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Abstract— Minimizing communication cost is a fundamental
problem in large-scale federated sensor networks. Existing so-
lutions applicable for the problem are often ad-hoc for specific
query types, or they are inefficient when query results contain
large volumes of data to be transferred over the networks.
Maintaining model-based views of data streams has been recently
highlighted because it permits the data communication over
networks to be efficient by transmitting parameter values for
the models, instead of sending original data streams. This paper
proposes a novel framework that employs the advantages of
using model-based views for communication-efficient stream data
processing over federated sensor networks, yet it significantly
improves state-of-the-art approaches. The framework is generic
and any time-parameterized models can be plugged, as well as
accuracy guarantees for query results are ensured throughout
the large-scale networks. In addition, we boost the performance
of the framework by the coded model update that enables
efficient model update from one node to another. It predetermines
parameter values for the model, updates only identifiers of the
parameter values, and compresses the identifiers by utilizing
bitmaps. Moreover, we propose a novel correlation model, named
coded inter-variable model, that integrates the efficiency of the
coded model update into more precise predictions of correlated
models. Empirical studies with real data demonstrate that our
proposal achieves substantial amounts of communication reduc-
tion, outperforming a state-of-the art method.

I. INTRODUCTION

Although the Sensor Internet is still in its infancy, large
numbers of sensor networks are already being interconnected
and share huge amounts of streaming data from sensors. In
the SwissEx project [1], [2], for example, various research in-
stitutes share real-time environmental observation data across
many different local sensor networks; they become producers
and consumers of streaming data simultaneously. In these
federated sensor networks, data streams from a producer node
are continuously delivered to multiple consumer nodes in
different local networks. Minimizing communication cost over
the networks has become a primary challenge for researchers.

There exists a rich body of research work on this problem,
including communication-efficient data dissemination [3], [4],
[5] and effective operator placement in distributed stream
processing systems [6], [7], [8], [9]. Although these proposals
reduce large amounts of data transfers over distributed sensor
networks, they are often applicable only for particular query
types, or inefficient when a query result contains a large
volume of data.

This paper proposes a novel framework that is fundamen-
tally different from the existing approaches. It employs (math-
ematical) models for representing data streams at producer
nodes, and duplicates the models onto consumer nodes who
need the data streams. Queries at the consumer nodes are
processed directly over the data streams generated by the
models, so-called model-based views [10], without fetching
the actual data from the producer nodes. The framework then
subsequently updates the models, so that real-time sensor
readings are precisely captured by the models.

Model-based views have been introduced to achieve synergy
among data processing using models and powerful data man-
agement functionalities provided by databases, the both tasks
are often needed for applications but performed separately.
In this paper, we go beyond this approach and present a
framework adopting the model-based views to lead to various
advantages for processing distributed data streams. The key
features of the framework are briefly highlighted as follows:
• First, it permits to reduce the communication cost over

networks significantly since it does not require any
data transfer of actual streams. Only the parameters of
models are updated through the networks. Typically, the
model update occurs infrequently and yields substantially
smaller amounts of data to be transmitted.

• Second, any type of queries with respect to the data
streams can be processed at consumer nodes without
sending queries and receiving the results across the net-
works, since the consumer nodes have all data required
for the query processing, i.e., model-based views. This
also prevents from potential network delay and data loss.

• Third, our framework is generic and any type of model
can be employed, as long as the model is time-
parameterized and able to predict the value at a given
(current or future) time. This is important because a
number of models are being used for different purposes in
a wide range of applications. The framework allows such
applications using their specific models, while efficient
data communication over distributed networks is facili-
tated by simply plugging the models into the framework.

• Finally, the framework provides a systematic solution that
can guarantee user-specified accuracy requirements for
model-based views. The guarantees are independent of
the model types used within the framework.
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In fact, some prior work [11], [12], [13] has already utilized
models for reducing data communication for stream processing
over networks. Nevertheless, their methods are designed for
specific models, while we aim to provide a generic platform
that accepts arbitrary models used in federated sensor net-
works.

Furthermore, we propose two novel mechanisms. First, we
introduce a coded model update that enables model update
from one node to another very efficiently. The coded model
update predetermines parameter values for a model, which are
shared by both producer and consumer nodes. It then sends
merely bitmap-encoded identifers of the parameters when
the model update is required, instead of sending the actual
parameter values for the model. We present concrete solutions
for presetting the parameter values, guaranteeing user-provided
error bounds, and encoding bitmaps.

Second, we propose a new model, called coded inter-
variable model, using correlation information of multiple
streams, which can compensate errors and noises of raw data
by exploiting the dependencies from one stream to another.
This yields more precise value prediction and reduces data
redundancy, resulting in infrequent model update. Since our
coded model update is designed to support any given model,
we embody this correlation model based on the coded model
update. Therefore, it brings synergy effects from combining
the effectiveness of the correlation model and the efficiency
of the coded model update.

The contributions of the paper are summarized as follows:

• We propose a novel, generic, and accuracy-guaranteed
framework that utilizes model-based views for efficient
data communication over federated sensor networks.

• We present how to fit various regression models into
the framework as case studies, by showing a generic
algorithm for adaptively computing the models.

• We introduce the coded model update as a generic
compression scheme of model parameters for efficient
model update over networks.

• We introduce the coded inter-variable model based on the
coded model update method, which takes into account
correlation information of multiple streams, resulting in
more precise value predictions.

• We demonstrate comprehensive experimental analyses for
our approach using two different real datasets.

The remainder of the paper is organized as follows. Sec-
tion II presents our network model and the architecture of
the framework. Section III provides a case study of plugging
various regression models into our framework. Section IV
introduces the coded model update and Section V describes the
details of the coded inter-variable model. Section VI presents
extensive experimental results for large, real sensor datasets.
Section VII discusses the relevant works to our study, followed
by conclusions in Section VIII.

Symbol Meaning
N node in federated sensor networks
vt raw sensor reading value at time t
s, s′ raw data stream, model-based view of s
εs user-specified error bound for stream s

M,Ms,M.i model, model for s, i-th model instance of M
v′t,M(t) model-driven value at time t
M∗ most similar predetermined model to M
M◦ coded inter-variable model

v∗t ,M∗(t) model-driven value at time t, that generated by M∗
P = {pi} set of parameters pi required for building a model
v̄, Vpi parameter value, set of parameter values for pi

Bpi , Bv upper and lower bounds of v̄ for pi, those of v ∈ s
h the number of subspaces in Bpi or Bv

oi, |oi| i-th slot of a bitmap, the number of bits in oi

TABLE I
SUMMARY OF NOTATIONS

II. THE FRAMEWORK

In this section, we introduce our framework that utilizes
model-based views for efficient data communication over
federated sensor networks. Table I offers the notations that
will be used throughout the paper.

A. Overview

Let s = 〈v1, v2, · · · , vn〉 be a raw data stream from one
sensor, represented by a sequence of timestamped sensor
readings, where vt ∈ s indicates the value at time t. We
formally define the network model that this study considers:

Definition 1: A federated sensor network consists of a
set of interconnected nodes {N1, N2, · · · , Na}, such that each
node maintains a set of data streams Nj = {s1, s2, · · · , sb},
j ∈ [1, a] in a local sensor network.

Figure 1 illustrates an example of a federated sensor
network, connecting three local sensor networks with the
corresponding nodes N1, N2, and N3. In the example, node
N1 sustains two data streams s1 and s2 from two different
sensors respectively, and the node is connected to nodes N2

and N3 through the Internet. Similarly, N2 and N3 maintain
their own local streams in different local networks.

s2
10.2

11.1

:

raw data stream

model-based view
3.1

4.5

:

8.5

8.2

:

s4 s5

s'2
10.1

11.1

:

s3
0.9

2.3

:

1.0

2.2

:

s'3 air

temperature

wind speed

internet

s'2
10.1

11.1

:

node

s1
7.5

9.3

: N
1

N
3

М

N
2

si
s'i

local sensor network

ground 

temperature
s2s1 s3

s4 s5

s2

Мs3

Мs2

Мs2 Мs3

Fig. 1. An Example of The Framework over A Federated Sensor Network

In a federated sensor network, it often occurs that a node
needs to bring the data streams maintained by another node
(or multiple other nodes) across the Internet, for analyzing the
data or processing queries. We call the former node a consumer



node and the latter node a producer node. It is also possible
that the producer node needs the data streams maintained by
the consumer node, and thus the both nodes become producers
and consumers simultaneously.

Because transmitting raw data streams over a federated
network requires high data communication cost, some previous
studies [3], [4], [5] propose efficient approaches, however, they
are still insufficient when the number of nodes in the network
becomes large and the data streams are high-rate. Instead of
sending the raw data streams, queries at the consumer nodes
can be sent to the producer nodes [14], [8], [9], yet this
approach is generally applicable only for particular query types
or inefficient if query results contain large amounts of data.

To overcome the above shortcomings, our framework takes
an essentially different approach—utilizing model-based views
for efficient distributed data stream processing. It consists of
the following two phases:
• Initialization phase: when a consumer node requests a

data stream from a producer node, the producer node
constructs a (time-parameterized) model that can predict
the values at current or future times. The producer node
then sends the model’s parameters to the consumer and
the consumer node builds the same model using the
parameters received. This operation is performed only
once when the connection between the two nodes is
initially established.

• Running phase: the consumer node generates a model-
based view as the representation of the raw stream by
the model constructed. Any query at the consumer node
is directly processed over the model-based view, without
any data communication with the producer node. The
framework subsequently updates the model’s parameters
from the producer node to the consumer node only when
necessary.

Fig. 1 shows an example of these processes. N2 (i.e.,
consumer node) asks stream s2 from N1 (i.e. producer node),
and then model Ms2 is constructed at N1. Next, N1 sends
the parameter values for Ms2 to N2, and Ms2 built by
the parameters received at N2 generates model-based view
s′2 for representing s2. With the same manners, model-based
views s′2 and s′3 at N3 are also generated by Ms2 and Ms3 ,
respectively.

B. Accuracy Guarantee and Model Update
When the framework constructs a model at a producer

node, it takes a user-specified error bound, such that the
difference between a raw sensor reading and its corresponding
value in a model-based view, termed model-driven value, must
not exceed the bound. Our framework provides this accuracy
guarantee throughout the federated sensor network, formally
stated as:

Property 1: Let s = 〈v1, v2, · · · , vn〉 be a raw data stream
and s′ = 〈v′1, v′2, · · · , v′n〉 be a model-based view created by
model Ms. Given an accuracy bound εs for s, the framework
guarantees that

|vt − v′t| ≤ εs vt ∈ s, v′t ∈ s′

To maintain Property 1, the framework performs model
update from a producer node to consumer nodes using the
following steps: (i) the producer node generates a model-
driven value when a new raw reading is streamed, and checks
whether the difference between the raw value and the model-
driven value stays within the error bound. (ii) If the difference
does not exceed the error bound, no communication is required
between the two nodes, and the consumer node generates val-
ues for their model-based views. (iii) Otherwise, the producer
node reconstructs its model, so that the model-driven value
generated from the reconstructed model does not exceed the
error bound from the current raw reading. Next, the producer
node updates the models at consumer nodes by sending new
parameter values of the reconstructed model.

In some cases, multiple consumer nodes may set different
error bounds to a single raw stream at a producer node. For
such a case, we provide two options:

• Multi-model update maintains n models at the producer
node for given n error bounds requested from consumer
nodes, such that each model is updated according to
one of the bounds. This may incur high computing
overhead for the producer node, since the producer node
is responsible for the model’s reconstruction and update.
Nevertheless, this option achieves minimum communica-
tion cost over the networks.

• Single-model update is performed according to only the
smallest error bound among the n error bounds for all
model updates, because the tightest error bound covers
all the accuracies demanded from consumer nodes. Since
the producer node maintains only one model, the cost for
model maintenance is very low. On the other hand, the
model update occurs more often because model recon-
structions are performed frequently to keep the smallest
error bound, which is unnecessary for larger error bounds.

C. The Hitchhiker’s Guide to Model Selection

Our framework is generic and allows any type of models to
be used, as long as the model is time-parameterized thus can
predict a value at a given (current or future) time. Nevertheless,
there are some key factors that influence the performance of
the framework, which applications should consider for the
model selection. We here provide some guidelines.

Be aware of what others have done. The literature pro-
vides a rich set of mathematical models that are widely
used for processing streaming data, such as classic regression
models [15], [16], Chebyshev approximation [17], piecewise
constant approximation [18], correlation models [19], [20],
Kalman fiters [11], hidden Markov models [21], [22], and
dynamic probabilistic models [12]. This paper also provides a
novel model in Section V. All the above models can be fit to
the framework.

Precise prediction is most important. The model should
predict a value v′ as similar as possible to the corresponding
raw reading v, since a large |v−v′| is likely to exceed a given
error bound, resulting in more frequent model update.



Make sure that prediction process is efficient. The value
prediction by a model is performed at both producer and
consumer nodes every time when a new sensor reading is
streamed. Thus, it becomes costly if the stream has a high
rate, and a large number of such streams are maintained by
the nodes.

Do not neglect simple models. It is often observed that
simple models such as piecewise constant and linear models
do not perform worse than sophisticated models in terms of
prediction accuracy. Moreover, simple models generally have
low computing costs for their construction as well as small
numbers of parameters to be sent for model update.

III. CASE STUDY: PLUGGING REGRESSION MODELS

In this section, we first briefly review various regression
models widely used for approximating time-series data. We
then describe how to fit the models to our framework as a
case study.

A. Time–Series Regression

Given a stream s = 〈v1, v2, · · · , vn〉, regression models
describe how values vt ∈ s vary depended on the passage
of time t ∈ [1, n]. Our goal here is to predict a value
v′n+1 using the regression models when a new sensor reading
vn+1 is streamed, so that the framework can check whether
|vn+1 − v′n+1| satisfies a given error bound.

We briefly introduce two popular types of regression mod-
els, i.e., polynomial and Chebyshev regressions.

Polynomial Regression.
Given a degree d, polynomial regressions find the best-fitting
curve (or line when d = 0 or d = 1) that minimizes the
total difference between the curve and each value vt, formally
defined as:

vt = c+ α1 · t+ · · ·+ αd · td, t = 1, ..., n (1)

, where c is a constant and αj are regression coefficients.
The polynomial regressions with high degrees approximate

the given stream with more sophisticated curves, rendering
theoretically more accurate predictions. Practically, however,
low-degree polynomials, such as constant (d = 0) and linear
(d = 1), can also perform well because they compensate errors
in real sensor data by simple regression lines. In addition, low-
degree polynomial regressions are easy to be (re)constructed,
fast to predict values, and efficient to send parameter values
for model update from a producer node to a consumer node.

Chebyshev Regression.
Chebyshev polynomials are also often used for representing
and processing time-series data, due to the capability of
efficiently computing near-optimal approximations for given
streams.

Suppose that time values t ∈ s vary within a range
[min(t),max(t)]. We then obtain normalized time values
t′ within a range [−1, 1], by a transformation function

f(t) = (t− max(t) + min(t)
2

) · 2
max(t)−min(t)

.

Its reverse transformation function f−(t′) is then defined as:

f−(t′) = (t′ · max(t)−min(t)
2

) +
max(t) + min(t)

2
.

Given a degree d, Chebyshev polynomial is defined as:

vt = f−(cos(d · cos−1(f(t)))) t = 1, ..., n

Let vdt be a Chebyshev polynomial vt of degree d. We
present the first several Chebyshev polynomials with increas-
ing degree:

v0t = 1
v1t = t
v2t = f−(2f2(t)− 1)
v3t = f−(4f3(t)− 3f(t))
v4t = f−(8f4(t)− 8f2(t) + 1)

With a linear combination of the above Chebyshev poly-
nomials having different degrees, Chebyshev polynomials are
redefined by a generic form:

vt = β0 · v0
t + · · ·+ βm · vmt , t = 1, ..., n
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Fig. 2. Examples of Time-Series Regressions

Figure 2 demonstrates different applications of the regres-
sion models with varying degree over real data. As shown
in the figure, polynomials with higher degrees can represent
the raw stream with more detailed curves. Nevertheless, when
the given data stream contains large amounts of noises, the
curves captured by the high-degree polynomials may become
fluctuated, which may lead to imprecise value prediction.

B. Adaptive Construction of Regression Model

Let w = 〈vg, vg+1, · · · , vn〉, (1 ≤ g < n) be a window (i.e.,
subsequence) of a stream s = 〈v1, v2, · · · , vn〉, where n is the
time when the last sensor reading vn was streamed. Let |w|
also be the size of the window w, i.e., the number of stream
elements in w.

In general, regression models built by larger windows yield
more precise value predictions than those built by small
windows, because real sensor data typically contains errors
or noise, and thus the trend of the stream over time is not
effectively captured by the regression models using small
windows. For example, when we use |w| = 3 for building
a regression model in Fig. 2 (note that the curves in the figure
are obtained by using all of the raw values), it is hard to expect
that the model can predict next values precisely.



On the other hand, when we attempt to use large windows
for constructing the regression model, it may violate the
accuracy guarantee in the framework. For instance, suppose
that a model-driven value v′t generated by a regression model
Ms using |w| = 10 exceeds a given error bound ε from its raw
reading vt (i.e., |vt−v′t| > ε). We then reconstructMs using a
smaller window size, e.g., |w| = 9. However, |vt−v′t| > ε may
occur again although we use |w| = 9, because Ms derives its
curves reflecting all the values in w. Therefore, we cannot
determine an absolute window size for constructing a given
regression model, yet |w| needs to be computed dynamically.

To reflect the above discussions, we propose an algorithm
that adaptively finds an appropriate window size. The key idea
underlying in this algorithm is to find the maximum size of
the window among the windows that can meet the accuracy
guarantee. In order to do this, we consider a given default
window size and then shrink or enlarge the size until we find
an error-bounded largest window size.

Algorithm 1 presents the pseudo-code for (re)computing a
given regression model dynamically. In Lines 1–3, variables

Algorithm 1 Adaptive Model Computation
Input: stream s, regression model Ms, error bound εs,

default window size |wo|
1: s = ∅
2: window w ← ∅
3: Ms ← ∅
4: while s← a new value vt do
5: w ← vt
6: if |w| ≥ |wo| and Ms = ∅ then
7: Ms ← construct using w
8: send Ms to consumer nodes
9: else

10: continue
11: model-driven value v′t ←Ms(t)
12: while |vt − v′t| > εs do
13: Ms ← construct using w
14: w ← remove the first (oldest) value
15: if |w| 6= |wo| then
16: send Ms to consumer nodes

are initialized. The algorithm then fills streaming values to
the window w (Lines 4–5 and Lines 9–10), until the window
has enough values, i.e., |w| ≥ |w0| in Line 6. When this
is done, the given regression model is computed, and the
coefficients for the model are also sent to the consumer nodes
who requested the stream s (Line 8). At Line 11, the model
creates a model-driven stream v′, in order to validate the
accuracy guarantee of the framework (Line 12). When this
condition is violated, the algorithm recomputes the model and
shrinks the window size for the next iteration. This is repeated
adaptively until the condition is satisfied (Lines 13–14).

This algorithm is generic, which any class of regression
models can become an input of the algorithm, as well as it
always guarantees the given accuracy.

IV. CODED MODEL UPDATE

Although transmitting parameter values for models over
networks is much more efficient than sending actual data
streams, this benefit may decrease when the values in the
stream fluctuate dramatically over short terms and thus model
updates from one node to another occur often. To cope with
this problem, we introduce a novel scheme that enables the
model update more efficiently.

A. Overview

The core idea underlying our approach is to share a set of
predetermined parameter values for building a model between
a producer node and a consumer node. The framework then
transfers merely bitmap-encoded identifers of the prearranged
parameter values when a model update is required, instead of
sending the actual parameter values for the model.
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Fig. 3. An Example of Coded Model Update

Fig. 3 illustrates an example of the coded model update for
a linear regression model. First, the producer node computes
two sets of predetermined parameter values for the linear
model (i.e., slopes and v-intercepts), such that each parameter
value has a distinct identifier as ai or bi in the figure. It
then sends the information of the predetermined values to the
consumer node when the connection between the two nodes
is initially established. Next, the information is subsequently
updated only when necessary. In fact, we do not store the
predetermined parameter values in the system, but derive
them from their upper and lower bounds (the next subsection
provides details).

After the initialization, the producer node represents the
stream as a model instance M.1 during t ∈ [1, 4], and it
simultaneously matches the actual parameters for M.1 to
the most similar preset parameter values (i.e., 0.7 and 1 for
slope and v-intercept, respectively). While this, the producer
node also monitors whether Property 1 holds between each
actual sensor reading and its corresponding model-driven value
obtained from the preset model. At the consumer node, the
model-based view is generated by the predetermined model
during the same time period t ∈ [1, 4].

In this example, the actual reading at t = 5 at the producer
node is assumed to exceed a given error bound from its
corresponding model-driven value generated by the preset
model, requiring the producer node to reconstruct the actual
model asM.2. The producer node then finds the most similar
preset parameter values (i.e., 0.0 and 5 in Fig. 3) to M.2



again. Next, it encodes a bitmap using the identifiers (i.e.,
a2 and b3) of the preset parameter values found and sends
the bitmap to the consumer node where derives the parameter
identifiers by decoding the bitmap. Since t = 5, the consumer
node generates its model-based view by the model constructed
by the predetermined parameter values having a2 and b3
identifiers.

The key features of this coded model update are fourfold:
• First, it permits the model update to be significantly more

efficient because the necessary parameter information
for model update is coded into a compact bitmap. In
addition, this effect increases dramatically as the number
of parameters required for models grows.

• Second, this method still supports the generic properties
of the framework, such as ensuring accuracy guarantees
and flexible application for any given models plugged
into the framework.

• Third, its maintenance costs (i.e., storage requirement,
model computation, and searching of preset parameter
values) are very low.

• Lastly, its necessary system parameters are computed in
automated manners without taking any inputs from user,
while preserving all the above features.

B. Presetting Parameter Values

Let P = {pi} be a set of parameters required for building
a given model, excluding constants (e.g., P = {α1, α2} for
a second-degree polynomial v = α0 + α1t + α2t

2). While
sweeping a stream s, we obtain a set of model instances
from the model’s reconstructions when the difference between
an actual reading and a model-driven value exceeds a given
error bound. By extracting the value for pi from each model
instance, we collect a set Vpi

of parameter values. For example,
Vp1 = {2, 4} and Vp2 = {3, 5} are obtained from two in-
stances of degree-2 polynomials v = 2t+3t2 and v = 4t+5t2,
respectively. Our framework then stores the upper and lower
bounds of each Vpi , denoted as Bpi = [min(v̄),max(v̄)], v̄ ∈
Vpi

. Similarly, it also stores those bounds of sensor readings in
the stream, i.e., Bv = [min(v),max(v)], v ∈ s. Therefore, we
maintain |P |+1 pairs of upper and lower bounds for parameter
values and readings in the framework.

Given an integer number h, the space of Bpi
is conceptually

divided into h subspaces, each of which has an equal size
of |Bpi

|
h , where |Bpi

| = max(v̄) − min(v̄), v̄ ∈ Vpi
, e.g.,

〈[1, 3), [3, 5]〉 for h = 2, Bpi
= [1, 5]. We then take the

median value of each subspace to be used as a predetermined
value for a parameter pi. Note that we do not store these
predetermined parameter values in the system but derive them
from the bounds, reducing storage requirement for the coded
model update substantially.

Let floor(x) be a function that returns the largest integer
value that is not greater than x. Given an actual parameter
value vp, its nearest predetermined parameter value is com-
puted by

min(v̄) + h · (floor(vp
h

) +
1
2

) v̄ ∈ Vpi
, vp ∈ Bpi

(2)

Equation 2 has a constant-time complexity. Therefore, all of
the necessary parameter information for building the model
can also be computed with a constant-time complexity, i.e.,
O(|P |+ 1).

As time passes and s receives more new readings, the space
of |Bpi | may be expanded, consequently each preset parameter
value may also cover a large subspace. Nevertheless, such a
expansion seldom occurs after certain time periods (e.g., the
highest and the lowest values of air temperature over years do
not change often). In addition, the large space of |Bpi

| does
not necessarily mean that the preset parameter values have
coarse granularities. For instance, coefficient values associated
with the time variable of polynomial regression curves or
lines can be normalized within [−π2 ,

π
2 ]. As a more specific

example taking a linear regression model and h = 10 (which
is much smaller than its typical values in our system), the
angle between the line formed by the actual model and that
formed by the model using the preset parameter values always
stays within at most an 18-degree error, regardless of |Bpi |.
Furthermore, even if the model constructed by the preset
parameter values may require more frequent model update due
to its inaccurate prediction compared to the actual model, each
size of model update is still much smaller than that of actual
parameter values, rendering lower total costs for model update.

C. Error Bounding

Let v′ and v∗ be model-driven values, generated from an
actual model M and a model M◦ constructed by a set of
preset parameter values that are most similar to the parameter
values for M, respectively. Given a given error bound ε and
a raw reading value v, it may occur that |v − v′| ≤ ε but
|v−v∗| > ε (Fig. 4(a)), which violates the accuracy guarantee
in our framework and thus M is cannot be directly used for
model update.

To address this, we first ensure that each subspace size in
Bv is not greater than the double size of the accuracy bound,
i.e., |Bv|

h ≤ 2ε, when we predetermine the reading values in
Bv . Therefore, the closet preset reading value c to v must not
exceed ε from v. Next, we compose aM∗ combiningM and c
as a constant, such thatM∗(t) =M(t)+c, whereM(0) = 0.
After updating this M∗(t) to consumer nodes, model-driven
values are generated by M∗(t), t = 0, 1, · · · at both producer
and consumer nodes. Recall that we removed any constants
for P = {pi} in subsection IV-B, thus |v0 − M∗(0)| ≤ ε
always holds (because M∗(0) = c). By repeating the above
processes whenever |vt −M∗(t)| > ε, t > 0, the accuracy is
always guaranteed.

Fig. 4(b) demonstrates an example of the procedure for
the accuracy guaranteed model update using linear regression
model. During t = [1, 3], model-driven values are created by
a model instance M.∗1 built by preset parameter values. At
t = 3, |v−v∗| > ε, requiring a model update. We then build an
actual modeM over the past values of the stream, and find the
closest preset reading value c to v, as well as the most similar
preset value of slope the slope of M . Next,M.∗2 is constructed
by the preset values found. Since t = 3, we count the time
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Fig. 4. Accuracy Guarantees for Coded Model Update

in a different way as t′ = 0, 1, · · · and generate model-driven
streams by M∗(t′) at both producer and consumer nodes.

D. Bitmap Encoding

We consider k bits as the size of a bitmap for the message
of coded model update and initially set k = 8. The k bits are
then distributed into a sequence of slots 〈o1, o2, · · · , o|P |+1〉,
where oi has an equal or similar number of bits to another
(Fig. 4(c)). Specifically, we first assign floor( k

|P |+1 ) bits to
each oi. We then assign one more bit to each slot for (k −
floor( k

|P |+1 ) · (|P | + 1)) times, from o1 along the sequence
order. Given k = 8 and |P | = 2, for example, we obtain
|o1| = 3, |o2| = 3, and |o3| = 2, where |oi| is the number
of bits assigned to oi slot. Each slot in the bitmap is easily
identified by applying a mask for the bitmap.

The first slot o1 is reserved to encode a predetermined
reading value in Bv , and each of the rest slots is designed
to encode a predetermined parameter value in Bpi . Thus, o1
can represent 2|o1| distinct numbers from 0 to 2|o1|-1, which
are the identifiers for predetermined readings. Likewise, each
oj(j 6= 1) can describe 2|oj | different predetermined parameter
values.

When the number of parameters |P | required for building a
model is large, the initial setting of k = 8 may be insufficient
for describing the details of each parameter for the model
well. For such a case, we incrementally append 8 more bits to
the last value of k as Fig. 4(d) until both of the following
conditions are satisfied: First, the preset parameter values
for readings derived from |Bv| meet the accuracy guarantee,
i.e., |Bv|

|o1| ≤ 2ε. Second, the granularity of the predetermined
parameters should not be too coarse, i.e., min(|oj |) < 4, (j 6=
1), thus the example of Fig. 4(c) does not satisfy this condition.
When we increase the k value, we fill up more bits to the slots
where lower numbers of bits were assigned for the distribution
of the k bits at the previous steps, so that each |oj | is nearly
the same as that of another slot.

V. CODED INTER–VARIABLE MODEL

It is often observed that data streams collected from different
observations or locations exhibit correlated trends over time
due to physical laws. For instance, Fig. 5(a) plots sensor
readings of air temperatures from two different places, and
Fig. 5(b) does measurements of air and ground temperatures in
the same area. Such correlated streams generally compensate

errors and noises by exploiting the dependencies from one
stream to another. This can yield more precise value prediction
and thus model updates from producer nodes to consumer
nodes can also occur less frequently.
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A. Preliminaries

In Section III, polynomial and Chebyshev regression models
are used to describe how a physical variable (i.e., sensor
reading) depends on another temporal variable (i.e., time).
Such a dependency may also be found between two different
physical variables. In this section, we exploit the correlations
across the variables, and utilize them in our framework when
the correlated streams are requested from consumer nodes.
Since our coded model update is designed to support any given
arbitrary models, we aim to develop this correlation model
based on the coded model update method. Thus, it is natural
to expect synergy effects from combining the coded model
update and the correlation models.

Specifically, we consider a base stream that is represented
by a (preset) model M∗si

. Next, we take into account linear
dependency with scale factor (i.e., a constant) from M∗si

to
another model M∗sj

for a stream sj . By doing this, the trend
of the model-based view obtained by M∗si

shows similar
behaviors to that byM∗sj

, which reflects the correlations over
original streams si and sj . Due to the scale factor, streams
having different absolute values can form correlations as long
as the streams show similar trends over time. We formally
define this model as follows:

Definition 2: Given two streams si and sj , a scale factor
δ, and the most similar predetermined model M∗si

to its
corresponding actual model for sj , a coded inter–variable
model M◦sj

for sj is defined as a function of M∗si
:

M◦sj
= δ · M∗si

It has been shown that using linear dependency with scale
fact across variables is very effective to handle correlated
streams, in terms of minimizing data redundancy [19], [20].

Fig. 6(a) illustrates an example of how the coded inter-
variable model works, using piecewise constant models for
representing two streams s1 and s2 that are registered to the
framework as correlated streams.Msi

.j andM∗si
.j denote the

j-th instances of actual model Msi
(i.e., base model) and its

most similar predetermined model M∗si
, respectively. M◦s1 .j



is the j-th instance of the coded inter-variable model having
δ = 3 that is shared by both producer and consumer nodes.
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At t = 3, both M◦s1 and M∗s2 change, as well as the
corresponding actual modelsMs1 andMs2 vary. In this case,
the framework does not update the parameter value forM◦s1 .2
but only for M∗s2 .2, because the initial values δ = 3 (i.e.,
M◦s1 .2
M∗s2 .2

) is not changed. Thus the value forM◦s1 .2 is computed
by Definition 2 at the consumer node where keeps the value of
δ. This reduces the sizes of update messages. Especially when
the number of correlated streams is large, this effect increases.

At t = 4, only M∗s2 .2 is changed to M∗s2 .3. For this
case, our framework sends the parameters for bothM◦s1 .2 and
M∗s2 .3, which are 3 and 6 respectively. Then, the consumer
node recomputes the values for δ, so that the new value of the
scale factor (i.e δ = 6

3 ) is used for describing the dependency
between the two models.

B. Bounding Errors and Presetting Parameters

One of key challenges for the development of the coded
inter-variable model lies in supporting the accuracy guarantee
in our framework. Although the coded model update adjusts
the subspace sizes of upper and lower bounds, i.e., Bv in
reading values (see Section IV-C), model-driven values using
an inter-variable model are derived by a base model, thus the
accuracy guarantee method in the coded model update is not
directly applicable.

Recall the example of the model updates at t = 4 in
Fig. 6(a). We did not send a new δ value but it was computed
at the consumer node, although δ is a parameter of the coded
inter-variable model. This is a simple but efficient manner to
bound a user given error. In fact, the size of update message
for a δ value and that for the closet predetermined value to
the current raw reading are identical, and the δ value can
be derived from the predetermined value. If we maintain the
upper and lower bounds Bv for the predetermined values, we
can apply the same method as that the coded model update
bounds errors in Section IV-C for guaranteeing the accuracy
in the coded inter-variable model.

Reflecting the above ideas, we prearrange parameters as fol-
lows. Given a set of piecewise constant models corresponding
to a set correlated streams, we take one model M∗sb

as a base

model, and the othersM◦si
for inter-variable models. For each

model, we maintain a pair of upper and lower bounds, i.e., Bv .
We then predetermine parameters for each Bv , following the
same manners described in Section IV-C.

After prearranging the parameter values, both producer
and consumer nodes share the predetermined parameters. In
addition, they also share the information of model classes that
are categorized into three cases; base model, inter-variable
model, and non-correlated model. For inter-variable models,
initial δ values are also stored at both sides. Therefore,
when a producer node updates a model with an identifier
associated with its corresponding stream, the consumer node
takes different model updates according to the model class
distinguished by the identifier.

C. Bitmap Encoding

Suppose that a set of streams S = {s1, s2, · · · , sn} at a
producer node are requested from a consumer node. Starting
with k = 8 bits for a bitmap as an update message in the
coded model update, we divide the k bits into two slots, which
the first slot oid is assigned for identifiers of each stream and
the other ov is designed for the accuracy control slot. We fist
assign |oid| = ceil(log2(n)) within k, where ceil(x) returns
the smallest integer value that is not smaller than x, and the
rest bits of k are assigned to ov( e.g., Fig. 6(b)).

Given an error bound εsi
for a stream si, whenever |Bv|

2|ov| ≤
2εsi (ov, Bv for si) does not hold, we expand the size
of the bitmap as we do for the coded model update (see
Section IV-C). This is to guarantee the accuracy described
in the previous subsection. Note that |oid| is identical for the
bitmaps associated with si ∈ S, however, each |ov| for si
may be different from another because each stream may have
different sizes of upper and lower bounds |Bv|.

The coded inter-variable model can assign more bits to the
accuracy slot ov than the general coded model update does
(e.g., Fig. 6(b)), because ov generally does not take many bits
of k unless the number of streams requested by a consumer
node is very large. As a result, the preset models become
more descriptive by having more preset readings, rendering
more precise value prediction.

D. Computing Correlated Streams

A recent study [20] in stream data compression presents a
state-of-the-art solution, called GAMPS, that elaborates many
methods such as finding optimal groups of streams for apply-
ing correlation models, and computing optimal base streams
with respect to maximized data compression. Unfortunately,
some of these methods cannot be directly employed for our
work, because they consider compression of static historical
data that are already collected, while our work applies to real-
time data. In this study, we aim to minimize the size of data
and computational cost for identifying a specific stream, to
be sent from producer nodes to consumer nodes. When the
number of streams requested by a consumer node is large,
discovering which stream is correlated to another or others is
computationally expensive. In addition, sending the identifiers



of correlated streams may need an even larger data size than
the size of parameter values for model update.

To cope with this, we consider a given time-window that
contains some histories of the data streams requested by a
consumer node. We then discover correlated streams within
this window, and then apply our coded inter-variable model
for the correlated streams found. The intuition behind this
is that correlated streams in the window are also likely to
exhibit similar trends for longer terms. Thus, we do not need
to compute them every time when a producer node receives a
new reading. For example, the streams in Fig 5 show similar
trends other over three days. Those plots suggest that we can
detect such correlations with small window sizes, e.g., half a
day.

Given a window and a set of streams to be transmitted to
a consumer node, we discover groups of correlated streams
by utilizing the plane-sweep algorithm. Our cost model is
the frequency of model updates while scanning the window
along time. We compute the cost for every combination of
the streams. If the combination contains only one stream,
we use a given model, otherwise the coded inter-variable is
applied to obtain the cost for this combination. Next, we select
the combinations having the lowest costs as the groups of
correlated streams. For each of such groups, we apply the
method introduced in GAMPS [20] for finding the base signal
for this group. Note that this operation is performed only
once when a consumer node requests multiple streams that
are maintained by a producer node.

VI. EXPERIMENTS

The objective of our experimental study in this section is
threefold. First, we empirically demonstrate that using model-
based views significantly improves the efficiency of data
communication over networks. We present the communication
costs of various models with varying degree. Second, we
analyze the effect of our coded model update (Section IV)
in terms of communication efficiency and model maintenance
cost. Last, we compare the performance of our coded inter-
variable model (Section V) with a state-of-the-art solution
(GAMPS [20]).

We implemented the above methods in the JAVA language
and MATLAB on a Windows XP operating system. All the
methods ran on an Intel Core 2 Duo processor 2 GHz system
with 2 GB of main memory.

A. Datasets and Cost Measures

Our experiments use two real datasets in order to contend
with real phenomena, each of which contains an entire class
of sensor deployment for environmental monitoring. Details
for each dataset are described below, and Table II summarizes
their key features:
• St. Bernard: A large collection of data was being ob-

tained for a period of 7 months at the Grand St. Bernard
mountainous area in Switzerland. We randomly chose one
deployment station and obtained 8 distinct data streams
that measured either same or different observations for a

week. The observations are air temperature, surface tem-
perature, relative humidity, solar radiation, soil moisture,
and wind speed. Some of the streams in this dataset show
quite similar trends over time, i.e., correlations.

• Wannengrat: Six different observations were recorded
over a long period of time in Wannengrat, Switzerland.
We obtained some of them, measured for two months.
The observations include relative humidity, air tempera-
ture, surface temperature, snow height, wind speed, and
wind direction. Unlike St. Bernard, correlations of the
streams are hardly found in this dataset.

name of dataset St. Bernard Wannengrat
number of streams 8 6

number of spatial locations 6 1
number of physical variables 3 6

duration of measurements 1 week 2 months
sampling rates 1 sample/2min 1 sample/10min

average number of readings 10080/stream 17448/stream
total number of readings 80640 104688

TABLE II
SUMMARY OF DATASETS

Throughout this experiment section, we present compar-
isons of communication costs with different applications of
models and error bounds. We computed the communication
costs as follows. Let |s| be the number of readings in an
original data stream s. Let |s′| also be the number of model
updates occurred with respect to a given error bound, while
sweeping s from its beginning to the end. We then obtain a
communication cost for the stream s by costs = |s′|·|u|

|s|·4bytes ,
where |u| is the size (byte) of one model update, and 4bytes
denotes that each reading has a 4-byte data size. We next
compute the cost for every stream in a dataset, and obtain
the total cost by aggregating them. Therefore, costs = 0.1
means that using model-based views takes a ten percent of
the original data size to be transmitted from one producer to
another consumer node.

To specify user-given error bounds for experiments, we
first compute the difference between the maximum and the
minimum values in a stream. We then use a certain proportion
to the difference for the value of the error bound. For instance,
suppose that a stream has 1000 and 1 as the maximum and
the minimum values, respectively. Error bound = 1% indicates
that the size of the error bound is 10.

B. Effect of Coded Model Update
In the first set of experiments, we present the effect of

using model-based views for minimizing communication cost
over networks. Fig. 7 clearly demonstrates significant im-
provements of communication efficiency, when we utilize the
models for data communication over networks. To obtain these
results, we set the user-given error bound to 1 %. In the
results, our proposal achieves at best over 99 % (coded 0-
degree polynomial regression for St. Bernard) and at least
91 % (2-degree Chebyshev regression for St. Bernard) less
data communications, compared to transmitting original data.



Comparing time-series models with coded time-series mod-
els, the power of our coded model update is obviously shown
in any case of the experiments. This is natural since the
coded model update compresses the model parameter values
with compact bitmaps. For these experiments, the sizes of the
bitmaps (i.e., k in Section IV-D) were only one or two bytes for
each stream. Thus, using the coded model update for a model
having one parameter should have theoretically at least a twice
smaller communication cost than without coding, however, this
assumption does not hold in some cases in these experiment
sets. Because the coded model update uses predetermined
parameter values which may not be sufficiently descriptive,
it causes more frequent model updates although each update
has a substantially smaller amount of data.
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Fig. 7. Comparison of Communication Cost

For time-series models, lower degree polynomials show
better communication efficiency than do higher degree ones for
both polynomial and Chebyshev regressions. This is because
higher degree regressions take larger numbers of parameters
to be transferred over networks. For instance, a polynomial
regression with degree 0 (i.e., piecewise constant) has only
one parameter for model update, while that with degree 2 has
three parameters, incurring three times higher model-update
costs. In theory, high-degree regressions should achieve better
approximation results for streams, thus they should also yield
more precise value predictions, leading to infrequent model
updates. In practice, however, sensor data is generally noisy
and erroneous, decreasing the theoretical advantages for the
high-degree regression models.
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Next, we analyze the model maintenance costs at producer-
node side, which are reconstructing models while guaranteeing
accuracy, and generating model-driven values in our frame-
work. Fig. 8 compares these under the same settings as the
previous experiments. We measure the costs as total computing
(CPU) time of simulating the model updates, while scanning
the whole streams from their beginnings for each data. We
normalize the values resulted by setting the longest elapsed
time to 1.0.

Among the results from time-series models, Chebyshev
regressions take substantially smaller amounts of computing
costs, because the characteristics of Chebyshev approxima-
tion (Section III-A). Among the results from polynomial
regressions, we find a very interesting fact. As polynomials
have higher degrees, their computing costs decrease for both
datasets, although high-degree polynomial regressions have
more expensive costs for model construction. The reason is
to guarantee accuracy. In Section III-B, Algorithm 1 takes
a default window size as an input and incrementally finds
a ‘good’ final window size until errors are bounded. In
our experiments, we find out that polynomials having low
degrees generally involve more numbers of the increments to
determine the final window.
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Fig. 9. Effect of Error Bound

In the following experiment, we study how varying error
bound affects the performance of our framework. Fig. 9
shows the changes of communication cost along different sizes
of error bound for first degree polynomial and Chebyshev
regression models with or without our coding. As expected,
larger sizes of error bound increase the efficiency of data com-
munication, because models are not updated unless any model-
driven value exceeds the error bound from the corresponding
raw reading, described in Property 1 in Section II.

This observation becomes more clear when the error bound
grows from 0.5 % to 2 % and then it does less after 2 %.
Using a such value of error bound as 2 %, called a knee
point, implies that our framework shows a great performance,
in terms of minimizing the size of error bound and maximizing
communication efficiency. If an application using the frame-
work needs to set the value for error bound in an automated
way, it is ideal to use such a knee point for the value.

Another observation found in Fig. 9 is that coded models
are less sensitive to the changes of error bound for the com-



munications. This also implies that the knee points may exist
even before the value 0.5 % of error bound for these cases,
thus the coded model update with a setting of a much smaller
error bound may show a similar performance to general time
series models using higher values for the error bound.

C. Effect of Coded Inter-Variable Model

We next compare the communication costs of our
coded inter-variable model with a state-of-the-art solution
GAMPS [20]. Both are correlation models and share similar
underlying ideas that exploit linear dependencies among the
streams. Fig. 10 demonstrates their communication costs with
varying error bound, as well as those for using piecewise
constant models for the streams without taking into account
their correlations.

For the St. Bernard dataset, our coded inter-variable model
outperforms all the other competitors, and this becomes more
remarkable for the Wannengrat dataset. GAMPS also performs
better than the piecewise constant model for St. Bernard.
This supports the discussion made in Section V-A, such that
considering correlations of streams can reduce the redundancy
of data, rendering more efficient data communication over
networks.
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Fig. 10. Effects of Correlation Models

As we described in Section VI-A, the Wannengrat dataset
seldom contains correlated streams. As a result, the commu-
nication costs using GAMPS increase substantially in this
dataset. In contrast, our coded inter-variable model still shows
the best performance among all the methods, and the differ-
ences of communication costs over the two datasets are low
for our method. This is because the coded inter-variable model
works like the piecewise constant model, when streams are
uncorrelated. Thus, these experiments suggest that our coded
inter-variable model is effective and efficient to deal with not
only correlated streams, but also uncorrelated streams.

Continuing the experiments in Fig. 10, our method exhibits
at least approximately twice better efficiencies than does
GAMP in most cases. There are two key reasons for this.
First, our model is based on the coded model update, reducing
the size of data to be transmitted over networks. Second,
because this study considers only real-time data processing,
full functionalities provided by GAMPS could not be adopted

for these tests, described in Section V-D, since GAMPS is
designed for static historical datasets.
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Lastly, we examine how the model maintenance costs of
both methods change. Fig. 11(a) demonstrates the changes
over increasing window size (i.e., the default window size as
an input for Algorithm 1), and Fig. 11(b) does over varying
error bound. These results are obtained from the St. Bernard
dataset. We omit the results obtained from the Wannengrat
dataset due to similar results. The values in the graphs are
normalized to the first ones.

In these two experiment sets, both GAMPS and coded inter-
variable demonstrate very similar trends of the results because
they have the same underlying model, i.e., piecewise constant.
Notice that, however, our model outperformed GAMPS in the
previous experiments, with these similar computational costs.

In Fig. 11(a), the two methods show slight increases of the
maintenance costs along increasing window size. In contrast,
they exhibit clear decreasing of the costs with increasing error
bound in Fig. 11(b). The reason is that the number of model
reconstructions decreases dramatically when the error bound
grows, as discussed in Fig. 9.

VII. RELATED WORK

Due to the characteristics of continuity, data streams are
often modeled by continuous-time functions as time-series
regression models [15], [10], [16]. The main focuses of these
studies are, however, not on minimizing communication cost
over distributed network settings, but on developing techniques
for query processing in centralized system settings.

Probabilistic models [11], [12], [13] and PCA (Piecewise
Constant Approximations) [18] are employed for energy-
efficient data communications. While their methods are de-
signed for specific models in local sensor networks, our frame-
work targets arbitrary models in federated sensor networks.

Instead of building individual models for single data
streams, correlation models for multiple streams have also
been highlighted, particularly for data stream compression
[19], [23], [20]. They can generally increase compression
ratios by reducing data redundancy. Although our proposal
also takes into account stream correlation, it differs from them
because they mainly consider static historical data, whereas
our work applies to real-time data.



Streaming data dissemination [3], [4], [5] concerns contin-
uous data transfers from producer nodes to consumer nodes.
These studies assume that raw data streams must be dissemi-
nated. Hence, they focus on maximizing the shares of data to
be carried together over networks. In contrast, we claim that
conveying the raw streams is unnecessary; we transfer only the
models rather than the actual streams, resulting in significant
reductions of the data communication cost.

In contrast to moving the actual data streams, placing
operators (or executable codes) into networks has also been
studied in a rich body of research work [6], [7], [8], [9].
The key disadvantage of these work, however, is that query
results must be delivered across networks, even if the results
are optimally reorganized with respect to network latency,
maximal share for multiple queries, and so on. This may
decrease the communication efficiency when the query results
contain large amounts of data (e.g., SELECT *).

Monitoring distributed data streams [24], [25] also considers
communication efficiency, while dealing with continuous pro-
cessing of queries triggered for detecting some conditions. In
our framework, an event satisfying such a triggered condition
is easily detected over model-based views, without contacting
each data source of the streams.

Optimizing query plans [26], [27] with minimum commu-
nication is another related area to this work. While the studies
focus on specific query types, we aim to provide a generic
framework that supports most types of queries with respect to
data streams.

VIII. CONCLUSIONS

Increasing use of sensor network is resulting in federated
sensor networks, consisting of interconnected local sensor
networks. To reduce data communication in such a network,
various proposals have been introduced. However, they are
generally query-dependent or inefficient for large volumes of
query results. This paper proposes a novel and generic frame-
work that represents data streams by given arbitrary numer-
ical models, so-called model-based views. Only the models’
parameters are transferred over the networks for efficient data
communication. Moreover, we propose a novel method that
boosts the performance of the framework, named coded model
update. It compresses even the parameter values of the models
to be transmitted, by encoding them with compact bitmaps. We
also present our coded inter-variable model that incorporates
an effective correlation model into the efficient coded model
update. Extensive experimental results using real data suggest
that our proposals are highly communication-efficient.
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