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Polytopic Approximation of
Explicit Model Predictive Controllers

Colin N. JonesMember, IEEE,and Manfred MorariFellow, IEEE,

Abstract—A model predictive control law (MPC) is
given by the solution to a parametric optimization
problem that can be pre-computed offline, which
provides an explicit map from state to input that can
be rapidly evaluated online. However, the primary
limitations of these optimal ‘explicit solutions’ are
that they are applicable to only a restricted set of
systems and that the complexity can grow quickly with
problem size. In this paper we compute approximate
explicit control laws that trade-off complexity against
approximation error for MPC controllers that give
rise to convex parametric optimization problems.

The algorithm is based on the classic double-
description method and returns a polyhedral approx-
imation to the optimal cost function. The proposed
method has three main advantages from a control
point of view: it is an incremental approach, meaning
that an approximation of any specified complexity
can be produced, it operates on implicitly-defined
convex sets, meaning that the prohibitively complex
optimal explicit solution is not required and finally it
can be applied to any convex parametric optimization
problem.

A sub-optimal controller based on barycentric in-
terpolation is then generated from this approximate
polyhedral cost function that is feasible and stabiliz-
ing. The resulting control law is continuous, although
non-linear and defined over a non-simplical polytopic
partition of the state space. The non-simplical nature
of the partition generates significantly simpler approx-
imate control laws, which is demonstrated on several
examples.

I. I NTRODUCTION

Implementing a model predictive controller (MPC)
requires the solution of an optimization problem
on–line at each sampling instant. In recent years, it
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has become well-known that this optimization prob-
lem can be posed parametrically, with the measured
statex as the parameter

J⋆(x) := min {h(x, u) | g(x, u) ≤ 0} . (1)

In this paper we restrict our attention to those prob-
lems in whichJ⋆, h and g are convex functions.
Solving this parametric problem off–line results in
an explicit functionu⋆(x) mapping the measured
state to the optimal system input [8], [18], [33].
The on–line calculation of the control input then
becomes one of evaluatingu⋆(x) at the current
measured statex, which can decrease the required
online computation time by several orders of mag-
nitude for some systems.

There are two main limitations of this approach.
The first is that only a restricted class of sys-
tems give rise to problems that can be reasonably
solved parametrically. For example, linear systems
with piecewise linear [5], [30] or quadratic cost
functions [8], piecewise affine systems (PWA) with
linear [4] and quadratic [7] cost functions and some
classes of polynomial systems [3]. If the control
law can be computed explicitly, then it is often the
case that the complexity of the control law (i.e. the
number of ‘pieces’) grows quickly with problem
size. The reader is referred to the recent surveys [1],
[20] for an overview.

In this paper, we propose a new algorithm for com-
puting inner and outer polyhedral approximations
of arbitrary convex sets, which we then put to work
approximating the epigraph of the optimal cost
functionepi (J⋆). The approach is based on the well
established double description method [13], [27],
which is an incremental algorithm for computing
convex hulls. We extend this method so that it can
work on implicitly defined convex bodies, such as
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the unknown cost function of a convex parametric
program (i.e. we compute the approximation with-
out first computing the optimal solutionJ⋆).

The incremental nature of the approach has a very
useful benefit from the explicit MPC point of view.
Specifically, the common reason for such an ap-
proximation is to generate a control law that can be
evaluated in a given amount of time, or be stored
in a given amount of space. Because the double
description algorithm is incremental, it can simply
be run until the complexity of the approximation
has reached the physical time or storage limits of
the on–line computational platform. However if a
certificate of stability is desired, then there is a
minimum level of complexity required, although
this level is normally quite small.

Several authors have proposed approximation al-
gorithms that produce simpler PWA control laws
at the cost of optimality. As is the case in this
paper, these approaches operate in a two–stage
procedure: the epigraph of the optimal cost function
J⋆ is approximated with a polyhedroñJ , which will
determine the stability and performance properties
of the approximate controller and then a feasible
control law ũ(x) is computed such that̃J is a Lya-
punov function for the resulting closed-loop system.
However, generating such a feasible control lawũ is
not immediate given the polyhedral functioñJ and
so existing proposals either produce a triangulation
and then interpolate the optimal control law at
the vertices [6], [20], have a post-processing step
in which an exact parametric program is calcu-
lated based on the approximate cost [10], [23]
or compute control laws based on sub-divisions
of hypercubes [19]. In all cases, the requirement
of computing a control law that can generate the
approximate cost places restrictions on the structure
of the cost approximation and generally causes a
significant increase in the achievable complexity.

In this paper, we introduce a new method of post-
processing an approximate polyhedral costJ̃ based
on barycentric interpolation, in order to compute a
feasible non–linear control law̃u from any poly-
hedral approximate cost. The main benefit is that
we do not have to restrict ourselves to considering

approximation approaches that generate triangula-
tions, and hence can directly compute a control law
ũ for the non–simplical regions produced by the
double–description algorithm, which often produces
much simpler approximations.

The remainder of the paper is organized as follows.
Section II outlines the general problem of approxi-
mation for convex and compact sets. Section III pro-
vides background on the double description method
and the following section generalizes this so that
it can operate on implicitly defined convex sets
based on two oracles that need to be specified for
the structure of the set in question and Section V
then studies the application of these tools to MPC.
Section V-A introduces barycentric interpolation,
which allows the computation of a control law
from the approximate cost and finally Section VI
provides some computational examples.

NOTATION

A polyhedron is the intersection of a finite num-
ber of halfspaces and apolytope is a bounded
polyhedron. If A is a subset ofRd, then P (A)
is the set{x | 〈a, x〉 ≤ 1, ∀a ∈ A}, which is a
polyhedron if A is finite. If V is a subset of
Rd, then the convex hull ofV , conv (V ) is the
intersection of all convex sets containingV . If
V = {v0, . . . , vn} is a finite set, thenconv (V ) =
{∑n

i=0 viλi | λi ≥ 0,
∑

λi = 1}.

Let S andC be convex and compact sets, then the
Hausdorff distanceρ (S,C) is

ρ (S,C) :=

max

{

sup
x∈S

inf
y∈C

‖x − y‖2 , sup
y∈C

inf
x∈S

‖y − x‖2

}

II. PROBLEM STATEMENT AND PRELIMINARIES

Our goal is to find a polytopeS that approximates
to within a given tolerance a convex and compact
(closed and bounded) setC ⊂ Rd.

Definition 1 (ǫ-approximation): Let C ⊂ Rd be a
compact and convex set that contains the origin and
is full–dimensionaldim C = d. If ǫ is a strictly
positive real number, then the polytopeS is called
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an ǫ-approximationof C if ρ (S,C) ≤ ǫ, where
ρ (·, ·) is the Hausdorff distance.S is called an outer
(inner) ǫ−approximation ifC ⊆ S (S ⊆ C).

The following theorem states that searching for a
polytopic approximation is well-founded.

Theorem 2 ( [12], [31]): If C ⊂ Rd is a convex
and compact set, then for everyǫ > 0, there exists
a finitely generated polytopeS such thatρ (S,C) <
ǫ.

The goal of this paper is to approximate the convex
sets that arise in the computation of explicit MPC
control laws. In this case a description of the convex
setC, the epigraph of the optimal cost function, is
generally not knownexplicitly, but only implicitly
in terms of an optimization problem. While it is
possible in some cases to generate an explicit rep-
resentation of the setC, it is often computationally
prohibitive and we seek to avoid it here. For this
reason, we don’t assume that a description of the
setC is available, but only that we can evaluate its
support function, which is defined as

δ⋆(a | C) := sup {〈a, x〉 | x ∈ C } .

In turn, the support function allows us to define two
optimization problems that will be required. First,
given a vectora defining a direction, we must be
able to find an extreme point that maximizes the
linear function〈a, x〉 over the setC.

extr (a | C) ∈ {x ∈ C | 〈a, x〉 = δ⋆(a | C)}
(2)

Second, given a pointx 6∈ C, the function
maxsep (x | C) returns a vectora defining a hyper-
plane that maximally separatesx from C: 〈a, x〉 ≥
1 andC ⊂ {x | 〈a, x〉 ≤ 1}.

maxsep (x | C) ∈

argmax

{ 〈a, x〉 − 1

‖a‖2

∣

∣

∣

∣

δ⋆(a | C) = 1

}

(3)

Remark 3:A maximally separating hyperplane for
a point x can be determined by finding the clos-
est point x ∈ C to v in the 2-norm v⋆ ∈
argminx

{

(v − x)T (v − x) | x ∈ C
}

. The normal
of the separating hyperplane is then given by the

scaled tangent of the norm-ball at the pointv⋆,
a = x−v⋆

〈v⋆, x−v⋆〉 .

Remark 4:Note that the above optimization prob-
lems are convex, since the setC is assumed to be
convex. For example, ifC is a polytope, then com-
puting extr requires a linear program andmaxsep
a quadratic. If C contains linear and quadratic
constraints, as is the case for MPC problems with
a quadratic cost and linear constraints (Section V),
then bothextr andmaxsep require the solution of
a second order cone problem.

The next section gives a generic overview of the
classic double description method as applied to
polytopes. The section following then generalizes
the method using the above two functions so that it
can be used to compute anǫ−approximation of an
implicitly defined convex and compact set.

III. C LASSIC DOUBLE DESCRIPTIONMETHOD

The Minkowski-Weyl theorem states that every
polytope can be represented either as a convex
combination of a finite number of points, or as the
intersection of a finite number of halfspaces. This
naturally leads to the following definition.

Definition 5 ( [13], [27]): A pair (A, V ) of finite
setsA, V ⊂ Rd is called adouble description(DD)
if the following relationship holds:

x ∈ P (A) if and only if x ∈ conv (V )

The classic double description method takes as
input a description of a polytope in terms of a
finite setA and the goal is to compute all vertices
of P (A). This is accomplished in an incremental
fashion, beginning with a small subsetA ⊂ A
for which the verticesV of P (A) can be directly
computed, i.e. so that(A, V ) is a DD-pair. During
each iteration the setA′ = A ∪ {a} is created
by adding one vectora ∈ A, or equivalently by
intersecting the polytopeP (A) with the halfspace
{x | 〈a, x〉 ≤ 1} and the set of verticesV is up-
dated so that(A′, V ′) remains a DD pair. This
procedure continues until all ofA has been inserted,
at which point we have the DD pair(A, V ) and
therefore all verticesV of the polytopeP (A).
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The main operation of the algorithm is the updating
of the set of verticesV so that(A′, V ′) is a double
description pair, which can be accomplished by a
direct application of the following Lemma.

Lemma 6 (DD Lemma [13]):Let A, V ⊂ Rd be
finite sets such that(A, V ) is a DD pair and
dim P (A) = d. Let a be a vector inRd and
partition V into three sets

V + := {v | 〈a, v〉 < 1}
V = := {v | 〈a, v〉 = 1}
V − := {v | 〈a, v〉 > 1}

If A′ := A ∪ {a}, then the pair(A′, V ′) is a DD
pair, whereV ′ = V + ∪ V = ∪ V new

V new :=











f(v+, v−)

∣

∣

∣

∣

∣

∣

∣

(v+, v−) ∈ V + × V −,

v+ and v−

are adjacent inP (A)











where

f(v+, v−) :=
(1 − 〈a, v−〉)v+ − (1 − 〈a, v+〉)v−

〈a, v+ − v−〉 .

Furthermore, ifV is a set of minimal extreme points
for P (A), thenV ′ is minimal for P (A′).

With Lemma 6 in hand, we can now state the double
description method as shown in Algorithm 1. The
procedure is depicted in Figure 1, where one can see
the insertion of one new halfspace into an existing
hypercube.

f(v1, v4)

f(v1, v2)

f(v8, v4)

v1

v2

v3

v4

v5

v7

v8

Fig. 1. Illustration of a single iteration of the Double Descrip-
tion algorithm.

Algorithm 1 Classic Double Description Method

Require: A finite setA := {a1, . . . , aN} ⊂ R
d, such

that dim P (A) = d
Ensure: A minimal setV ⊂ R

d, such thatP (A) =
conv (V )

1: Obtain a DD pair({ai | i ∈ K } , V ), for some set
K ⊂ {1, . . . , N} such thatV is minimal

2: while K 6= {1, . . . , N} do
3: Select any indexj from {1, . . . , N} \K
4: Construct a DD pair

({ai | i ∈ K ∪ {j}} , V ′) using Lemma 6
5: K := K ∪ {j}, V := V ′

6: end while

Remark 7:The first step of Algorithm 1 is to
choose a setK such that the list of vertices of
P ({ai | i ∈ K }) can be easily computed, which is
achieved by selecting exactlyd+1 elementsai such
that P ({ai | i ∈ K }) is a simplex.

Remark 8:The double description algorithm has
been extensively studied since its inception in
1953 [27] and improvements have been made both
for the practical and the worst-case complexity
over the simple algorithm in Table 1. In order to
achieve these improvements, the setA must be
analyzed in a pre-processing phase. As will be seen
in the following sections, the method proposed in
this paper constructs the setA as it runs and so
cannot do this pre-processing. As a result, the worst-
case complexity (the maximum number of vertices
over all iterations) will match that of the original
algorithm and will be doubly exponential in the size
of A, although this is rarely seen in practice.

Remark 9:Clearly, an efficient implementation of
the algorithm requires that the setV new in Lemma 6
be rapidly calculable. This calculation can be done
in time linear in the size ofV new and is not a
function of the size of the setsA or V [15].

Remark 10:Lemma 6 requires that the adjacency
relationships of the vertices be known. These can
easily and directly be determined from the incidence
map of the polyhedron (which halfspaces contain
which vertices). See [13] for details.
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Convex set
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Approximation

Error

Convex set
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approximation

Approximation

Error

Fig. 2. Inner and outer polytopic approximations of a convex
set.

IV. I MPLICIT DOUBLE DESCRIPTION

Every convex and compact setC can be described
as the intersection of a possibly infinite set of half-
spaces or as the convex hull of a set of points [29,
Thm. 11.5]; C = P (A) = conv (V) for some
setsA andV ⊂ Rd. Computing a polytopic outer
ǫ−approximation can then be stated as finding a
finite subsetA of A such thatρ (P (A) , C) ≤ ǫ.
Equivalently, an inner approximation consists of a
finite subsetV ⊆ V such thatρ (conv (V ) , C) ≤ ǫ.
Figure 2 illustrates the proposed inner and outer
polytopic approximations.

The ideal would be to determine a setA ⊂ A of
minimal cardinality. Computing such a set, how-
ever, is known to be NP-hard even in the simplest
case whenC is a polytope and the setA is
finite and known [26]. Therefore, we here adopt
an heuristic and incremental approach based on the
double description algorithm which nonetheless has
very useful properties.

At a given stage of the proposed implicit DD
algorithm, two DD pairs(AO, VO) and (VI , AI)
are maintained such thatconv (VI) is an inner
ǫ̂−approximation ofC and P (AO) an outer for
some ǫ̂ > ǫ. We proceed with the DD algorithm
as in the previous section, alternatingly improving
either the inner or the outer approximation in each
iteration by adding either a halfspace to the outer
approximationP (AO) or a vertex to the inner
conv (VI). The next section demonstrates how we
choose an element ofA such that the outer ap-
proximation improves and the section following dis-
cusses how we utilize the DD algorithm to likewise
improve the inner approximation.

A. Improvement of the Outer Approximation

Let us first assume that we are improving the outer
approximation, and hence our task is to choose a
vectora⋆ ∈ A to decrease the approximation error

ρ (C,P (AO ∪ {a⋆})) ≤ ρ (C,P (AO)) .

The procedure that we will use is to first locate the
vertex v⋆ of P (AO) that is a maximum distance
from C and hence is defining the current approxi-
mation error. We will then remove this vertex from
the approximation by computing the halfspacea⋆

that maximally separatesv⋆ from C.

The current approximation error̂ǫ is given by the
Hausdorff distance betweenP (AO) andC

ρ (C,P (AO)) = max
y∈P (AO)

min
x∈C

‖x − y‖2 , (4)

where we need only take the max overP (AO) and
min overC and not vice versa becauseC is a subset
of P (AO). We now seek to evaluate (4) in order to
determine the point ofP (AO) that is farthest from
C. By assumption we cannot do direct computations
on C, but can only evaluate the support function,
which leads us to the following lemma.

Lemma 11:If C ⊂ Rd is a convex, compact and
full–dimensional set containing the origin andS is
a polytope such thatC ⊆ S, then

ρ (S,C)
2

=

max

{

〈a, v〉 − 1

‖a‖2

∣

∣

∣

∣

∣

v ∈ extreme(S)

a = maxsep (v | C)

}

whereextreme(S) are the vertices ofS.

Proof: The Hausdorff distance is given by
ρ (C,S) = max {q(y) | y ∈ S }, where q(y) :=
min {‖x − y‖2 | x ∈ C }. The functionq(·) is con-
vex and therefore the maximum is obtained at an
extreme point ofS [29, Thm. 32.2];ρ (C,S) =
max {q(v) | v ∈ extreme(S)}. For a given extreme
point v ∈ extreme(S), the minimum distanceq(v)
is given by themaxsep function (3).

From Lemma 11 one can see that the Hausdorff
distanceρ (C,P (AO)) is equal toρ (C, VO) and
can therefore be computed through a finite number
of evaluations of themaxsep function applied to
each element ofVO.
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Remark 12:Because the verticesVO are computed
in an incremental fashion, it is not necessary to
evaluatemaxsep in Lemma 11 for eachv in VO

in each iteration, but only those newly created in
Lemma 6,V new.

With Lemma 11 and the DD pair(AO, VO) in
hand, we can now determine the setV ⋆ ⊂ VO of
vertices that define the current approximation error;
i.e. ρ ({v} , C) = ρ (P (AO) , C) for all v ∈ V ⋆.
We proceed to choose a vertexv⋆ ∈ V ⋆ and
compute the halfspaceP ({a⋆}) that maximally
separatesv⋆ from C. The classic double description
algorithm from the previous section then provides a
mechanism to computeV ′

O so that(AO∪{a⋆} , V ′
O)

is a DD pair.

1) Approximation of the Hausdorff Distance:From
Lemma 11 we see that evaluating the current ap-
proximation error betweenP (AO) andC requires
the evaluation of themaxsep function up to |VO|
times. In many cases, the evaluation ofmaxsep is
very expensive and so we wish to avoid or reduce
this if possible. In this section, we provide a method
of bounding the Hausdorff distance without making
any evaluations of the functionmaxsep.

We have both an inner and an outer approximation
of the setC, which together give us an upper bound
on the error betweenP (AO) andC:

ρ (P (AO) , C) ≤ ρ (P (AO) , conv (VI)) , (5)

which holds becauseconv (VI) ⊆ C.

Since both the inner and outer approximations are
available as the DD pairs(VI , AI) and (AO, VO)
respectively, it is relatively simple to compute the
Hausdorff distance between them.

ρ (P (AO) , conv (VI)) = max
v∈VO

min
x∈P (AI)

‖x − v‖2

(6)

Equation 6 requires the solution of one quadratic
program (QP) of size|AI | per vertex of the outer
approximation. In each iteration of the algorithm,
the majority of these QPs will not change since the
method modifies the inner and outer approximations
only locally. Those that do require re-computation
are exactly those that depend on the new vertices
V new created in Lemma 6.

B. Improvement of the Inner Approximation

All polytopes can be expressed either as the convex
combination of their vertices, or as the intersection
of a finite number of halfspaces. This duality has
led to a number of algorithms that can operate on
both representations equally well, and the double
description algorithm is one such. The dual version
is generally called the Beneath/Beyond algorithm
and takes as input a finite set of points and re-
turns the list of halfspaces representing the convex
hull [2], [21].

Lemma 13 gives a useful and well-known result
which allows the double-description algorithm to
be used to compute an inequality description of a
polytope as readily as it computes a vertex repre-
sentation.

Lemma 13 (e.g. [13]):The finite setsA, V ⊂ Rd

form a DD pair (A, V ) if and only if (V,A) is a
DD pair.

This basic duality result can be used in order to
augment the double description algorithm of the
previous section, which computes outer approxima-
tions, in order to calculate an inner approximation
by reversing the roles of vertices and halfspaces
in the approach. In other words, assume(AI , VI)
is a DD pair representing the polytopeP (AI) =
conv (VI) and we wish to compute the setA′

I

so that (A′
I , VI ∪ {v}) is a DD pair for some

v. The double description Lemma 6 can be used
for this purpose by simply passing it the DD pair
(VI ∪ {v} , A′

I).

We can now make use of the double description
mechanism in order to iteratively construct an inner
approximation of the set by inserting one extreme
point v⋆ of C at a time. The choice of the point
v⋆ to insert in each iteration of the algorithm is
made in an analogous fashion to the previous sec-
tion. Instead of computing the maximal separating
halfspace for each vertexv of VO, we compute the
extreme pointv⋆ of C that is a maximal distance
from each hyperplane of the inner approximation
using theextr function.

Remark 14:The approach presented here for com-
puting inner approximations is similar to that in [20]
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where we proposed an implicit approach for poly-
hedral projection based on the beneath/beyond pro-
cedure. We here extend this method to the com-
putation of simultaneous inner and outer polytopic
approximations for generic convex and compact
sets. This simultaneous inner/outer approximation
also provides the significant benefit of much simpler
calculation of the current approximation error, as
was discussed in the previous section.

The proposed method is shown as Algorithm 2. One
can see that each iteration involves one improve-
ment of the outer and one of the inner approxima-
tion (Lines3 to 8 and10 to 15 respectively). For the
outer improvement, the algorithm first approximates
the Hausdorff distance betweenP (AO) and C
using (5) or (6) in order to select a vertexv ∈ VO

to ‘cut off’ from the polytope. It then computes
the hyperplanea⋆ that maximally separatesv from
C on line 5, which also gives the true distance
betweenv and C as 〈a⋆, v〉 − δ⋆(a⋆ | C). If this
distance is larger than the desired approximation,
then the DD pair is updated to(AO ∪ {a⋆} , V ′

O)
using Lemma 6. These steps are then repeated on
the inner approximation DD pair(VI , AI) until the
approximation error is below that desired.

V. A PPLICATION TO MODEL PREDICTIVE

CONTROL

The interest in parametric programming in the
control community has arisen from the ability to
pose certain optimal control problems as parametric
programs and thereby pre–compute the optimal
control law offline. In this paper, we are specifically
interested in the following finite horizon optimal
control problem:

J⋆(x) = min
{u0,...,uN−1}

J(u0, . . . , uN−1, x0, . . . , xN )

s. t. xi+1 = Axi + Bui,
(xi, ui) ∈ X × U ,

∀i = 0, . . . , N − 1
xN ∈ XF ,
x0 = x

(7)

Algorithm 2 Implicit Double Description Method
Require: The functionsmaxsep and extr for some

convex and compact setC and a desired
approximation errorǫ > 0.

Ensure: DD pairs (AO, VO) and (AI , VI) such
that conv (VI) ⊆ C ⊆ P (AO) and
ρ (P (AO) , conv (VI)) ≤ ǫ.

1: Obtain DD pairs(AO, VO) and (VI , AI), such that
conv (VI) ⊆ C ⊆ P (AO)

2: while ρ (P (AO) , conv (VI)) ≥ ǫ do Eqn 6

3: // Improve outer approximation
4: Computev ∈ VO farthest fromP (AI) §IV-A1
5: Separatev from C : a⋆ := maxsep (v | C)
6: if ρ (v, C) > ǫ then
7: AO := AO ∪ {a⋆}
8: ComputeVO s.t. (AO, VO) is a DD pair

Lemma 6
9: end if

10: // Improve inner approximation
11: Computea ∈ AI farthest fromconv (VO)

§IV-A1
12: Compute pointv⋆ beyonda : v⋆ := extr (a | C)
13: if ρ (v⋆, conv (VI)) > ǫ then
14: VI := VI ∪ {v⋆}
15: ComputeAI s.t. (VI , AI) is a DD pair

Lemma 6
16: end if
17: end while

where

J(u0, . . . , uN−1, x0, . . . , xN ) :=

VN (xN ) +

N−1
∑

i=0

l(xi, ui) (8)

and X , U and XF are convex constraints on the
states and inputs and the stage costl is a strictly
convex function with l(0, 0) = 0. A function
γ(·) : R → R is assumed to exist that is continuous,
strictly increasing and hasγ(0) = 01 such that
γ (‖x‖) ≤ l(x, 0) for all x. Under the standard
assumptions thatXF ⊆ X is an invariant set under
the control lawµ(x), VN is a Lyapunov function for
the systemx+ = Ax + Bµ(x) and that the decay
rate of VN is greater than the stage cost within

1i.e. γ is a K-function
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the setXF , the problem (7) generates a stabilizing
control law when applied in a receding horizon
fashion [25]. The optimal control problem (7) can
be re-written as a parametric optimization problem:

u⋆(x) := arg min
u

{h(x, u) | g(x, u) ≤ 0} (9)

where u is a vector containing the sequence of
inputsu0, . . . , uN−1 and appropriate auxiliary vari-
ables and the functionsh and g are convex. The
system input is then given in a receding horizon
fashion byu⋆

0(x), which is the first input in the
optimal control sequence of (7). See [1] for a survey
of papers providing details on the conversion from
the optimal control formulation (7) to the parametric
optimization problem (9) for some important classes
of systems.

Let J̃ : R 7→ R be a piecewise affine func-
tion, where R is a polytopic subset ofX :=
{

x ∈ Rd | ∃u, g(x, u) ≤ 0
}

. Assume that the func-
tion J̃ has the property

J⋆(x) ≤ J̃(x) ≤ J⋆(x) + ǫγ (‖x‖) ,∀x ∈ R ,

for someǫ < 1.

The following sections will demonstrate that such a
PWA approximate function can be used to generate
a stabilizing feasible explicit control law for the
MPC problem (7). Section V-D will then discuss
how to generate an appropriate PWA function using
the techniques developed in this paper.

A. Barycentric Control Input

Using the techniques proposed in this paper, it is
possible to compute a PWA convex functioñJ
that is of any specified complexity or error and
is an upper approximation of the optimal costJ⋆

of (7) (Section V-D). LetJ̃ be the piecewise affine
function

J̃(x) := bT
i x + ci, if x ∈ Ri (10)

where the polytopesRi form a convex partition:
R = ∪Ri and int Ri ∩ intRj = ∅ for all i 6= j.
We assume an approximation error ofǫ, J⋆(x) ≤
J̃(x) ≤ J⋆(x) + ǫγ (‖x‖), ∀x ∈ R and thatJ̃ is

defined over a subset of the feasible set of (9),R ⊆
X.

Our goal is now to use this functioñJ to com-
pute an approximate feasible solutioñu(x) :=
[

ũ0(x)T . . . ũN−1(x)T
]T

to (9) and demon-
strate that there exists a Lyapunov function for the
resulting approximate closed-loop systemx+ =
Ax + Bũ0(x).

The authors are aware of three proposals in the
literature to tackle the problem of computing a
function ũ from an approximate cost̃J , all of which
potentially generate an approximate control law that
is significantly more complex than the approximate
cost function. The first is simply to compute a tes-
selation of each polytopic regionRi. One can then
interpolate uniquely amongst the vertices of each
simplical region of the tesselation, which results in
a feasible piecewise affine function [6], [20]. While
this approach is easily stated and implemented, it
has a significant downside in that such a tesselation
can have exponentially more simplices than there
were regionsRi. In [6] it was suggested that an
affine function be fit in a least-squares fashion to
the optimizersu⋆(v) at the verticesv of each region
Ri. However, if a regionRi is not a simplex, then
there is no guarantee that the fitted function will
be everywhere feasible and furthermore, the result-
ing control law will be discontinuous. The third
approach [10], [23] computes an approximate cost
for the optimal control problem (7) in a recursive
fashion. After a sufficient number of iterations, the
approximate cost function is used as a ‘cost-to-
go’ while the exact solution is computed in the
last phase, which then provides the approximate
control law. However, this last exact iteration can
contain a much larger number of regions than the
approximate cost function.

In this section we propose a new method of com-
puting a feasible solution based on Barycentric co-
ordinates, which does not generate any new regions.

Definition 15 (Barycentric function):Let S :=
conv ({v1, . . . , vn}) ⊂ Rd be a polytope. The set
of functions wv(x), v ∈ extreme(S) is called
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barycentric if three conditions hold for allx ∈ S

wv(x) ≥ 0 positivity (11a)
∑

v∈extreme(S)

wv(x) = 1 partition of unity (11b)

∑

v∈extreme(S)

vwv(x) = x linear precision (11c)

For each vertexv ∈ extreme(Ri) and regionRi,
we defineu⋆(v) to be an optimizer of (9) at the
point v. Note that each suchv is feasible, by the
assumption thatR ⊆ X and so an appropriateu⋆(v)
can always be computed. If a set of barycentric
functions wv(x), v ∈ extreme(Ri) is available
for each regionRi in (10), then we can define an
approximate solutioñu(x) by interpolating among
these points over the regionsRi.

ũ(x) :=
∑

v∈extreme(Ri)

u⋆(v)wv(x) , if x ∈ Ri .

(12)

Remark 16:Note that the proposed approximate
controller will be applied in a receding horizon
fashion, as is the case for the optimal control law.
The controller is therefore defined only by the first
stepũ0(x) of theN -step prediction sequence. As is
the case in optimal MPC, the remainingN−1 steps
of the prediction sequence are used only to prove
recursive feasibility and stability of the resulting
approximate receding horizon control law.

Figure 3 shows two examples of the proposed
Barycentric interpolation. One can see that interpo-
lation across a simplex leads to an affine function,
whereas a more general polytope gives a smooth
and continuous function with the key property that
it lies within the convex hull of the extreme points,
which is proven in the next section. It is this
containment that allows Corollary 18 to prove that
the approximate control law̃u0(x) is feasible.

The following section provides sufficient conditions
on the approximate polyhedral cost function for the
resulting barycentric control law to be stabilizing.
The techniques proposed in this paper (Algorithm 2)
can also, of course, be used to generate controllers
that do not satisfy these conditions, but may never-
theless still be stabilizing.

(a) Interpolation over a sim-
plex.

(b) Barycentric interpolation
over a polytope.

Fig. 3. Example of Barycentric interpolation over a simplex and
a polytope. Note that the interpolation lies within the convex hull
of the extreme points.

B. Stability of Barycentric Control Law

This section demonstrates that the proposed
barycentric control law is stabilizing by construct-
ing a Lyapunov function for the approximate
closed-loop systemx+ = Ax + Bũ0(x).

We first show that the approximate solutioñu(x)
is everywhere feasible with the following lemma,
which proves that̃u(x) lies inside the convex hull
of the optimizeru⋆(x) at each of the vertices ofR
for eachR ∈ R.

Lemma 17:If R = conv (v0, . . . , vm) ∈ R, u⋆(vi)
is the optimizer of (9) for the statevi and ũ is
defined as in (12), then

(

x
ũ(x)

)

∈ conv

((

v0

u⋆(v0)

)

. . .

(

vm

u⋆(vm)

))

,

(13)

for all x ∈ R.

Proof: The statement holds if for eachx ∈ R
there exists a set of positive multipliersλ0, . . . , λm

such that
(

x
ũ(x)

)

=
m

∑

i=0

λi

(

vi

u⋆(vi)

)

and
∑m

i=0 λi = 1. The properties of barycentric
functions (11) clearly satisfy this requirement.

Lemma 17 leads directly to the statement thatũ(x)
is a feasible solution of the parametric program (9)
for all x ∈ conv (R).
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Corollary 18: The functionũ is a feasible solution
of (12)

g(x, ũ(x)) ≤ 0, for all x ∈ R .

Proof: Follows directly from Lemma 17 and
the convexity ofg.

We now show that the cost functionJ of (8) evalu-
ated for the barycentric approximate solutionũ(x)
is no more sub-optimal than the PWA function used
to generate it. Note that the barycentric interpolation
will cause the costJ(ũ(x))2 to be a non-linear and
possibly non-convex function of the state.

Lemma 19:If ũ is the function defined in (12)
by barycentric interpolation from the polyhedral
function J̃ (10), then the following bounds hold

J⋆(x) ≤ J(ũ(x)) ≤ J̃(x) , ∀x ∈ R .

Proof: The solutionũ is feasible for allx ∈
R (Corollary 18) and so the cost functionJ(ũ(x))
must be sub-optimal, which gives the lower bound
J⋆(x) ≤ J(ũ(x)).

We now show that the upper bound holds.
If the barycentric input sequencẽu(x) =
[

ũ0(x)T . . . ũN−1(x)T
]T

is applied to the sys-
tem that is currently in statex ∈ R, then the
resulting state at timei will be

x̃i(x) = Aix +
i−1
∑

j=0

AjBũj(x)

= Aix +

i−1
∑

j=0

AjB





∑

v∈extreme(R)

u⋆
j (v)wv(x)





=
∑

v∈extreme(R)

wv(x)



Aix +
i−1
∑

j=0

AjBu⋆
j (v)





(Linearity and partition of unity)

2We will use the shorthand notationJ(ũ(x)) to
mean the evaluation of the cost function (8) for
J(ũ0(x), . . . , ũN−1(x), x̃0(x), . . . , x̃N (x)), where x̃i(x)
is the state of the systemx+ = Ax + Bu at time i given
that the state at time zero isx and the input sequence
ũ0(x), . . . , ũi−1(x) has been applied.

=
∑

v∈extreme(R)

wv(x)x⋆
i (v) ,

wherex⋆
i (v) is the state that the system would be in

at time i if the input sequenceu⋆
0(v), . . . , u⋆

i−1(v)
that is optimal for the MPC problem (7) at statev
were applied to the system.

We can now evaluate the cost function for the sub-
optimal input sequence defined by the Barycentric
interpolation:

J(ũ(x)) = VN (x̃N (x)) +

N−1
∑

i=0

l(x̃i(x), ũi(x))

= VN





∑

v∈extreme(R)

x⋆
N (v)wv(x)



 +

N−1
∑

i=0

l





∑

v∈extreme(R)

x⋆
i (v)wv(x),

∑

v∈extreme(R)

u⋆
i (v)wv(x)





Convexity of l and VN then gives the following
relation:

≤
∑

v∈extreme(R)

wv(x)

(

VN (x⋆
N (v)) +

N−1
∑

i=0

l(x⋆
i (v), u⋆

i (v))

)

=
∑

v∈extreme(R)

wv(x)J⋆(v)

By assumptionJ⋆(v) ≤ J̃(v) for all v ∈ R

≤
∑

v∈extreme(R)

wv(x)J̃(v)

Lemma 17 states that for eachx ∈ R, the above
equation will lie within the convex hull of the ex-
treme points

{

(v, J̃(v)) | v ∈ extreme(R)
}

. Since

the functionJ̃(x) is affine within the regionR, this
implies that the above equation simply equalsJ̃(x)
because the convex hull of an affine set is the set
itself, which gives the desired relation.
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The above lemma shows that the nonlinear, non-
convex cost functionJ(ũ(x)) inherits the approxi-
mation error of the PWA functioñJ used to create
it. With this key result in place, we can then make
use of the approximate stability result given in [32],
which shows thatJ(ũ(x)) is a Lyapunov function
for the approximate systemx+ = Ax + Bũ0(x).
Note that the statement of the theorem has been
changed to match the notation of this paper.

Theorem 20 ([32]):Let J⋆ : Rd → R be the
cost function of the optimal control problem (7)
and a Lyapunov function for the systemx+ =
Ax + Bu⋆

0(x). The approximate value function
J(ũ(x)) is a Lyapunov function for the system
x+ = Ax + Bũ0(x) if for all x ∈ R the condition
J⋆(x) ≤ J(ũ(x)) ≤ J⋆(x) + γ (‖x‖) holds.

A Lyapunov function is insufficient to prove sta-
bility for a constrained system, since the system
must also be invariant or feasible for all time. As
discussed in [20], since level sets of Lyapunov func-
tions are invariant [11], it is possible to determine
an invariant subset ofR given the vertices of each
regionRi with minor additional processing.

Corollary 21 ( [20]):
If Jmin := min {J(ũ(v)) | v ∈ extreme(R)} and
the conditions of Theorem 20 are satisfied, then the
set

I := {x ∈ R | J(ũ(x)) ≤ Jmin}

is invariant under the control law̃u(x).

C. Barycentric Functions

Our goal is now to define an easily computable
barycentric function for each polytopeRi in (10).
If the polytopeRi is a simplex, then the barycentric
function is unique, linear and trivially computed
and so we focus on the non-simplical case. In [35]
a very elegant method of computing a barycentric
function for arbitrary polytopes was proposed that
can be put to use here.

Lemma 22 (Barycentric coordinates for polytopes [35]):
Let S = conv (V ) ⊂ Rd be a polytope and for

each simple vertexv of S, let bv(x) be the function

bv(x) =
αv

‖v − x‖2

whereαv is the area of the polytopeP (V − {x})∩
{y | 〈v − x, y〉 = 1}; i.e. the area of the facet of the
polar dual ofS − {x} corresponding to the vertex
v − x. The functionwv(x) := bv(x)/

∑

v bv(x) is
barycentric over the polytopeS.

Proof: We provide here a brief sketch of the
proof and refer the reader to [35] for details.

The proof is based on Stokes theorem, which states
that the surface integral over a compact set is zero.
Consider the surface integral of the polar dual ofS,
the polytopeP (V − {x})
∮

P (V −{x})

ydy =
∑

i

αini =
∑

i

αi

vi − x

‖vi − x‖2

= 0 ,

(14)

whereni is the outward facing normal to theith

facet of the polytope andαi is the area of the
facet. From the definition of the polar dual, the
normal of theith facet is proportional tovi−x [17].
With some minor algebraic manipulation, (14) leads
directly to the theorem statement.

The areas of the facets of the polar dualsαv can
be pre-computed offline and stored. If there are
d + 1 facets incident with the vertexv (i.e. v
is simplical), then the area of the polar facet is
det

([

a0 · · · ad+1

])

, where{a0, . . . , ad+1} are
the normals of the incident facets. If the vertex is
not simplical, then the area can be easily computed
by perturbing the incident facets [35]. Such compu-
tation is straightforward because both the vertices
and halfspaces of each region are available due the
double-description representation.

D. Approximate Polyhedral Cost Function

In this section we demonstrate how the methods
developed in this paper can be used to compute an
approximate PWA cost function that satisfies the
stability conditions of Theorem 20. We begin by
defining the function

Jǫ(x) := J⋆(x) + ǫγ (‖x‖) ,
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for some0 ≤ ǫ < 1, which is clearly convex. One
can now see that the conditions of Theorem 20 are
equivalent to stating that the approximate function
J̃ must lie betweenJ⋆ andJ1 := J⋆(x) + γ (‖x‖)
J⋆(x) ≤ J̃(x) ≤ Jǫ(x) ≤ J1(x) , for all x ∈ R .

The parameter0 ≤ ǫ < 1 can be used to define
a trade-off between the approximation error and
the complexity of the resulting controller, since all
ǫ < 1 define stabilizing control laws. The implicit
double description algorithm can now be used to
compute an outer approximation of the epigraph of
Jǫ that is of sufficient accuracy that it also lies
aboveJ⋆. The remainder of this section outlines
how to achieve this goal.

The epigraph ofJǫ is a convex set defined implicitly
through a projection operation

epi(Jǫ) =
{

(x, t) ∈ R
d × R

∣

∣

∣

∣

∃u, g(x, u) ≤ 0,
t ≥ h(x, u) + ǫγ (‖x‖)

}

.

(15)

The methods described in this paper cannot be used
for the problem of approximatingepi (Jǫ) directly,
since it is unbounded and so we first derive a
bounded convex set to which Algorithm 2 can be
applied.

The feasible set of (9) is defined by the projection
operation

X :=
{

x ∈ R
d | ∃u, g(x, u) ≤ 0

}

, (16)

which is convex and bounded by assumption. As a
result, we can directly use Algorithm 2 to compute
an inner approximationR of X of any desired error
ǫX, ρ (R, X) ≤ ǫX.

Remark 23:An inner approximation of the feasible
set with a Hausdorff error ofǫR can also be
directly computed from the outer approximation
generated in Section IV-A. IfP (A) is an outer
ǫ−approximation ofX, then

R := P (A) ⊖ {x | ‖x‖2 ≤ ǫ}
=

{

x
∣

∣ aT x ≤ 1 − ǫ‖a‖, ∀a ∈ A
}

,

is an innerǫ−approximation, where⊖ is the Pon-
tryagin difference (see, for example, [22]).

The convexity ofJǫ and the setR provides a simple
tight upper bound on the functionJǫ restricted to
the domainR. If J̄ǫ := maxv∈extreme(R) Jǫ(v),
thenJǫ(x) ≤ J̄ǫ for all x ∈ R and we can simply
define a bounded convex set whose lower convex
hull is the functionJǫ

J
ǫ :=
{

(x, J)

∣

∣

∣

∣

∃u, J̄ǫ ≥ J + 1 ≥ h(x, u) + ǫγ (‖x‖)
g(x, u) ≤ 0

}

∩ {(x, J) | x ∈ R} , (17)

Note that we shift the epigraph downwards by one
so that the origin is in the strict interior of the set
Jǫ as required by Algorithm 2.

The implicit double description Algorithm 2 can
now be run on the bounded convex setJǫ.The
algorithm is stopped when the outer approximation
lies entirely within the epigraph of the optimal cost
function J⋆. The piecewise affine function formed
by the lower convex hull of the outer approxima-
tion will then lie above the optimal costJ⋆ and
below the upper boundJǫ and be defined over the
approximate feasible setR, and hence provides the
desired function.

VI. EXAMPLES

A. Linear MPC Example I

Consider the following simple two-dimensional ex-
ample:

x+ =

[

1 1
0 1

]

x +

[

1
0.5

]

u ,

with the input and state constraints|u| ≤ 0.25,
‖x‖2 ≤ 5 and a horizonN of length 10 with the
stage cost taken to bel(x, u) := x′x + 0.01u′u.
The terminal control lawµ(x) was taken to be the
LQR controllerµ(x) := Kx for the unconstrained
system with the same weightings as the stage
cost l(·, ·). The terminal constraint setXF is the
maximum invariant set for the closed-loop system
x+ = (A + BK)x and the terminal weightVN (x)
is the corresponding infinite-horizon costxT Px.

The optimal control law in this case requires212
regions and can be seen in Figure 4. We here set
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an approximation errorǫ = 0.5 and compute a
stabilizing control law using the method proposed
in Section V that consists of35 regions. The result-
ing control law and sub-optimal cost functions are
shown in Figure 4.

(a) Approximate control law (b) Optimal control law

(c) Approximate PWA cost
function J̃(x)

(d) Optimal cost function
J⋆(x)

(e) Cost function J(ũ(x))
evaluated for approximate
function ũ

(f) J(ũ(x))−J⋆(x) (green)
andγ (‖x‖) = xT x (blue)

Fig. 4. Approximate control law over35 regions for exam-
ple VI-A. Note that the barycentric interpolation is non-linear
and continuous across the non-simplical regions. Figure 4(f)
demonstrates that the sub-optimal controller is stable.

B. Stochastic MPC Example

We now study an example from [28], in which the
linear modelx+ = Ax + Bu + Ew represents a
simplified building consisting of only one room.
The statesx are the temperatures of the room, the
internal and the external walls respectively, while
the inputu ∈ R specifies the desired level of heating
or cooling. The three disturbancesw ∈ R3 are the
external temperature, solar radiation and internal

heat gains (people, computers, etc) and are assumed
to be Gaussian and independentw ∼ N (0, I). The
system matrices are given by

A :=





0.8511 0.0541 0.0707
0.1293 0.8635 0.0055
0.0989 0.0032 0.7541



 B :=





0.35
0.03
0.02





E :=





0.1005 0.3973 0.5022
0.0340 0.7555 0.2105
0.9019 0.0427 0.0555



 .

The goal is to maintain the room temperature within
a given comfort range of±5◦C with a probability
of 1 − α = 99%:

P
([

1 0 0
]

x ≤ 5
)

≥ 1 − α (18)

P
([

1 0 0
]

x ≥ −5
)

≥ 1 − α , (19)

where we note that the system is linearized around
an operating point ofx = 25◦C.

We set up an MPC problem with a horizon of
five steps with the goal of minimizing the expected
value of the energy usage

J(x) := E

[

N
∑

i=0

u2
i

]

,

where the inputui is chosen to be an affine function
of the disturbancesw0, . . . , wi−1

ui =

i
∑

j=0

Mi,jwj + vi ,

and the optimization variables areM⋆,⋆ andv⋆. This
approach was originally suggested in [14] in the
context of stochastic programs with recourse, but
has recently generated a resurgence of interest in the
robust and stochastic control community [9], [16],
[24]. The resulting optimization can be recast as an
equivalent second-order cone problem (SOCP) (e.g.
[34]):

J⋆(x) := min
v⋆, M⋆,⋆

∑

i

vT
i vi +

i−1
∑

j=0

trace
(

MT
i,jMi,j

)

√
2 erf−1(1 − 2α)

∥

∥

[

Ai−1B · · · A0B
]∥

∥

+CAix +
i−1
∑

j=0

CAjBvj ≤ 0,

∀i = 0, . . . , 5



14

The proposed method, Algorithm 2, has been ap-
plied to the epigraph of the optimal cost functionJ⋆

and the resulting approximation error as a function
of the number of regions is shown in Figure 6. The
optimal and approximate cost function is shown
in Figure 5 for an approximation error of0.01.
Note that stability has not been considered in this
example.

Outer wall Temperature Room Temperature

(a) Approximate cost func-
tion

Outer wall Temperature Room Temperature

(b) Optimal cost function

Fig. 5. Plot of the optimal and approximate cost function for
Example VI-B.
Note: Interior wall temperature is set to zero in the plot in order
to generate a three dimensional figure.

Fig. 6. Approximation error vs number of regions for Exam-
ple VI-B.

C. Linear MPC Example II

Consider the following four–state system:

x+ =









0.7 −0.1 0.0 0.0
0.2 −0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5









x +









0.0 0.1
0.1 1.0
0.1 0.0
0.0 0.0









u

States and control inputs are constrained‖x‖∞ ≤
5, ‖u‖∞ ≤ 5 and we seek to solve the MPC
problem (7) minimizing the stage costl(x, u) =
‖x‖∞ +‖u‖∞ with a prediction horizon ofN = 5.

Figure 7 shows a plot of complexity (number of
regions) vs the approximation error of Algorithm 2.
Figure 8 shows a time trajectory of the closed
loop system at various complexities ranging from
7 to 182 regions, which is significantly lower than
the optimal explicit control law, which consists of
12, 128 regions. Note that stability has not been
considered in this example.
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Fig. 7. Approximation error of the four-state system of Exam-
ple VI-C vs the approximation complexity (number of polyhedral
regions in the PWA cost function). The optimal solution consists
of 12, 128 regions. (The noise in the plot is due to numerical
errors.)
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Fig. 8. Example trajectory of the approximate and optimal
solutions of Example VI-C for various approximation levels.
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VII. C ONCLUSION

This paper has proposed a simple, constructive tech-
nique for generating inner and/or outer polytopic
approximations of convex sets of any specified com-
plexity. The algorithm is computationally efficient,
in that it is based on the well-established double-
description algorithm and requires the solution of
only a single convex optimization problem per
facet (vertex) of the outer (inner) approximation.
This is a key improvement over existing methods,
which require a number of optimization problems
to be solved equal to the complexity of theoptimal
solution, which can often be many orders of mag-
nitude larger than the approximation, if it is com-
putable at all. The algorithm operates in a greedy-
optimal incremental fashion, in that it updates the
approximation at each step with the facet (vertex)
that minimizes the Hausdorff distance between the
approximation and the set to be approximated.

The proposed implicit double-description algorithm
can be employed to synthesize sub-optimal, stabiliz-
ing explicit control laws for convex MPC problems.
The key benefit is that the complexity, or number
of pieces, in the resulting piecewise polynomial
control law can be pre-specified, which is equivalent
to stating that any given memory or online compu-
tational bounds can be met for a given embedded
processor.

A proof of stability and invariance of the result-
ing sub-optimal closed-loop system was provided.
Invariance, or feasibility, follows directly from the
construction of the control law, which is based on
barycentric interpolation, as well as the assumed
convexity of the system constraints. Stability is
based on a classic result [32], and it was shown
that if the approximation is sufficiently close, then
the conditions given in [32] will be satisfied. Fur-
thermore, the algorithm will always satisfy the
conditions of [32] after a finite number of iterations.
The main limitation of the method is that this finite
number cannot be determined a priori, although
several examples (Section VI) demonstrate that this
number is generally not too large.
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