling kernel
and is then sampled uniformly. Then, all the samples are given
to a joint recovery algorithm in order to estimate the positions
and weights of the Diracs (see Fig. 1).

An interesting application well-modeled by SCS-FRI is
the pilot-assisted multipath channel estimation in a radio-fre-
quency multi-antenna communication system. In such systems,
pilot signals are sent by the transmitter to the multi-antenna
receiver in specific arrangements to estimate the underlying
time-varying fading channels. The multipath channels seen by
the set of nearby receiving antennas share the same nonzero
positions (corresponding to the paths) with different weights
resulting from different fading and shadowing effects. There-
fore, using our joint SCS-FRI recovery method proposed in
this paper, one can estimate the multipath channels in a robust
and efficient way.

After a precise definition of the model in Section II, we
state in Section III our joint reconstruction algorithm for the
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SCS-FRI problem. Then, in Section IV we find the best the-
oretical performance in the SCS-FRI setting by deriving the
Cramér—Rao lower bound (CRB). In the case of total constant
energy, the derived bound is invariant to the change in the
weights of the Diracs; This issue is discussed separately in
Section V. Finally, we run a set of numerical experiments in
Section VI which shows that the proposed recovery algorithm
is effective in achieving the CRB in low SNR; a regime which
is of interest in wireless multi-antenna communication systems.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a set of P T-periodic FRI signals consisting of X
Diracs with a common support set

K
vi(t) =D eipd(t—ti) j=1,...,P

k=1

where ¢; 1, is the weight of the kth Dirac of the signal number j
and {#; }1£ | denotes the set of common positions in the range
[0, T[. For the sampling part, each signal is independently passed
through a lowpass sampling kernel ¢(¢) given by

2L+1

(t) =sinc(Bt) B = L>K.

The output of the sampling kernel is then uniformly sampled
at the rate of f; = (1/Ts) = N/7 samples per second with
N > Br. The samples are given by

K

k=1

where (t) is the T-periodic sinc function or Dirichlet kernel:

. sin(w 3t
p(t) =Y sine(B(t — kr)) = 3(772 (1)
Tsin (—)
kez T
Given the set of samples y;,7 = 1,..., P, the goal is to

efficiently estimate the set of common positions {tk}fﬂ and
weights {¢; .} of the Diracs. Note that using the sampling pa-
rameters mentioned above, it is possible to compute the 2L + 1
consecutive lowpass Fourier series coefficients of each channel
from the samples. Estimating these coefficients is the first step
in the reconstruction phase as detailed in the next section.

III. SCS-FRI RECONSTRUCTION

The reconstruction algorithm in the classic FRI setting is
based on the fact that the Fourier series coefficients of the
input signal is composed of sum of exponentials and therefore,
techniques well-known in the field of spectral estimation, such
as the annihilating filter method, can be used to find the ampli-
tudes and frequencies of the underlying complex exponentials.
The frequencies will give the locations of the Diracs while their
weights are computable from the amplitudes. In a noisy setting,
the parametric estimation procedure can be made robust by
using the total least-squares approximation, possibly enhanced
by an initial denoising by using an iterative denoising algo-
rithm due to Cadzow [3], [4]. In the SCS-FRI reconstruction,
because of the common support property, one needs to find
only one annihilating filter common to all the channels. We
adapt the Cadzow denoising procedure in the single-channel
FRI reconstruction scheme to incorporate the common support
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property of the set of sparse signals which makes the position
estimations much more robust to the noise in the samples.

Taking the Fourier transform of the samples of each signal,
we get

K
}/;[m] = Z Cj.,k'wmtk + Eyom M= _L7 cee 7L (2)
k=1
where w = ¢7"27/7 ¢, denotes the kth nonzero coefficient

of the signal j and ¢;,, is the additive noise. The key step in
the SCS-FRI reconstruction is the following joint iterative de-
noising procedure which includes the samples from all the chan-
nels simultaneously. We first build the composite matrix H from
the set of matrices { H;}4_; of size (L 4+ 1) x (L + 1) as
.
H,
H= { . J where H (i, k) = Y;[t — k]. 3)
Hp

In the noiseless case, matrix H has two properties.
1) It has the block Toeplitz structure, i.e., all submatrices
{H;}T_, are Toeplitz.
2) Itis of rank K.
In the noisy case, these two properties are not initially satisfied
simultaneously, but can be subsequently enforced by alterna-
tively performing the following two steps.
1) Enforce rank K by setting the L — K + 1 smallest singular
values of H to zero.
2) Enforce the block Toeplitz structure by averaging the co-
efficients along the diagonals of each submatrix H ;.
The above procedure is guaranteed to converge to a matrix
which exhibits the desired properties [3]. The iterations stop
whenever the ratio of the (K + 1)th singular value to the K'th
one, ok 1/0k, falls below a predetermined threshold. The
denoised DFT coefficients are then extracted from the first
row and first column of each submatrix H ;. The denoised
coefficients are then used to build a set of matrices {Gj}f:1 of
size (2L — K + 1) x (K + 1) of the form (3). The annihilating
filter A(z) is a polynomial of degree K of the form

K

A(z) _ H(l _ e—izwtk/rz—l)

k=1
=1+ Az 4+ A[K]z E.

The annihilating property of A(z) is denoted as

K
(AxY)[m] =Y A[K)Y;[m -kl =0 j=1,.. P
k=0

The coefficients of the annihilating filter A(z) are found such
that they satisfy

Gy [ A0
G, | | AQ]

: : =0
érl Lak]

This system of equations is solved for the annihilating filter
coefficients. The roots of the annihilating filter provide us with
the positions of the nonzero entries. Finally, the weights of
the Diracs are calculated from the denoised measurements by
solving the linear system of (2).
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IV. SCS-FRI CRAMER-RAO BOUND

To assess the performance of the proposed reconstruction al-
gorithm for the SCS-FRI scenario, it is essential to find theo-
retical limits on the performance of any reconstruction algo-
rithm. For this purpose, the Cramér—Rao bound [5], [6] provides
a lower bound on the covariance matrix of any unbiased algo-
rithm which estimates the innovations of the FRI signals.

In [4], the authors derive the Cramér—Rao lower bound for
estimating the positions and weights of the Diracs in a single-
channel FRI setup. Considering a single Dirac, the minimal rel-
ative uncertainties on the location of the Dirac, ¢1, and on its
weight, ¢1, are given by

At \? 3(2L + 1)
E[(Tf)]z4ﬂNuL+n
2
E [(ﬂ) ] s 2B+l pog-t )
1 N

where PSNR = ¢}/a? is the input peak signal to noise ratio.
In the case of multiple Diracs, the Cramér—Rao formula for
one Dirac still holds approximately when the distances between
Diracs are more than 2/,

Although it is possible to derive the CRB for the general case,
for the sake of avoiding unnecessary complex formulas, we cal-
culate the CRB for P signals having one Dirac at the same po-
sition. As shown below in Theorem 1, the results indicate that
in this setup, it is the total energy of the Diracs that determines
the minimum uncertainty in the estimation of the unknown po-
sition.

Consider the noisy samples of the signal j at the output of the
lowpass sampling kernel given by

PSNR™!,

yin] =cjonTy —t1)+e;, n=0,...,N—1

where ¢; is the weight, T, = 7/N, ¢;, is a zero mean white
Gaussian noise with variance o2 and ¢(#) is the Dirichlet kernel
(1) with bandwidth parameter B = (2L + 1) /.

Theorem I: The minimal uncertainties on the estimation of
the position £, and weights {c,}_, in a single-Dirac SCS-FRI
scenario with P signals are given by

e[(%)]:
e[ (2]

where ESNR = (1/0?) Zj;l ¢ denotes the effective signal to
noise ratio and PSNR; = ¢3 /07,

Proof: We build a vector y of size N x P composed of all
the samples from the P signals. Since the additive noise is i.i.d.
Gaussian, y has a multivariate Gaussian distribution f(y) with
adiagonal covariance matrix. Setting the vector of parameters as
0 = (i1,¢1,ca,...,cp), we compute the diagonal components
of the Fisher information matrix as

Jii=E l(a%l My)ﬂ

(S AN M(M + 1)
- 3(2M + 1)7202

3(2L + 1)

e ) ESNRT
ATINL(L + 1)

2L+1

PSNR;' j=1,...,P

) 2 N
frne = [(d_l o) ] = oA 4T

for { = 1,..., P. The off diagonal terms are computed in the
same way as

[ o a .
Jeyr001=E aln fe(y)aln fe(y)]
=0 ¢4 =1,...,P

e£E!
[ ) d .
Jye1=E ﬁln fo(y)a—czhl fa(?/)}
=0 £=1,...,P.

The proof follows by inverting the diagonal Fisher information
matrix. ]

Comparing the CRB for the single-channel and SCS-FRI set-
tings, we conclude that in the latter, it is the sum of the energy
of the Diracs that determines the uncertainty of the position es-
timation. However, the uncertainty in recovering the weight of
the Dirac in each channel depends only on the corresponding
Dirac weight.

V. POWER DISTRIBUTION

Consider a single-Dirac SCS-FRI scenario with P signals and
let {¢; }le and ¢, represent the weights and the common lo-
cation of the Diracs, respectively. We study the following two
scenarios.

1) The recovery algorithm estimates the position of the Dirac
in each signal separately using the single-channel FRI re-
construction algorithm and averages the results.

2) The recovery algorithm estimates the common location
of the Diracs using the joint reconstruction technique of
Section III.

We want to investigate the effect of the change in the power
distribution among the channels on the minimum uncertainties
that can be achieved in the two scenarios mentioned above.

Theorem 2: Assume that the recovery algorithms are unbi-
ased and achieve the Cramér—Rao lower bound for both the
single-channel and multichannel settings. Let T'(I) and T'(IT) de-
note the uncertainties in position estimation for the scenarios I
and II, respectively. Then, we have I'(I1) < I'(I}) with equality
if and only if the total power is distributed uniformly among the
channels.

Proof: LetAt;;1 = 1,....,P andAty denote the
estimation errors of the single-channel and mul-
tichannel  recovery  algorithms,  respectively.  Let
a = (36%(2L+1)/47>NL(L +1)). From Theorem 1
we have

Aty \? ,
I(Il) = E ( M) e (5)
7 Zi:l CLZ
We write
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where in (a) we used the fact that the estimates are all unbiased
and independent and in (b), we used (4). To get the final result,
we write

r r

1 2 (@
2\ X P+ZZ—2 > P

i=1 i=1 i=1 j#i i

(7

where in (@) we used the inequality 2:4+1/2 > 2. Combining (5),
(6) and (7), we get I'(IT) < T'(T). Note that i 1n (7), the equahty
is achieved if and only if ¢ = ¢3 = ... = c%.

As pointed out in [4], the single- channel FRI reconstructlon
algorithm achieves the CRB above an SNR threshold that de-
pends on the parameters of the sampling system. As is shown
using numerical simulations in Section VI, this SNR threshold
to achieve the Cramér—Rao lower bound decreases by using the
SCS-FRI recovery algorithm. Achieving the CRB and being un-
biased, the result of Theorem 2 indicates that whenever there is
an unequal power distribution between the channels, the uncer-
tainty of the location estimation is reduced by using the multi-
channel reconstruction algorithm compared to the strategy that
makes the average of the single-channel reconstructions.

VI. SIMULATION RESULTS

In the SCS-FRI setup, we consider a set of P = 6 peri-
odic signals each containing a single Dirac. The Diracs share
the same location #;. We take N = 2L + 1 samples from each
signal with L in the set {2 3, 10} Independent and identically
distributed Gaussian noise of variance o2 is added to the mea-
surements to get SCS-SNR from —10 dB to 40 dB. We define
SCS-SNR as the ratio between the total signal power and the
total noise power

ZJ 1 Zn 701 (2802(ILT15 - tl)

SCS — SNR =
NPg?
P
_ 5 dli—1 cf
o2(2L 4+ 1)
where {c;}1 denotes the weights of the Diracs. In the first

set of smlulatlons the weights of the Diracs are equal. We av-
erage the uncertainty on the estimation of the location ¢; for the
SCS-FRI reconstruction scheme and the single-channel+aver-
aging scheme (see Section V) over 10000 realizations of the
noise. The results are shown in Fig. 2(a). As shown in The-
orem 2 for the even distribution of power, the performance of
the two algorithms are the same in the high SNR regime when
all the single-channel uncertainties approach the CRB. How-
ever, compared to the single-channel and averaging scheme, the
SCS-FRI reconstruction scheme approaches the CRB at a lower
threshold SNR. This can be explained by the fact that SCS-FRI
first estimates the annihilating filter coefficients using the data
from all the channels and then finds the roots, whereas the tra-
ditional method first finds the roots and then makes the average.
In Fig. 2(b), we consider the parameters P = 6 and L = 5 inan
unequal power distribution setting given by the power ratios (1,
2,3,4,5, 6). We can see that the performance of the SCS-FRI
reconstruction scheme is not affected by the uneven power dis-
tribution among the signals, while the performance of the av-
eraging scheme deteriorates considerably. Although not shown
here, the proposed reconstruction algorithm behaves similarly
in the case of multiple Diracs separated by more than 2/B.
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Fig. 2. Performances of the SCS-FRI reconstruction, the single-channel 4 av-
eraging reconstruction along with the Cramér—Rao lower bound. (a) Six equal-
power signals with 5, 11 and 21 samples per signal (from top to bottom). (b) Six
signals with power distribution ratios (1, 2, 3,4, 5, 6) and 11 samples per signal.

VII. CONCLUSION

We investigated the SCS-FRI scenario in which the goal is
to design efficient techniques to sample and reconstruct a set
of FRI signals having common-support property. We proposed
special sampling and reconstruction techniques for the SCS-FRI
model. By deriving the Cramér—Rao lower bound and using nu-
merical simulations, we showed that the proposed SCS-FRI re-
construction algorithm achieves the bound starting from lower
SNR compared to the classical single-channel FRI reconstruc-
tion techniques. Our method has a promising application in im-
proving the channel estimation quality for multi-antenna com-
munication systems.
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