
Automatica 42 (2006) 2215–2218
www.elsevier.com/locate/automatica

Technical communique

A logarithmic-time solution to the point location problem for parametric
linear programming�

C.N. Jonesa,∗, P. Griederb, S.V. Rakovićc

aControl Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
bAutomatic Control Laboratory, Swiss Federal Institute of Technology, Physikstrasse 3, ETL K13.2, CH-8092 Zurich, Switzerland

cImperial College London, Exhibition Road, London SW7 2BT, UK

Received 20 September 2005; received in revised form 10 April 2006; accepted 13 July 2006
Available online 22 September 2006

Abstract

The optimiser of a (multi) parametric linear program (pLP) is a piecewise affine function defined over a polyhedral subdivision of the set of
feasible states. Once this affine function has been pre-calculated, the optimal solution can be computed for a particular parameter by determining
the region that contains it. This is the so-called point location problem. In this paper, we show that this problem can be written as an additively
weighted nearest neighbour search that can be solved in time linear in the dimension of the state space and logarithmic in the number of regions.

It is well-known that linear model predictive control (MPC) problems based on linear control objectives (e.g., 1- or ∞-norm) can be posed
as pLPs, and on-line calculation of the control law involves the solution to the point location problem. Several orders of magnitude sampling
speed improvement are demonstrated over traditional MPC and closed-form MPC schemes using the proposed scheme.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Predictive control; Parametric programming; Controller complexity

1. Introduction

In this note, we consider the following parametric linear
program (pLP):

V �(x) = min
y

{cTy | (x, y) ∈ P}, (1)

where x ∈ Rn is the parameter, y ∈ Rm is the optimiser, y�(x)

is the set of optimisers that achieves the minimum in (1) and
P is a polytope.1

In recent years, it has become well-known that the opti-
miser y�(·) of (1) is a piecewise affine function (PWA) defined

� This paper was presented at the IFAC 2005 meeting. This paper was
recommended for publication in revised form by Associate Editor Jay H. Lee
under the direction of editor A.L. Tits.

∗ Corresponding author.
E-mail address: cnj22@cam.ac.uk (C.N. Jones).

1 See Definitions section for definition of polytope.

0005-1098/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2006.07.010

over a polyhedral partition of the feasible parameters (Borrelli,
2003).2 The problem studied in this note is known as the point
location problem: given the pre-computed PWA function y�(·)
and a particular parameter x, compute efficiently the vector
y�(x).

This problem is motivated from the model predictive control
(MPC) literature. It is standard practice to implement an MPC
controller by solving an on-line optimal control problem that,
when the system is linear, the constraints are polyhedral and
the cost is linear (e.g. 1-, ∞-norm or polytopic), amounts to
computing a single linear program at each sampling instant.
By pre-computing the PWA function y�(·) off-line, the on-line
calculation of the control input then becomes one of solving the
point location problem and therefore an efficiency improvement
translates directly into improved sampling rates and/or reduced
hardware costs.

2 Several methods of computing this affine function can be found in
the literature (e.g., Bemporad, Morari, Dua, & Pistikopoulos, 2002; Borrelli,
2003; TZndel, Johansen, & Bemporad, 2003a).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/automatica
mailto:cnj22@cam.ac.uk

2216 C.N. Jones et al. / Automatica 42 (2006) 2215–2218

The complexity of solving the point location problem is
clearly dependent on the number of affine regions in the so-
lution y�(·). This number of regions is known to grow very
quickly and possibly exponentially, with horizon length and pa-
rameter dimension (Bemporad et al., 2002). The complexity of
the solution therefore implies that for large problems an effi-
cient method for solving the point location problem is needed.

The key contributions to this end have been made in TZndel,
Johansen, and Bemporad (2003b) and Borelli, Baotić, Bempo-
rad, and Morari (2001). In TZndel et al. (2003b), the authors
propose to construct a binary search tree over the polyhedral
partition. Therein, auxiliary hyper-planes are used to subdivide
the partition at each tree level. Note that these auxiliary hyper-
planes may subdivide existing regions. The necessary on-line
identification time is logarithmic in the number of subdivided
regions, which may be significantly larger than the original
number of regions. Although the scheme works very well for
smaller partitions, it is not applicable to large controller struc-
tures due to the prohibitive pre-processing time or online mem-
ory requirements. However, the scheme in TZndel et al. (2003b)
is applicable to any type of piecewise-affine controller, whereas
the algorithm proposed in this paper considers only the case
in which controllers are obtained via an MPC problem with a
linear cost.

In Borelli et al. (2001) the authors exploit the convexity
properties of the PWA value function V �(·) to solve the point
location problem efficiently. Instead of checking if the point
is contained in a polyhedral region, each affine piece of the
value function is evaluated for the current state. Since the value
function is PWA and convex, the region containing the point
is associated to the affine function that yields the largest value.
Although this scheme is efficient, it is still linear in the number
of regions.

In this note, we combine the concept of region identification
via the value-function (Borelli et al., 2001) with the construc-
tion of search trees (TZndel et al., 2003b), by using the link
between parametric linear programming and Voronoi diagrams
recently established in Raković, Grieder, and Jones (2004). We
demonstrate that the PWA cost function can be interpreted as
a weighted power diagram, which is a type of Voronoi dia-
gram, and exploit results in Arya, Mount, Netanyahu, Silver-
man, and Wu (1998) to solve the point location problem for
Voronoi diagrams in logarithmic time at the cost of very simple
pre-processing operations on the controller partition.

Definitions and notation

A polyhedron is the intersection of a finite number of halfs-
paces and a polytope is a bounded polyhedron. If P is a poly-
hedron and H = {x | aTx�b} is a halfspace such that P ⊆ H ,
then P ∩ {x | aTx = b} is a face of P. Given any integer q let
Nq�{1, 2, . . . , q}.

2. Problem formulation

We begin with a discussion of the structure of the solution
to (1). First, we need to introduce the notion of a complex of

polytopes:

Definition 1 (Grünbaum, 2000). A finite family C of polyhedra
in Rn is a complex if

• every face of a member of C is itself a member of C,
• the intersection of any two members of C is a face of each

of them.

If a polyhedron Q ∈ C and is of dimension n, then we call
Q a cell of the complex.

A basic result on the nature of the solution to a PLP is given
next:

Theorem 1 (Borrelli, 2003). Let P ⊂ Rn+m be a polyhedron
and

�(P)�{x ∈ Rn | ∃y ∈ Rm such that (x, y) ∈ P}.
For each x in �(P), let V �(x) be as defined in (1).

Then V � : Rn → R is a convex, PWA defined over a complex
C, such that the union of the cells of C is the set �(P). Fur-
thermore, there exists a continuous, PWA3 y�(·) : Rn → Rm

such that cTy�(x) = V �(x) for every x ∈ �(P).

Thus by Theorem 1, the optimal cost of (1) is a convex,
PWA of the parameter x, taking Rn to R and is defined over a
complex C = {R1, . . . ,RR}:
V �(x) = F T

r x + fr if x ∈ Rr , r ∈ NR , (2)

where each cell Rr is a polyhedron. Furthermore, the optimiser
of pLP (1) is a PWA of x taking Rn to Rm:

y�(x) = Trx + tr if x ∈ Rr , r ∈ NR .

2.1. Point location problem

Problem 1. Given a parameter x and complex C = {R1,

. . . ,RR}, determine any integer4 i(x) ∈ NR such that poly-
hedron Ri(x) contains x.

The function i(·) then defines the optimiser y�(·) as

y�(x) = Ti(x)x + ti(x).

As V �(·) is convex, the i(·) can be written as (Borelli et al.,
2001):

i(x) = arg max
r∈NR

{F T
r x + fr}. (3)

As was proposed in Borelli et al. (2001), i(x) can be computed
from (3) by simply evaluating the cost F T

r x + fr for each r ∈
NR and then taking the largest. This procedure requires 2nR

flops and has a storage requirement of (n + 1)R.
This procedure implicitly assumes that the problem is non-

degenerate. We make this assumption of non-degeneracy here

3 Note that in general, the optimiser of (1) is set-valued.
4 The parameter may be on the boundary of several regions.

C.N. Jones et al. / Automatica 42 (2006) 2215–2218 2217

for brevity and refer the reader to Jones (2005) for a simple
extension that allows this approach to be used for degenerate
problems.

In the following sections we will show that with a negligible
pre-processing step, (3) can be computed in logarithmic time,
which is a significant improvement over the linear time result
of Borelli et al. (2001).

3. Point location and nearest neighbours

In this section we show that for pLPs, the point location prob-
lem can be written as an additively weighted nearest neighbour
search, or a search over R points in Rn to determine which is
closest to the parameter x.

Consider the finite set of points called sites S�{s1, ..., sR}
and the weights W�{w1, . . . , wR}, where (si, wi) ∈ Rn ×
R, ∀i ∈ NR . Given a point x in Rn, the weighted nearest neigh-
bour problem is the determination of the point sr ∈ S that is
closest to x in the sense defined below, for all sj ∈ S, j ∈ NR .
Associated with each site is a set of points Lr ⊂ Rn such that
for each x ∈ Lr , x is closer to sr than to any other site

Lr�{x|‖sr − x‖2
2 + wr �‖sj − x‖2

2 + wj , ∀j ∈ NR}. (4)

Note that the sets Lr form a complex CV �{L1, . . . ,LR}
called a power diagram, which is a type of Voronoi diagram
(Aurenhammer, 1991).

We now prove the main result:

Theorem 2. If C is a solution complex of pLP (1), then C is
the intersection of a power diagram with �(P).

Proof. It suffices to show that for any solution complex of pLP
(1), C�{R1, . . . ,RR}, it is possible to define a set of sites and
weights such that their power diagram is equivalent to C.

It follows from Theorem 1 and (2)–(3) that x is contained in
cell Rr if and only if

F T
r x + fr �F T

j x + fj ∀j ∈ NR ,

Define the R sites and weights as

sr�
Fr

2
,

wr� − fr −
∥∥∥∥Fr

2

∥∥∥∥
2

2
= −fr − ‖sr‖2

2. (5)

For all r ∈ NR and a given x it follows that:

‖sr − x‖2
2 + wr = −F T

r x − fr + ‖x‖2
2.

Recalling the definition of Lr in (4) we obtain the following
∀j ∈ NR:

Lr�
{
x ∈ Rn

∣∣∣∣‖sr − x‖2
2 + wr

�‖sj − x‖2
2 + wj ,

}

=
{
x ∈ Rn

∣∣∣∣−F T
r x − fr + ‖x‖2

2
� − F T

j x − fj + ‖x‖2
2,

}

= {x ∈ Rn |F T
r x + fr �F T

j x + fj , } (6)

Therefore, the relationship x ∈ Rr ⇒ x ∈ Lr has been shown.
The reverse implication is not true, since the union of all Lr

covers Rn. However, we see from (6) and Theorem 1 that Lr ∩
�(P)=Rr . Thus the equivalence of the solution complex C and
the intersection of the feasible region of the pLP and the power
diagram of the set of sites and weights (5) is established. �

A very important consequence of Theorem 2 is that the point
location problem (3) can be solved by determining which site
sr is closest to the parameter x:

i(x) =
{
r ∈ NR

∣∣∣∣‖sr − x‖2
2 + wr

�‖sj − x‖2
2 + wj

∀j ∈ NR

}

= min
r∈NR

∥∥∥∥
(

sr√
wr

)
−

(
x

0

)∥∥∥∥
2

2
.

Since this problem has been well studied in the computational
geometry literature we propose to adapt an efficient algorithm
introduced in Arya et al. (1998) that solves the nearest neigh-
bour problem in logarithmic time and thereby solves the point
location problem in logarithmic time.

As shown in Arya et al. (1998), it is possible to pre-process
the R sites and weights in O(nR log R) time and O(nR)

space, such that the nearest neighbour can be identified in
O(cn,� log R) time, where cn,� is a factor depending only on
state-space dimension n and accuracy �.

Remark 1. If the cost in (1) is quadratic, then the resulting so-
lution may or may not be a power diagram, although examples
are known in which it is not. Therefore, the result presented in
this paper does not currently extend in general to parametric
quadratic programs.

Remark 2. As the optimiser y�(·) can be chosen to be con-
tinuous (Borrelli, 2003) the error � in determining the region
translates into a maximum error in the optimiser that is pro-
portional to �. Therefore, if pLP (1) solves an optimal control
problem, the error in the control input can be made arbitrarily
small with an appropriate selection of �.

Remark 3. A description of the complex is not required for
the proposed method, but only the cost function V �(·), which
is returned by all current pLP implementations.

4. Example

In this section we compare the complexity of the approach
presented in this paper with that discussed in Borelli et al.
(2001) for very large systems. Although the scheme in TZndel
et al. (2003b) may lead to more significant runtime improve-
ments than Borelli et al. (2001) and indeed than the proposed
scheme for small examples, the necessary pre-processing time
is prohibitive for large partitions. For example, the method
(TZndel et al., 2003b) requires over 150, 000, 000 LPs when ap-
plied to a complex that consists of only 12, 290 regions, and we
therefore refrain from performing a comparison to that scheme.

The currently available multi-parametric solvers (Kvasnica,
Grieder, Baotić, & Morari, 2003; Jones, 2005) produce reliable

2218 C.N. Jones et al. / Automatica 42 (2006) 2215–2218

106

M
ill

io
ns

 o
f F

lo
ps

+ Dim = 2
x Dim = 10

Borelli et al. [4]
ANN [1]

102

101

100

10-1

10-2

10-3

10-4

101 102 103

Nr

104 105

Fig. 1. Comparison of ANN (solid lines) to (Borelli et al., 2001) (dashed
lines).

results for partitions of up to approximately 30, 000 regions.
However, it is of interest to solve much larger control problems
and methods are currently being developed that will provide
their solutions. Therefore, in order to give a speed comparison
we have randomly generated vectors Fr and fr in the form
of (3). The code developed in Arya et al. (1998), which is
available at Mount and Arya (1988), was then used to execute
1000 random queries and the worst-case is plotted in Fig. 1.
For all of the queries the error parameter � was set to zero and
therefore the solution returned is the exact solution. It should
be noted that the preprocessing time for one million regions
and 20 dimensions is merely 22.2 s.

Fig. 1 shows the number of floating point operations (flops)
as a function of the number of regions for the two approaches
and the dimension of the state-space. Note that both axes are
logarithmic.

A 3.0 GHz Pentium 4 computer can execute approximately
800 × 106 flops/s. It follows that for a 10-dimensional system
whose solution has one million regions, the control action can
be computed at a rate of 20 kHz using the proposed method,
whereas that given in Borelli et al. (2001) could run at only
35 Hz.

It is clear from Fig. 1 that the calculation speed of the pro-
posed method is very good for systems with a large number

of regions. Furthermore, note that problems where ANN does
worse than Borelli et al. (2001) are virtually impossible to gen-
erate, i.e. a partition in dimension n=10 with less than R=100
regions is very difficult to contrive. Hence, it can be expected
that for all systems of interest, the proposed scheme will result
in a significant increase in speed. Since explicit feedback MPC
is generally being applied to systems with very fast dynamics,
any speedup in the set-membership test is useful in practice, i.e.
the scheme proposed here is expected to significantly increase
sampling rates.

Remark 4. The examples in this paper have been prepared
with the MPT toolbox (Kvasnica et al., 2003) and the ANN
library (Mount & Arya, 1988).

References

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., & Wu, A. Y.
(1998). An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM, 45(6), 891–923.

Aurenhammer, F. (1991). Voronoi diagrams—a survey of a fundamental
geometric data structure. ACM Computing Surveys, 23(3),

Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The
explicit linear quadratic regulator for constrained systems. Automatica,
38(1), 3–20.

Borrelli, F. (2003). Constrained optimal control of linear and hybrid systems,
Lecture notes in control and information sciences (Vol. 290). Berlin:
Springer.

Borelli, F., Baotić, M., Bemporad, A., & Morari, M. (2001). Efficient on-line
computation of constrained optimal control. Proceedings of the 40th IEEE
conference on decision and control (pp. 1187–1192). Orlando, Florida.

Grünbaum, B. (2000). Convex polytopes. 2nd ed., Berlin: Springer.
Jones, C. N. (2005). Polyhedral tools for control. Ph.D. thesis, University of

Cambridge, 2005.
Kvasnica, M., Grieder, P., Baotić, M., & Morari, M. (2003). Multi parametric

toolbox (MPT). In Hybrid systems: Computation and control, Lecture
Notes in Computer Science. Berlin: Springer.

Mount, D., & Arya, S. (1998). ANN: Library for approximate nearest neighbor
searching.

Raković, S. V., Grieder, P., & Jones, C. (2004). Computation of Voronoi
diagrams and delaunay triangulation via parametric linear programming.
Technical Report AUT04-03, Automatic Control Lab, ETHZ, Switzerland.

TZndel, P., Johansen, T. A., & Bemporad, A. (2003a). An algorithm for multi-
arametric quadratic programming and explicit MPC solutions. Automatica,
39(3), 489–497.

TZndel, P., Johansen, T. A., & Bemporad, A. (2003b). Computation of
piecewise affine control via binary search tree. Automatica, 39(5), 945–
950.

	A logarithmic-time solution to the point location problem for parametric linear programming62626262
	Introduction
	Problem formulation
	Point location problem

	Point location and nearest neighbours
	Example
	References

