
Debugging by lastChange

Salman Mirghasemi
École Polytechnique Fédérale

de Lausanne (EPFL),
Switzerland

salman.mirghasemi@epfl.ch

John J. Barton
IBM Research - Almaden
bartonjj@us.ibm.com

Claude Petitpierre
École Polytechnique Fédérale

de Lausanne (EPFL),
Switzerland

claude.petitpierre@epfl.ch

ABSTRACT
We introduce a new, practical feature for debuggers called
lastChange, which automatically locates the last point that
a variable or an object property has been changed. Starting
from a program halted on a breakpoint, the lastChange solu-
tion applies queries to the live program during re-execution,
recording the call stack and limited program state each time
the property value changes. When the program halts again
on the breakpoint, the recorded information can be shown
to the developer. As a proof of this concept, we developed
Querypoint, a prototype which enhances the popular Fire-
bug JavaScript debugger with the lastChange feature and
studied users applying the prototype to some test cases.
The approach used in implementing lastChange combines
the flexibility of breakpoint debugging with the expressive
power of log-based query debugging. Contrary to other
replay-based approaches, which require exactly the same
re-executions (deterministic executions), our new approach
only requires bug reproducibility, meaning a test case is avail-
able which reproduces the bug and a way to halt execution
reliably after the reproduction.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids; D.2.6
[Programming Environments]: Integrated environments

General Terms
Algorithms, Human Factors, Languages

Keywords
Debugging, Locating Defects, Querypoint, LastChange, Break-
point, Watchpoint, Logging

1. INTRODUCTION
According to [10], developers spend about fifty percent of

their time debugging. To fix a bug, developers typically re-
produce and monitor the buggy execution several times to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’11 SZEGED, HUNGARY
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

understand the program’s unexpected behavior. Trial-and-
error, guess-work, and analyzing complicated data make de-
bugging difficult and time-consuming. Enhanced debugging
operations save time, reduce development costs and improve
software quality.

A common strategy for locating defects starts from bug
symptoms and works backwards, moving from a point in the
program execution where a value appears to be incorrect
back to the point where that value was set. Two conven-
tional approaches, breakpoint-based and log-based debug-
ging, require tedious steps of selecting data to be collected,
collecting the data, then analyzing the results.

In breakpoint debugging, developers select data to be col-
lected by searching through source files and setting break-
points. To determine where a value was set incorrectly, a
developer must set breakpoints at all possible points where
the value changes. At every breakpoint, the developer must
determine if the location is in fact related to the questionable
value change then study the complex debugger user interface
and memorize values or manually collect data. As the num-
ber of breakpoint hits increases, the process of checking the
program state, collecting data and resuming the execution
becomes cumbersome.

In log-based debugging, developers select data to be col-
lected by inserting statements for all points of possible change.
While in breakpoint-based debugging, the whole program
state is available to developer, in log-based debugging, de-
veloper has to decide what data should be collected when
inserts the log statement. It is very common that the devel-
oper has to repeat this step several times due to insufficient
collected data, or to wait a long time because too much data
is recorded. Once adequate data is collected, it still requires
analyzing and understanding. Developers usually end up
in dealing with long log files and analyzing huge amounts
of collected data. Neither approach effectively assists the
developer in finding origins to a wrong value.

Our new functionality in debuggers, lastChange, locates
the origin of a wrong value by queries on the running pro-
gram. Imagine that a program execution is paused on a
breakpoint and the developer is suspicious about the value
of a variable or an object property. The developer selects
lastChange on the value. The debugger replays the buggy
execution and collects data when the data field changes.
Once the execution reaches the same place (i.e., the same
breakpoint hit), it pauses the execution, analyzes the col-
lected data and shows the location of the last change to
the developer. The developer can also examine the program
state at the located point of execution, and continue debug-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ging by more lastChange queries from that point.
Our contribution in this paper is the technique lastChange,

which locates the last place a value has changed, gathers
other values from that execution point, and allows lastChange
operations from that point. The technique builds on ex-
isting breakpoint debugger technology and it does not re-
quire a special environment to create identical, instruction
by instruction, re-executions. We demonstrate the feasibil-
ity of the approach with Querypoint, an implementation ex-
tending Firebug JavaScript debugger. Querypoint also pro-
vides mechanism for automated bug reproduction, and a
novel user interface which summarizes investigated execu-
tion points and collected results. The lastChange algorithm
provides information on important program values during
the program execution without voluminous logs and with-
out tedious insertion and removal of breakpoints. We believe
other queries over the running program can be formulated
to generalize this technique.

The rest of the paper is organized as follows. First, we
demonstrate the lastChange usage on a simple example with
the comparison to breakpoint debugging. Section 3 presents
lastChange algorithm. In section 4, we explain the details
of the JavaScript prototype implementation. We discuss the
effect of non-determinism on the lastChange results in sec-
tion 5. The user study results are presented in section 6.

2. INTRODUCTORY EXAMPLE
We illustrate the lastChange functionality by a simple ex-

ample. The example demonstrates a buggy JavaScript code
in a HTML page (Figure 1). The page contains a button
(line 40) showing the value of myObject.myProperty. When
the user clicks on the button, the onClick function (line
13) is called. This function increases the value of myOb-

ject.myProperty by one (line 15) and calls updateButton

function which updates the button’s text to the new value
(line 22). Once the page is loaded for the first time the but-
ton shows 1 as the initial value of myObject.myProperty.
In practice when the user clicks on the button, 0 appears
instead of 2: there is a bug.

Two other functions are called in onClick(), foo() and
bar(). As developers we often encounter function calls which
seem peripheral to our current concern; they may have been
added by another developer, or we may have forgotten their
exact properties or those properties may have changed, and
so on. The difference between what we expect these func-
tions to do, e.g. nothing interesting, and what they do in
practice may cause bugs.

By browsing through the code or other means [1], the de-
veloper determines that the value displayed on the button
is set at line 22. Since the displayed value is incorrect we
know the bug occurred before we hit this line. To start de-
bugging, the developer sets a breakpoint on line 22. Once
the button is clicked, the execution is paused at line 22.
Figure 3(a) shows the Firebug debugger while the execution
is paused. Firebug has several panels (e.g., HTML, CSS,
Script, DOM, etc.) that each demonstrate one aspect of the
Web page. The Script panel contains the list of all loaded
source files and regular debugging facilities such as setting
breakpoints and stepping. To the right of the script panel,
the Watch panel shows the program state where the devel-
oper can examine object and variable values. In our case,
the myObject.myProperty value at the paused point is 0.
We expected this value to be 2.

1 <html>
. . .
5 <script type=”text / j a v a s c r i p t ”>
6 myObject = {myProperty : 1} ;
7 myCondition = {value : 1} ;
. . .
13 function onCl ick (){
14 foo () ;
15 myObject . myProperty++;
16 bar () ;
17 . . .
18 updateButton () ;
19 }
20 function updateButton (){
21 var myParagraph =

document . getElementById (”myButton ”) ;
22 myButton . innerHTML = myObject . myProperty ;
23 }
24 function f oo (){
25 myCondition . value = oldValue ;
26 }
27 function bar (){
28 i f (! myCondition . va lue)
29 myObject . myProperty = 0 ;
30 }
31 </script>
. . .
40 <button id=”myButton” onc l i c k=”onCl ick ()”>
41 1
42 </button>
43 </html>

Figure 1: A Web page containing JavaScript code.
Some lines not related to our paper have been elided.

To apply backward search strategy for locating defects,
the developer first needs to know the origin of the wrong
value. To achieve this goal using breakpoints, the developer
should search code to find all possible places that myObject.
myProperty might get a new value and set breakpoint at
these locations. However, an object and property can be
accessed and changed through different names and meth-
ods. There is no simple way to identify these aliases or even
their total number. The developer can make a good guess
and set breakpoints on lines where the property seems to be
changed. Then they re-execute the program and examine
the state looking for values that may lead to the incorrect
value observed at line 22. All this work must be repeated
if a new alias is discovered or if some information related
to the buggy result was missed while stopped on one of the
breakpoints.

In contrast, we have added a high-level function in the
debugger, lastChange, which provides the answer without
tedious manual effort from the developer. By right clicking
on myObject.myProperty in the Watch panel, the developer
can run lastChange command (Figure 3(a)). The debugger
re-executes the program and halts again at the breakpoint
on line 22. However, it shows a new panel, called QP, cen-
tered on the source at line 29 (Figure 3(b)), the point of
lastChange. To the right, the TraceData panel shows values
of properties of the program state when it passed through
line 29. These two panels resemble the Script and Watch
panels, but they show data collected by the debugger at one
execution point which is now past: these are traces or logs
of information collected during the re-execution.

Looking at line 29, it seems that something is wrong with
myCondition.value which causes line 29 execution. The de-
veloper examines myCondition.value and it is undefined.

123

lastChangelastChange

line 25 line 29 breakpoint hit

trace

Figure 2: The examined points before locating the
defect. The arrow represents the logical forward
progress of the program. Three actual executions
are superimposed on this arrow. All three stop
at the reproduction point indicated by circle 1.
After the first execution, the developer asks for
lastChange as described in section 2, yielding in-
formation indicated by circle 2. After the second
execution, another lastChange query causes a third
execution, yielding information indicated by circle
3.

The next step is to know when this property got this value.
To do so, the developer runs the lastChange command on
myCondition.value at this point. The debugger re-executes
the program and breaks again on line 22, analyzes its queries
and shows the developer line 25-the place oldValue is as-
signed to myCondition.value. If the developer asks for
lastChange on oldValue, the debugger can notify the de-
veloper that this variable is never assigned a value. Now it
is clear that the bug occurs because oldValue is undefined

once the execution reaches line 25 (Figure 3(c)).
As demonstrated in Figure 2, the developer has examined

three points of execution. The first point was the breakpoint
set by the developer. We call this special breakpoint the re-
production point. The second and third points preceded the
reproduction point in execution sequence. All three points-
the history of the search for the defect-are available through
the debugger’s interface. On the top of the left panel in
Figure 3(c) there is an opened list which shows all three ex-
amined points. The first one is the breakpoint on line 22, the
second one is the point which is when myObject.myProperty

changed before reaching the breakpoint and finally the last
one is the point of execution in which myCondition.value

gets the undefined value. Moreover, the source lines related
to these points are marked with red Q icons.

Notice that in our example, lastChange combines some as-
pects of breakpoint and of log-based debugging. Like break-
point debugging, the developer re-executes a live runtime
without changing the source and without a special execu-
tion environment beyond the debugger. The state of the
program memory and the call stack are available at each
lastChange point. Like log-based debugging, the program
state and the call stack are recorded during program execu-
tion. We can’t halt the program at lastChange because we
don’t know which point is the last one until we return to the
original breakpoint. In section 5 we discuss cases where it
is possible to pause at lines of lastChange.

3. LASTCHANGE ALGORITHM
The lastChange algorithm is based on program re-execution

of a program halted on a breakpoint. The algorithm starts
when developer examines the program state at a breakpoint
hit and asks for the lastChange of a value. The breakpoint
hit becomes the reproduction point. Debugger sets hooks (a

callback function dependent upon the underlying runtime)
on all instructions that might be the result of lastChange
query. Then the debugger re-executes the program and ev-
ery time a hook hits it checks for a change event. In the
case of a change, it stores part of the program state values.
Once the execution reaches the reproduction point, it ana-
lyzes the collected data and shows the result. The program
state at the execution point of the last change event is the
lastChange.

As we described in the preceding section, a lastChange
query can be performed on the result of another lastChange
query. If we name the reproduction point R, we can write
the first lastChange in the introductory example in this
form: lastChange(R, myObject.myProperty). It means that
this query is defined at R. If we name the result of this
query L, we can write the second lastChange in this form:
lastChange(L, myCondition.value). In this way, a sequence
of lastChange queries with any length can be defined.

lastChange can be called on object property, on a variable
value, or on the results of a lastChange. Moroever, common
data structures such as arrays and hashmaps are also sup-
ported as special cases of lastChange on object property. We
explain each case in the following subsections.

3.1 lastChange on Object Property
To simplify the algorithm explanation and defer technical

details, we define two basic operations and later we explain
the details of these two operations. The first operation is
objectId(): given a JavaScript object it returns an integer
as its identifier. This identifier is unique to the object during
one execution. By using an object id instead of an object ref-
erence we allow the garbage collector to reclaim the space for
dead objects just as it would in the absence of the debugger.
The second operation is setPropertyChangeHook(): given
a function and a string, the function is called whenever a
property changes and its name matches the string. For ex-
ample, if the string is foo, changes to bar.foo or baz.foo

would call the function. The callback function receives a
reference to the owner of foo.

To see how these functions work, suppose the developer
asks for the last change of bar.foo at the reproduction point
in a program. The debugger calls setPropertyChangeHook()
with foo as the property name and re-executes the program.
Whenever foo changes and the callback function is to be
called, debugger first calls objectId() on the foo owner ob-
ject. Then it stores this owner id, the stack frame locations,
and other state values in scope at the call point. Then the
callback returns to continue the execution. Thus the query
is not a breakpoint in the sense of pausing for user interac-
tion, but breakpoint technology can be used to implement
the query. Whenever the execution reaches the reproduction
point the debugger looks at the history of foo changes and
finds the last foo change with the same object id as bar id at
the reproduction point. Figure 4 shows the list of property
foo change events in a hypothetical execution. bar id at the
reproduction point is 1010, so the last change of bar.foo is
the fourth column.

3.2 lastChange on Variable
In JavaScript, every frame has a scope chain and every

available variable in the frame comes from one of the scopes
in the frame’s scope chain. Once the developer asks for the
last change of a variable with name foo at the reproduction

(a) A screen shot of the Firebug debugger while running the example code from Fig. 1. The Script panel is selected; it gives
access to all loaded source files and allows breakpoints to be set on lines. In this figure, the execution is paused at line 22
by a regular breakpoint. The Watch panel on the right shows the program state at the paused point. Developer can query
lastChange on myObject.myProperty by right-clicking on the value of myProperty.

(b) The result of lastChange query for myObject.myProperty. The left panel, QP, shows the source code at the point of
lastChange; The right panel, TraceData, shows the collected data at the point.

(c) The result of lastChange query for myCondition.value. To evaluate an expression (e.g., oldValue) at this point, developer
can enter the expression in the watch box and after re-execution the result is available. The opened list on the top of the left
panel shows the visited execution points. Clicking on each point in the list shows the corresponding code and data.

Figure 3: The stages of locating the defect using lastChange feature.

fo
o

ch
an

ge
s Index 1 2 3 4 5

Owner id 1010 3801 1010 1010 3801

bar id at the reproduction point : 1010

Ca
ll

St
ac

k panel.js : 505
dispatcher.js : 44

…
index.html : 103

Figure 4: A hypothetical list of change events for
a property foo. Each change event adds a column
with the id of the object changed, the call stack, and
some program state such as local variable values.
At the reproduction point we determine which id
corresponds to object bar and read out column 4, the
last change of bar.foo. Column 3 is also a change
of the object we want to study, id 1010, but it is
not the last change; Column 5 is also a change of
a property foo but it is not for the object we are
interested in.

point, the debugger first determines the variable’s scope as
follows: it iterates over the scopes in the scope chain and
the first scope which has a variable with the same name is
the variable’s scope. There are five different scope types:
global, local, closure, with and catch. We explain these
cases in two groups.

3.2.1 global and with scopes
Global scope is the most outer scope in the scope chain

and it is also referred to as the global object (the window ob-
ject in Web pages). This scope is a regular JavaScript object
and therefore every global variable is a property of global
object. Similarly, with scopes are also regular JavaScript
objects. A with scope is created by a with() block with an
object as the parameter. Every property of this parameter
object is available inside the block as a variable. lastChange
treats the case where variable’s scope is global or with, like
it does on an object property.

3.2.2 local, closure and catch scopes
Local scope refers to the most nested scope in the scope

chain which contains the local variables. Closure scope refers
to the scope which is created for a nested function and con-
tains variables defined in the outer block. Catch scope is
the scope created in the catch block of try-catch statements
and contains the exception variable. These scopes are not
necessarily regular JavaScript objects. Therefore, to track
changes to a variable in these scopes we employ a different
approach.

Having the scope chain and the source code, we can map
every scope to a code block, enclosed the executing code. In
JavaScript, a code block can be identified by the file url and
the block’s first instruction program counter. Given this in-
formation, the debugger is able to recognize the code block in
loaded scripts or once it is loaded. Similar to lastChange on
object property, we define two basic operations: scopeId()

– which returns an integer given a scope – and setVari-

Code Sample Trace

f ()

A x ++ scope 1

f ()

x ++ scope 2

f ()

B x ++ scope 3

C y = x scope 1

function f () {
var x, y;
x = 0;
. . .
x ++;
. . .
if (! stop) f ();
. . .
y = x;

}

Figure 5: A recursive call trace illustrating the scope
id. The lines in the bottom half of the diagram sim-
ulate a trace of the change events for the variable x

as the function f() calls itself. Each call creates a
scope; eventually when the variable stop is changed
by an external process we return from the recursion.
The lines marked A, B, and C are discussed in the
text.

ableChangeHook() – which calls its first parameter, a call-
back function, when a variable in its second parameter, a
code block, matches the name given in the third parameter.

Figure 5 illustrates how the scopeId() operation sepa-
rates instances of a variable in different scopes having the
same name. If we ask for the last change on x at point la-
beled C in scope with id 1, we want the change at line A

in scope 1, not the change at the line marked B, where a
variable named x in scope 3 is changed.

If the developer asks for the last change of variable foo at
the reproduction point in a program, debugger calls setVari-
ableChangeHook() with the variable’s defining block and
name as parameters and re-executes the program. When-
ever foo changes and the callback function is to be called,
debugger first calls scopeId() on the variable’s scope. Then
it stores this scope id, the stack frame locations, and other
state values in scope at the call point. Whenever the ex-
ecution reaches the reproduction point the debugger looks
at the history of foo changes and finds the last foo change
with the same scope id as the variable’s scope id at the re-
production point (Figure 6).

fo
o

ch
an

ge
s Index 1 2 3 4 5

Scope id 50 55 36 50 100

foo scope id at the reproduction point : 55

Figure 6: A hypothetical list of variable foo change
events. Each column of the list indicates a change
event; for each change event the scope id returns
by scopeId() is recorded along with call stack and
program state information. The last column having
the scope id foo at the reproduction point indicates
the last change.

3.3 lastChange on lastChange
The lastChange algorithm records changes by id (either

object or scope id), then reads out the last change when
we arrive at the reproduction point and discover the id of
the requested value. When we perform lastChange based
on a previous lastChange, the query algorithm must retain
additional information. Consider the following example:

point A : the reproduct ion point
point B : lastChange (A, bar . x)
point C : lastChange (B, baz . y)

where point A is a breakpoint, point B is the last change
of the object property bar.x at point A, and point C is the
last change of the object property baz.y at point B. The
object referenced by baz changes upon re-execution. There-
fore when the developer asks for the last change of baz.y,
we need to track objects named baz at changes of bar.x

and changes to objects named y. Then, at the reproduction
point, we need to work out which baz the developer wanted,
then select the last change of that baz.y. Figure 7 illustrates
the extra row of data (tracking of baz objects at x change
events) and how the id values allow the last change of baz.y
to be worked out.

In the general case we perform dependency analysis as
outlined in Figure 8 to create the list of additional data
(object id or scope id) to be collected at a change event. The
process can be repeated to cascade lastChange arbitrarily
deep.

x
Ch

an
ge

s

index 1 2 3 4

x
owner id

1010 3801 1010 1010

baz id 253 1772 743 1772

bar id at the reproduction point : 3801

y
Ch

an
ge

s index 1 2 3 4 5

y
owner id

743 1772 253 1772 743

Figure 7: The list of change events stored for locat-
ing point B, the lastChange of bar.x at the repro-
duction point, and point C, the lastChange of baz.y

at point B.

4. JAVASCRIPT IMPLEMENTATION
To verify the lastChange algorithm we implemented1 it

in an extension to the Firebug JavaScript debugger2. Fire-
bug itself is an extension of the Firefox browser. The Fire-
fox JavaScript engine provides a JavaScript debugging in-
terface [14] and Querypoint is developed over this interface.
Our prototype implements the four primitive operations in

1http://code.google.com/p/querypoint-debugging
2http://getfirebug.com

for q in lastChange queries do
for p is defined at the q result do

if p is a lastChange on object property then
the property owner id must be stored at q change
events.

else if p is a lastChange on variable then
the variable scope id must be stored at q change
events.

end if
end for

end for

Figure 8: lastChange queries dependency analysis.

JavaScript using techniques which are cumbersome and com-
paratively slow to execute. However the JavaScript proto-
type is easy to explore, change, and share with others for
feedback. A professionally useful debugger would implement
these primitive operations within the JavaScript engine.

4.1 objectId() Operation
objectId(obj) first checks the argument obj for a prop-

erty _objectId. It returns the value if this property is al-
ready defined, otherwise it generates a new id and sets this
property. The value of the id is simply an integer incre-
mented for each new _objectId needed.

4.2 setPropertyChangeHook() Operation
The Firefox JavaScript engine supports watching prop-

erty changes in an object. Every object has a function
watch(propName, callback) which receives two parameters,
a property name and a function. Whenever the property
with the given name changes, the callback function is called.
The hook set by this function remains enabled even if the
property is deleted and defined again.

For our purposes, the watch() function only covers the
case of global object properties. At the beginning of exe-
cution, no object excepting the global object and its prede-
fined properties is available. For our lastChange prototype,
we created a version of setPropertyChangeHook(). The ba-
sic strategy is to get a reference to the object just after
its creation, then use watch() function to monitor prop-
erty changes in the object. Setting a flag3 into the Firefox
JavaScript engine, we can get the file URL and the line num-
ber for each object creation (e.g., myFile.js, line 24). We set
a breakpoint on this line and parse the source code to de-
termine which object was created.

The only data we have is the object creation location in-
cluding the file url and the line number and the goal is to get
a reference to this object. Although in most regular cases
we have only one statement and one object creation, there
are cases where more objects are created in the line. There
is no simple way to recognize the interesting object among
these new objects. So instead of one object, we monitor all
new objects created in the line.

An object might be created by one of these statements:
object literal({...}), new operator (new constructor()) or

3DISABLE OBJECT TRACE defined in jsdIDebuggerSer-
vice.idl

function definition statement (function()). By parsing the
source code we can recognize the statements that create an
object. The next step is getting a reference to the new ob-
ject.

The new object can be assigned to an object property or
a variable by an assignment (=). In these cases we keep
the assignee statement at the left side. The idea is that
we create a list of assignee statements that the new objects
are assigned to. We set a hook on the creation line. Once
the hook hits, we evaluate the assignee statements. Then
we do stepping(step-over) and after each step we evaluate
the statements. Every statement which has a new value, we
consider the new value (if it is an object) as a new object.
For example in Figure 9(a), if the creation line number is
20, we have only one statement which creates a new object
and it is assigned to x.y.

The new object can also be set as the property of a parent
object (or array) inside an object (or array) literal. This case
is also treated similar to previous case. The only difference
is that the full path of property from the root parent in the
local scope must be considered as the assignee statement.
For example in Figure 9(b), if the creation line is 20, we keep
parent.child. In this case stepping must be continued until
the end of the object literal (line 22) for getting a reference
to the created new object.

In cases where the new object is passed as an argument to
a function (Figure 9(c)), we use step-in instead of step-over.
To get a reference to the new object it is enough to evaluate
the corresponding argument inside the function. The other
cases where the program does not keep a reference to the
created object (e.g., when a function object is just called
after its creation), are not in our interest.

Although this approach is successful in many ordinary
cases, we can imagine cases where a more comprehensive
analysis needed for the correct behaviour. Consider the
case where the new object is assigned to an expression like
a[++i]. Obviously, evaluating this statement doesn’t return
a reference to the new object. Our prototype implementa-
tion does not handle these kinds of unusual cases yet.

Throughout this section we implicitly assumed that the
object will be created at the same location in the next ex-
ecution. If the assumption is not true, once the execution
reaches the reproduction point, it reveals that the object has
been created in a different location. This time, prototype re-
executes the program considering both locations as possible
object creation locations.

(a) Case 1 :
20 x . y = new MyClass () ;

(b) Case 2 :
19 parent = {
20 ch i l d : {
21 x : 5
22 }}

(c) Case 3 :
20 myFunction ({myProperty : 5 }) ;

Figure 9: Examples of different cases in getting ref-
erences to created JavaScript objects.

4.3 scopeId() Operation
The prototype sets a breakpoint at the beginning of all

code blocks needing a scope id. The scope id is kept as a vari-
able with name _scopeId in the scope. Whenever the hook is
hit, meaning a new scope is created, _scopeId is set by call-
ing JavaScript’s dynamic compilation function eval(). For
example, executing eval("var _scopeId = 10") creates a
variable with name _scopeId and value 10 in the scope of
the eval() call, which is our interesting scope. scopeId()

operation returns the value of _scopeId in the scope.

4.4 setVariableChangeHook() Operation
Variables defined in local, closure, and catch scopes are

only changed in their scope; that includes the defining scope
and scopes nested whithin them. For example in Figure 10,
variable foo in line 11 can only be changed in lines 10 to 23.
Therefore, after locating the function in which the variable
is defined, it is enough to parse the code inside the function
block and set a hook on all lines where the variable is as-
signed a new value. We also set a hook at the first line of
the function which is corresponding to the line where the
variable is defined. In Figure 10, if the execution is paused
at line 17 and the last change of foo is queried, two hooks on
lines 16 and 17 will be set, but if the execution is paused at
line 20 , four hooks on lines 11, 12, 14, 20 will be set. These
two cases are different: foo in childOne is a local variable
but in childTwo it is a closure variable.

10 function main (){
11 var f oo ;
12 foo = . . . ;
13 function parent (){
14 foo = . . . ;
15 function childOne (){
16 var f oo ;
17 foo = . . . ;
18 }
19 function childTwo (){
20 foo = . . . ;
21 }
22 }
23 }

Figure 10: Sample JavaScript code demonstrating
local and closure variables.

4.5 Re-Execution, Reproduction Point and Data
Collection

Querypoint needs a test case to reproduce the execution
and conditions to correctly recognize the reproduction point.
Although both elements can be directly provided by devel-
oper, Querypoint is also able to automatically create them
from the first execution.

To replay execution, Querypoint keeps track of breakpoint
hits and single steps. For example, if the developer queries
lastChange at the third hit of breakpoint b, in re-execution,
the third hit is recognized as the reproduction point.

The Querypoint prototype supports two mechanism for
automatic re-execution: callstack-reproduction and record-
replay. In callstack reproduction the function from the earli-
est frame of the call stack is called with the same parameters.
The idea behind this mechanism is that many bugs in web
pages can be reproduced by re-firing an event like clicking on
a button. The record-replay execution uses two phases. In
the record phase, it stores the initial page url and the events
and parameters corresponding to user actions. In the replay

phase, it opens the same url and simulates events as if they
were user actions. The callstack reproduction mechanism
provides shorter re-execution cycles while the record-replay
is more accurate about the initial state.

In addition to the data collected at every change event
for identifying the lastChange result, Querypoint partially
stores values in program state. There is a trade-off between
the amount of data collected at every change event and the
number of re-executions. If developer asks for some values
which have not been stored, Querypoint re-executes and col-
lects the requested data.

5. REPRODUCIBLE NON-DETERMINISTIC
EXECUTION

We claim that the only prerequisite for lastChange is bug-
reproducibility. A bug is reproducible for a developer when
the developer can start from a given initial state, operate on
the program with a list of actions, and reproduce the symp-
toms of the bug. The details of the execution can change
each time we re-execute the buggy program, but the buggy
result is the same. All modern debuggers in wide use that
we know about rely on reproducible but non-deterministic
execution for simple practical reasons: developers must re-
produce a bug to study it and modern execution environ-
ments are not deterministic. By relying on reproducibility
but not requiring deterministic execution, lastChange works
on the same range of cases.

5.1 lastChange Result Consistency
Each time we re-execute a non-deterministic program, the

details of execution instruction order may change. For ex-
ample, if we record the source code lines every time a conven-
tional watchpoint hits, the record may differ each time we
re-execute. But lastChange does not compare values across
executions. Rather it analyzes all of the change events in a
single execution. Neither the data gathering nor the analysis
require deterministic execution.

Since we don’t need to compare values across executions
to implement lastChange, we can get more information if we
do compare: different points of last change on different ex-
ecutions will signal that the execution is not deterministic.
Note the converse is not true, many non-deterministic pro-
grams will give identical results for lastChange. Consider the
example in Figure 11. Assume that at the first execution,
the developer sees that the a value is true and asks for the
lastChange of a at the breakpoint. In the re-execution, a is
false, and b is true at the reproduction point. It means
that lastChange result shows line 10, which is a correct an-
swer for this execution but not for the previous one. When
user asks for the lastChange on variable a, debugger stores a
value and compares it to the a value in the next executions.
So if this value is different, debugger informs the developer
that the lastChange query is made on a different value.

10 a = b = f a l s e ;
20 i f (random ()) {a = true ;} e l s e {b = true ;}
30 i f (a | | b) {bug () ; /∗ breakpoint ∗/}

Figure 11: lastChange on non-deterministic values.

5.2 Combination of lastChange and Break-
point Debugging

Using lastChange a developer can work backwards on the
flow of data, but sometimes bugs are more obvious when we
watch control flow forwards. Consider for example,

44 vector . r = Math . f l o o r (Math . random ()∗5)∗6 ;
45 i f (vec tor . r !== 0 && vector . r < 30) ;
46 return vector ;

where lastChange shows us that vector.r is zero at line 44.
In our user studies, developers wanted to single step forward
from line 44. If they could do this, they may be surprised
to see line 46 execute even if vector.r is zero, directing
their attention to line 45 where they can discover the errant
semicolon. However, a lastChange is just a query result,
not a breakpoint. Under what conditions can we cause the
debugger to stop at the lastChange point?

In the case that the execution is deterministic, the last-
Change event index can be used as an index for a condi-
tional breakpoint [4, 13]. Moreover, this works in a non-
deterministic execution if non-determinism has no effect on
the event index. The debugger can easily set this condi-
tional breakpoint and reexecute the program. If the stream
of change events differs in this re-execution the developer
can be warned that the conditional breakpoint may not be
the lastChange point. However, if the stream of events is
the same, we do not know that the conditional breakpoint
matches the last change, this fact can only be verified at
the reproduction point. These theoretical concerns are not
likely to cause significant practical problems: if the value at
the conditional breakpoint is not suspicious, then the devel-
oper will know to simply return to lastChange or move on
to another tactic to find the bug.

6. USER STUDY
We supplied four experienced Javascript developers with

our prototype in an extended Firebug debugger4. Following
a tutorial and a practice case, we observed as they applied
both conventional breakpoint and lastChange on two small
programs we provided (Our prototype did not have a user
interface to support Sec. 5.2). The first program, Shapes,
calculates the area and perimeter values for a list of shapes.
The bug happens when one of the calculated numbers is
zero. The second program, Moving Circle, randomly scales
and moves a circle in the page. The bug happens once the
circle becomes invisible after an exception occurs. This case
represent a reproducible non-deterministic execution. The
developers were asked to locate the defects that caused these
bugs. All four developers successfully applied lastChange to
the test programs and understood how it could help debug-
ging.

To find the defect location with breakpoints, all four users
took more steps and more time (Figure 12). Two users
scrolled through the source, another searched the text, a
third set a lot of breakpoints to understand the control flow.
Based on our own experience we expect these strategies rep-
resent the kinds of approaches developers have available.
These operations are time consuming and tedious. In con-
trast, all four users found the defect location with just two
lastChange operations. We recognize that these programs

4http://ltiwww.epfl.ch/~mirghase/lastchange-userstudy

were designed to highlight lastChange and many kinds of de-
bugging issues have been hidden by the design of our tests.
Nevertheless our results show that, when a defect relates to
incorrect values and a developer recognizes this, then the op-
erational mechanics of lastChange lead to the defect much
more quickly than breakpoints.

Our observation and discussions with users also brought
out several important issues and improvements for our user
interface. Perhaps the most important and challenging im-
provement would be better integration with breakpoint de-
bugging. Our implementation put the results of lastChange
in a similar but different view from breakpoint debugging.
This focuses attention on value changes, but it makes study-
ing control flow more difficult: we don’t support single step-
ping from a lastChange result in our user interface. In our
next iteration we plan to merge the query and breakpoint
results and support pausing as described in Sec. 5.2.

Developers
Programs

DEV1 DEV2 DEV3 DEV4

Shapes 3 (85 s) 13 (182 s) 39 (318 s) 3 (80 s)

Moving Circle 9 (215 s) 4 (40 s) 3 (195 s) 12 (234 s)

Figure 12: The number of steps (and time in sec-
onds) required before locating a defect, for each test
subject and test program. Cells with a white back-
ground report values with conventional debugging;
Cells with a colored background use lastChange.

7. DISCUSSION
We have presented the lastChange algorithm and described

our prototype implementation. Our goal is practical im-
provements in debugging. To achieve our goal we need
practical JavaScript engines to add new debug primitives
so that developers in the field can use our new technique.
This paper is one step to convince implementers to enable
lastChange. Thus we summarize here our arguments that
lastChange should be supported.

7.1 Developers need an operation like last-
Change

Since ultimately programs are just transformation of state
values, debugging is ultimately backtracking to find defects
in program state change [17, 18]. When a developer halts a
program on a breakpoint they compare the call stack and
program state to their model of the program. If any value
seems to be incorrect, they need to figure out what operation
causes the incorrect value. Here lastChange takes over and
addresses a key part of the debugging process.

7.2 Developers can learn to use lastChange
While our user study was small, our prototype demon-

strates that lastChange can be easily activated by opera-
tions on the graphical representation of erroneous data in a
debugger and the results can be interpreted by users. While
lastChange is not a breakpoint, all of the assumptions de-
velopers already have for breakpoints hold for lastChange.
In particular the re-execution is just the same operation de-
velopers use to debug with breakpoints.

7.3 Practical implementations are feasible
We have described our prototype all-JavaScript imple-

mentation in Sec. 4. It is adequate for exploring the ideas
and may even be usable in production. However significant
improvments can be made. A fully usable implementation
would require access to the object id at the point of ob-
ject creation and setPropertyChangeHook(). Many object-
oriented runtimes provide object identifiers and provide ac-
cess to object creation directly or by bytecode instrumenta-
tion [7].

7.4 In most cases lastChange will be much
faster than current alternatives

Recall that we insert additional code through debugger
callbacks, then re-execute the program. The additional code
we insert is proportional (in our JavaScript algorithm) to
1) the number of places a property or variable with a given
name is changed, 2) the number of places objects are created.
The overhead for each execution at a change event depends
upon the amount of data we store for each change event; the
overhead for object creation could be small since we only
need to determine if the object is one we need to watch.

For comparison consider today’s practical alternative: de-
velopers setting breakpoints. For the vast majority of pro-
grams, a developer will take much more time to set one
breakpoint than lastChange would add. Moreover, typically
the developer may not guess the point of last change. They
must then ponder another breakpoint and re-execute.

We could also compare to solutions based on logging or
tracing. Manual logging has very high overhead: the devel-
oper must add code, debug that added code, then analyze
the log (To be fair, the log can become a permanent de-
bugging aid). Automatic logging as we discuss in section 8
causes about one or two orders of magnitude slow down as
well as requiring a completely different set of development
tools.

7.5 The worst cases are not more common or
more painful than alternatives

Every time through the loop we incur the call back over-
head; if the loop itself has relatively little code the overhead
could be very large; if the loop computation is a significant
fraction of the full program, the slowdown would be enor-
mous. Other techniques also struggle with this case: break-
points in highly repeating loops are not feasible and log-
ging becomes unwieldy. Developers face this issue with any
debugger today: occasionally a debugger causes too much
overhead to be useful for debugging.

7.6 Generalizations
Our lastChange algorithm can be viewed as a particular

interface to a general facility. The general facility replays
execution, queries the runtime at points of interest during
execution, and analyzes the result at the reproduction point.
We have selected one kind of query and analysis that can
be easily integrated in existing debuggers and explained to
developers, providing automation of the problem of finding
the point of last change. We believe other kinds of queries
and analysis can be invented and integrated to automate
other aspects of debugging.

8. RELATED WORK

The lastChange approach resembles the operational model
of replay-based debugging and the query approach of logging-
based debugging. Replay-based approaches capture limited
data during execution and replay the buggy execution to
reach past points. In contrast, logging-based approaches
collect enough data during execution to relieve developer
from re-execution, then query the data to inform the devel-
oper. Replay-based approaches impose much less runtime
overhead (about two orders of magnitudes) comparing to
logging-based approaches. However, developer has to re-
execute the buggy execution several times. lastChange col-
lects data on re-execution by queries selected by developer
interaction with the debugger. Therefore it has the selec-
tivity of the replay-based approaches that improves perfor-
mance, and the flexibilty of the queries so it does not require
deterministic replay.

Among replay-based debuggers we compare to bdb [4] and
reverse watchpoint [13]. A bidirectional C debugger, bdb
employs a step counter to locate the requested point from
the beginning of execution. It relies on deterministic exe-
cution replay and records the results of non-deterministic
system calls and re-injects them into the program when it
is replayed. It makes use of checkpoints to reduce the time
needed for re-execution. Reverse watchpoint, similar to bdb,
uses a counter to correctly locate the last write access of a
selected variable in the next execution [13]. The main dis-
advantage of these approaches is that they require identical,
instruction by instruction, re-executions. Even one instruc-
tion difference between two executions leads to wrong re-
sults. On the other hand, lastChange doesn’t require any
special feature in the re-execution and fits into existing de-
bugging practice

Among logging-based approaches are omniscient debug-
gers ODB [11] and Unstuck [5]. Both approaches keep the
log history in memory and hence can only record and store
the complete history for a short period of time. These de-
buggers record all the events that occur during the buggy
execution and later let the developer to navigate through
the obtained execution log. In these approaches there is
no execution to resume: moving backwards in the log can
be similar to moving forwards. A more scalable approach
to omniscient debugging has been proposed by Pothier et
al. [15]. Their back-in-time debugger, TOD, addresses the
space problem by storing execution events in a distributed
database. Bhansali et al. [2] attempted to address the per-
formance overhead and large trace size of logging-based de-
bugging in their time-travelling debugger, Nirvana. Nirvana
first collects a full compressed trace of program execution
and then simulates re-execution. Their results are quite sim-
ilar to omniscient debuggers. Nirvana incurs about 15 to 68
times runtime overhead in re-simulation.

Logging-based debuggers suffer from different issues. First,
the recording step is time expensive and it should be re-
peated in case of changes in program. Second, the execu-
tion log cannot fully replace the live execution. There are
other aspects of execution (e.g., program user interface, file
system, database tables, etc.) which are also important in
debugging and are not available to the developer in logging-
based debuggers. Third, querying collected data (e.g., to
restore the program state at a certain point) may not be ef-
ficient enough for debugging realistic programs. Comparing
to logging-based debuggers our approach has little upfront
cost and more flexibility. The developer can start debugging

just after reproducing the bug without a capturing step.
Changing inputs or environment settings and re-executing
to investigate the bug works as in conventional breakpoint
debuggers.

Program slicing [17] approaches debugging from a com-
pletely different perspective. Given a point of interest S
in a program, a slice is an executable subset of the pro-
gram affecting S. Many studies have shown ways to com-
pute the slice more quickly or to constrain the slice to a
smaller subset of the program [6, 16]. Dynamic slicing [9]
applies slicing analysis at run time and thus most closely re-
sembles lastChange from among the slicing approaches. Our
lastChange approach can be related this way: first, allow the
developer to select from S a key critical value V. Then com-
pute a slice affecting V. Show the developer only the most
relevant part of that slice (the lastChange). Finally iterate
towards the fault by chaining new slice-selection criteria.

Both approaches rely on selecting S. Both approaches dif-
fer from breakpoint debugging in analyzing a program from
a known good point (e.g. start of the program) to S. Slic-
ing reduces the space the developer needs to search, but
provides no guidance within the slice; lastChange explores
the slice using developer-selected search criteria, but does
not help the developer recognize code that cannot impact
S. Slicing requires a sophisticated compiler-like technology
while lastChange builds on familiar run-time debugger tech-
nology.

A recent work by Lienhard et al. [12] suggests virtual ma-
chine level support for keeping the history of events. It
replaces every object reference with an alias object which
keeps the history of changes to the object reference. Al-
though this approach incurs less runtime overhead (7 times)
in comparison to omniscient debuggers, it adds memory
overhead.

Origin tracking of undefined and null values employ-
ing value piggybacking technique proposed by Bond et al.
[3]. This approach has two main limitations comparing to
lastChange. First, it is limited to undefined and null val-
ues. Second, it does not return the last change of a null

variable but the first place that the null value is originated.
WhyLine [8] stores the program user interface in addition

to the program trace and provides answers to why and why
not questions to the user. WhyLine suffers from the require-
ment of gathering tracing information before its unique ca-
pabilities can be used. We imagine that the runtime queries
we use in lastChange may be used to gather data incremen-
tally for this kind of debugging approach.

9. CONCLUSION
lastChange provides critical information for debugging pro-

grams: the location and state at the point where a question-
able value was assigned. It builds upon existing technology
and developer experience making it a practical solution for
implementers. Our prototype demonstrates the feasibility of
lastChange and its user interface hints at the potential this
approach can have in organizing the debugging experience.

10. ACKNOWLEDGMENTS
The authors thank Leo Meyerovich for reading a draft of

this paper and suggesting the example in section 5.1 and Jan
Odvarko and Mike Collins for testing the prototype before
our user study and providing helpful suggestions.

11. REFERENCES
[1] J.J. Barton, and J. Odvarko. Dynamic and graphical

web page breakpoints. In Conference on World Wide
Web(WWW), April, 2010.

[2] S. Bhansali, W. Chen, S. de Jong, A. Edwards, R.
Murray, M. Drinić, D. Mihočka, J. Chau. Framework
for instruction-level tracing and analysis of program
executions. In International Conference on Virtual
Execution Environments(VEE), June, 2006.

[3] M.D. Bond, N. Nethercote, S.W. Kent, S.Z. Guyer,
and K.S. McKinley. Tracking bad apples: reporting
the origin of null and undefined value errors. In 22nd
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and
applications(OOPSLA), October, 2007.

[4] B. Boothe. Efficient algorithms for bidirectional
debugging. In Conference on Programming Language
Design and Implementation(PLDI), June, 2000.

[5] C. Hofer, M. Denker, and S. Ducasse. Implementing a
backward-in-time debugger. In Proceedings
ofNODe’06, volume P-88, pages 17-32. Lecture Notes
in Informatics, 2006.

[6] S. Horwitz, B. Liblit, and M. Polishchuk. Better
Debugging via Output Tracing and Callstack-Sensitive
Slicing. IEEE Transactions on Software Engineering,
36(1):7-19, 2010.

[7] Java Platform Debugger Architecture.
http://java.sun.com/javase/technologies/
core/toolsapis/jpda.

[8] A.J. Ko, and B.A. Myers. Debugging reinvented:
asking and answering why and why not questions
about program behavior. In 30th international
conference on Software engineering(ICSE), May, 2008.

[9] B. Korel and J. Laski. Dynamic Program Slicing.
Information Processing Letters, 29(3):155-163, 1988.

[10] T.D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits In
28th international conference on Software
engineering(ICSE), May, 2006.

[11] B. Lewis, and M. Ducasse. Using events to debug Java
programs backwards in time. In Companion of the
18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications(OOPSLA), 2003.

[12] A. Lienhard, T. Gı̂rba, and O. Nierstrasz. Practical
Object-Oriented Back-in-Time Debugging. In 22nd
European conference on Object-Oriented
Programming(ECOOP), July, 2008.

[13] K. Maruyama, and T. Kazutaka. Debugging with
Reverse Watchpoint. In Proceedings of the Third
International Conference on Quality Software, 2003.

[14] Mozila JavaScript Debugging Interface.
http://www.mozilla.org/js/jsd.

[15] G. Pothier, É. Tanter, and J. Piquer. Scalable
omniscient debugging. In 22nd annual ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and
applications(OOPSLA), October, 2007.

[16] M. Sridharan, S.J. Fink , and R. Bodik. Thin slicing.
In Conference on Programming Language Design and
Implementation(PLDI), June, 2007.

[17] M. Weiser. Program slicing. IEEE Transactions on

Software Engineering, vol. SE-10, no. 4, pp. 352-357,
July 1984.

[18] A. Zeller. Why programs fail: A guide to systematic
debugging. Morgan Kaufmann (2005)

	Introduction
	Introductory example
	lastChange Algorithm
	lastChange on Object Property
	lastChange on Variable
	global and with scopes
	local, closure and catch scopes

	lastChange on lastChange

	JavaScript implementation
	objectId() Operation
	setPropertyChangeHook() Operation
	scopeId() Operation
	setVariableChangeHook() Operation
	Re-Execution, Reproduction Point and Data Collection

	Reproducible Non-Deterministic Execution
	lastChange Result Consistency
	Combination of lastChange and Breakpoint Debugging

	User Study
	Discussion
	Developers need an operation like last- Change
	Developers can learn to use lastChange
	Practical implementations are feasible
	In most cases lastChange will be much faster than current alternatives
	The worst cases are not more common or more painful than alternatives
	Generalizations

	Related Work
	Conclusion
	Acknowledgments
	References

