
Cuckoo Directory: A Scalable Directory for Many-Core Systems

Michael Ferdman‡† Pejman Lotfi-Kamran† Ken Balet† Babak Falsafi†

‡Computer Architecture Lab
Carnegie Mellon University

http://www.ece.cmu.edu/CALCM/

†Parallel Systems Architecture Lab
École Polytechnique Fédérale de Lausanne

http://parsa.epfl.ch/

Abstract

Growing core counts have highlighted the need for
scalable on-chip coherence mechanisms. The increase
in the number of on-chip cores exposes the energy and
area costs of scaling the directories. Duplicate-tag-
based directories require highly associative structures
that grow with core count, precluding scalability due to
prohibitive power consumption. Sparse directories
overcome the power barrier by reducing directory
associativity, but require storage area over-provi-
sioning to avoid high invalidation rates.

We propose the Cuckoo directory, a power- and
area-efficient scalable distributed directory. The
cuckoo directory scales to high core counts without the
energy costs of wide associative lookup and without
gross capacity over-provisioning. Simulation of a
16-core CMP with commercial server and scientific
workloads shows that the Cuckoo directory eliminates
invalidations while being up to four times more power-
efficient than the Duplicate-tag directory and 24%
more power-efficient and up to seven times more area-
efficient than the Sparse directory organization.
Analytical projections indicate that the Cuckoo direc-
tory retains its energy and area benefits with increasing
core count, efficiently scaling to at least 1024 cores.

1. Introduction

Manufacturing technology innovation has led to
rapidly growing on-chip core counts in today’s proces-
sors, highlighting the need for a scalable on-chip cache
coherence mechanism. Adapting prior work from
multi-chip systems [17], cache coherence between pri-
vate caches has been achieved on CMPs with a handful
of cores. However, quickly growing core counts have
exposed the energy and area costs of scaling the exist-
ing coherence mechanisms, requiring innovation to
achieve power-efficient cache coherence with reason-
able area budgets in future CMPs [31,43].

There exist two broad classes of CMP coherence
directories. Duplicate-Tag-based schemes in use by
several designs [7,16,43] are area-efficient, but require

highly associative structures whose power dissipation
precludes scaling to large core counts. Conversely,
Sparse directory schemes [17] are power-efficient, but
incur considerable area cost in over-provisioning the
directory capacity to avoid conflicts in low-associativ-
ity directory structures.

Sparse directory organizations using compressed
representations of sharer bit vectors are myriad
[1,3,10,11,13,17,23,36]. Hierarchical directory organi-
zations [44,45] can enable area-efficient uncompressed
vector storage through multiple serialized lookups.
However, these techniques address only the size of the
sharer vectors, not the number of vectors the directory
must store. Sparse directories experience set conflicts,
forcing evictions of cached blocks that cannot be
simultaneously tracked by the directory. To reduce
conflict frequency and avoid performance loss, exist-
ing Sparse directory implementations over-provision
directory capacity [17,35]. Although compressed and
hierarchical designs are theoretically scalable (power
and area do not grow significantly with core count),
the practical area cost of Sparse directories is excessive
due to capacity over-provisioning.

In this paper, we present the Cuckoo directory, a
scalable distributed directory with nearly constant
power and area utilization per core, regardless of core
count. The Cuckoo organization avoids set conflicts of
traditional Sparse directories, eliminating performance
loss due to forced invalidations without significantly
over-provisioning the directory capacity, achieving
scalable power- and area-efficient CMP coherence.

To avoid set conflicts, the Cuckoo directory uses a
N-ary Cuckoo hash table [15,29], a small associativity
(3- or 4-way) structure whose address bits are passed
through different hash functions, one for each way.
The physical implementation of the Cuckoo directory
closely resembles a set-associative structure, having
nearly identical energy and latency per lookup. How-
ever, unlike the set-associative organization that
always picks a replacement victim from a small set of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147970499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

conflicting entries, the Cuckoo directory displaces vic-
tims to alternate non-conflicting ways, practically
never resorting to eviction.

We perform full-system simulation of CMPs run-
ning server and scientific workloads to evaluate
coherence directory organizations based on commer-
cial products, industry prototypes, and state-of-the-art
research proposals. We use simulation and analytical
projections to demonstrate that:
• The Cuckoo directory is a practical power- and area-

scalable directory organization, offering up to 80x
energy-efficiency over the leading area-efficient
Tagless [43] design and more than 7x area-efficiency
over the leading power-efficient Sparse [17] design
at 1024 cores.

• Even at 16 cores, the Cuckoo directory is up to 16x
more energy-efficient than the traditional Duplicate-
Tag directory and up to 6x more area-efficient than
the Sparse organization.

The rest of this paper is organized as follows.
Section 2 provides background on CMP coherence and
Section 3 explains the scalability of prior directory
organizations. Section 4 presents the Cuckoo directory
design and hardware. Section 5 provides a detailed
evaluation of the Cuckoo directory. We present related
work in Section 6 and conclude in Section 7.

2. CMP Coherence Background

Research literature and industry products explore
many different CMP cache hierarchies. The private
organization shown in Figure 1(a) has direct connec-
tions between private L1 and private L2 caches.
Coherence must be explicitly enforced, invalidating all
remotely cached copies of a block on a write and guar-
anteeing that cache misses are satisfied from a peer L2
if that L2 has a dirty copy of the accessed block. The
shared organization shown in Figure 1(b) has small
private L1 caches and a large shared L2 cache. The
address-interleaved shared L2 cache has a unique loca-
tion for each address, eliminating the need for a

coherence mechanism. However, even when the L2 is
shared, coherence between the private L1 caches must
be explicitly maintained. While shared and private
organizations form the two extremes, actual designs
may mix or extend these organizations (e.g., with soft-
ware controlled private/shared hierarchies [19] or
three-level hierarchies with private L1 and private L2
caches backed by a shared L3 [35]).

Coherence directories track the privately cached
addresses in address-interleaved physically distributed
directories. To achieve coherence, all accesses from
the private caches interrogate the directory, which
sends coherence requests to the sharers as needed.
Figure 2 shows an example directory operation of a
shared-cache CMP. Statically interleaved home loca-
tions determine which L2 bank and directory slice are
responsible for each address. When a write request for
block a arrives at its home location (bank n in
Figure 2), the L1-directory slice is consulted in parallel
with the L2 tags. If address a is found in the directory,
invalidation requests are sent to all sharers. The pri-
vate-cache organization undergoes a similar procedure,
but the local private L2 cache is consulted first and a
write request is sent to the home directory only in the
case of a miss in the L2 cache.

3. CMP Directory Scalability

As the number of cores grows, the aggregate
directory must increase commensurately. For each pri-
vate cache, a directory slice is added to track the
additional private cache’s blocks. Moreover, the core
count should not affect the organization of each direc-

d

Core

Private
Cache
Shared
Cache

Directory
Slice

(a) private

d d dd

d ddd

(b) shared
FIGURE 1. CMP organizations. (a) the interconnect connects
independent private hierarchies (b) the interconnect is used
to access an address-interleaved shared cache

Core
n

L1-n

Core
1

L1-1

Core
0

L1-0

L2
Bank

0

L2
Bank

1

L2
Bank

n

Invalidate(a)

L1
dir

L1
dir

L1
dir

Write(a)

a 10...0

FIGURE 2. Operation of CMP directory. Cache coherence is
enforced with a distributed directory located next to the
lower-level cache banks.

tory slice. If the associativity of each directory slice
grows to accommodate more cores, the aggregate
directory power dissipation grows quadratically. Simi-
larly, if the storage of each directory slice grows to
accommodate more cores, the aggregate directory area
grows quadratically.

The operation of two basic CMP directory organi-
zations is presented in Figure 3. Four private 2-way
set-associative caches are shown with the four distrib-
uted slices of the Duplicate-Tag [7] and Sparse [17]
directory organizations. The directory slices are
address-interleaved and distributed on chip, each slice
tracking blocks in a subset of the private-cache sets.

3.1. Duplicate-Tag Scalability

The Duplicate-Tag organization mirrors the orga-
nization of the private-cache tags, ensuring that there is
always sufficient space in the directory to track all
cached blocks. To construct an invalidation vector, a
lookup in the Duplicate-Tag directory compares all
stored tags in the directory set against the lookup tag,
finding the sharers wherever the tags match.

The Duplicate-Tag associativity must equal the
product of the cache associativity and the number of
caches [6], resulting in designs with large (e.g.,
332-wide [39]) associative directories. The Duplicate-
Tag directory power dissipation for designs with 4- and
8-way private L1 caches [35] or 16-way private L2
caches is prohibitive even for today’s CMP designs
with a few cores.

Figure 4 presents the per-core area and energy
scalability of directory designs for a system with
16-way private L2 caches. The aggregate chip energy
and area utilization of the directory are the products of

the values shown in Figure 4 and the core count. An
increasing core count not only adds new directory
slices to the Duplicate-Tag organization, but also lin-
early increases the associativity of each directory slice,
resulting in non-scalable quadratic growth of the
aggregate energy consumption of all directory slices.

3.2. Sparse Directory Scalability

The Sparse organization reduces directory asso-
ciativity by using the low-order tag bits to extend the
index of the directory storage, reducing the associativ-
ity by increasing the number of directory sets. Because
this operation loses the one-to-one correspondence of
directory entries to cache frames, each directory entry
is extended with explicit sharer information.

Unfortunately, the non-uniform distribution of
entries across directory sets in the Sparse organization
incurs set conflicts, forcing invalidation of cached
blocks tracked by the conflicting directory entries and
reducing system performance. An example of a con-
flict in set a is shown in Figure 3. If blocks a3 and a4
are tracked by the directory and block a2 is accessed,
one of a3 or a4 must be evicted from the private
caches because the directory organization cannot
simultaneously track these three blocks. Reducing the
conflict frequency requires over-provisioning the num-
ber of directory sets and associativity [17]. At the
limit, the in-cache directory organization extends an

Cache-0

Cache-2

a0 a1

c0 c1

a2 a1

c5 c3

Cache-1
a1 a3

c0 c2

c1 c4

Sparse Directory Slices

a0«0»

a2«2»a3«1,3»

Directory conflict,
evict a4 from Cache-3

a4«3»

a1«0,1,2»

c3«2» c1«0,3»

Duplicate-Tag Directory Slices
a4

c0 c1 c0 c2 c5 c3 c1 c4

a0 a1 a1 a3 a2 a1 a3

c0«0,1» c2«1»
c5«2» c4«3»

a3 a4
Cache-3

FIGURE 3. CMP directory organizations.

10%

100%

1,000%

10,000%

100,000%

16 32 64 128 256 512 1024En
er

gy
 o

f 1
M

B
 L

2
Ta

g
Lo

ok
up

Core Count (2 caches per core[I+D])

FIGURE 4. Area (top) and energy (bottom) scalability of
various coherence directory organizations.

1%

3%

13%

50%

200%

16 32 64 128 256 512 1024

A
re

a
of

 1
M

B
 L

2
D

at
a

A
rr

ay

Core Count (2 caches per core[I+D])

Duplicate-Tag Tagless
Sparse 8x In-Cache
Sparse 8x Hier. Sparse 8x Coarse

inclusive shared cache’s tags with the sharer informa-
tion, implicitly saving directory tag storage, but
grossly over-provisioning the sharer storage [35]
because the number of tags in the lower-level cache
greatly exceeds the number of tracked blocks in the
private caches.

The traditional Sparse directory uses bit vectors to
track sharers [9]. The bit vectors stored in each direc-
tory entry must grow linearly with core count, in turn
leading to a quadratic growth in the aggregate direc-
tory area as core counts increase. Although energy-
efficient, both the traditional Sparse and the in-cache
designs are impractical for large core counts. At 256
cores, the aggregate vector-based L1 directory could
consume more than 256MB of on-chip storage,
exceeding the capacity of the L2 caches [43].

3.3. Imprecise and Hierarchical Directories

Inexact and hierarchical representations of sharer
vectors enable the reduction of directory storage and
energy overheads at the cost of implementation com-
plexity. For example, the Tagless directory [43]
reduces the number of bits accessed for each directory
operation by encoding a super-set of sharers in a
Duplicate-Tag-like organization while Coarse-grained
and inexact conservative encodings [3,11,13,17,23]
reduce storage area in a Sparse organization.

Figure 4 shows that the Tagless directory is
extremely area-efficient up to 1024 cores. However,
this scalability comes at the cost of significant com-
plexity. More importantly, like the traditional
Duplicate-Tag organization, the bit-widths of either
each read or each update operation of the Tagless
directory increase with the number of cores. Therefore,
the slope of the energy dissipation line for the Tagless
directory in Figure 4 is nearly identical to the Dupli-
cate-Tag organization. Although the energy for each
operation in the Tagless directory is lower than in the
Duplicate-Tag organization by a constant factor, the
Tagless directory’s energy dissipation still grows qua-
dratically with core count, limiting its scalability.

Additionally, hierarchical organizations reduce
directory storage by using coarse bit-vectors at a pri-
mary location and exact sub-bit-vectors at secondary
locations [44,45]. Hierarchical techniques save stor-
age by breaking up large bit vectors and allocating
only the necessary second-level sub-bit-vectors, at the
cost of additional storage to replicate the tags multiple
times, once for each allocated second-level entry.

Figure 4 demonstrates the storage scalability of
the Sparse Coarse [17] design that precisely stores
sharers in the available bits (2*log(#caches) bits) and
falls back to a coarse vector representation in the case

of overflow [24], and Sparse Hierarchical [44,45], a
2-level hierarchical directory organization. Although
theoretically scalable, these schemes address only the
vector storage inside each entry and not the total num-
ber of directory entries. Set conflicts in the directories
require over-provisioning the number of directory sets
to avoid frequent invalidations, resulting in Sparse
directories that can rival the L2 cache size.

4. Cuckoo Directory Design

We construct the Cuckoo directory to overcome
the power and area scalability limitations of prior tech-
niques. To meet these goals, the Cuckoo directory
associativity and total storage per directory slice
remain nearly constant, regardless of the core count.

The Cuckoo directory relies on the observation
that low-associativity directory tag storage suffers pri-
marily from transitivity of set conflicts. In traditional
cache or directory indexing, if block A conflicts with B
and block B conflicts with C, then A must also conflict
with C. In a 2-way associative structure, there are two
locations where A, B, and C can be stored. If B an C
are present, inserting A must replace either B or C.

4.1. Cuckoo Hashing

Cuckoo hashing [29] can break transitive con-
flicts. The Cuckoo hash uses two independent (direct-
mapped) tables, indexed through two different hash
functions. A new entry is always inserted in one of the
two tables, potentially displacing a valid entry. The
insertion procedure continues with each displaced
entry, alternating probing of the tables until the dis-
placed entry is stored in a vacant position without
displacing another entry.

Figure 5 demonstrates the Cuckoo hash operation.
Block A conflicts with B and D, and block B conflicts
with A and C. In step 1, A is inserted into one of its
two possible locations, displacing B. In step 2, because
B was previously displaced, B is inserted into its alter-
nate location (where it conflicts with C). In step 3, C is
inserted into a vacant alternate location (where it does
not conflict with A), ending the insertion process.

Potential
Locations

D

B

C

A

(step 1)

D

A

B

C

(done)

D

A

C

B

(step 2)

D

A

B

C

(step 3)

FIGURE 5. Cuckoo hash operation. A conflicts with B and D,
B conflicts with A and C. Inserting A displaces B, triggering a
cascade of insertions until C is placed into a vacant location.

The Cuckoo hash lookup operation is identical to
the skewed-associative cache [34]. However, the key
difference between the Cuckoo hash and the skewed
organization is the insertion procedure. Whereas the
skewed-associative cache selects a victim from one of
the ways, the Cuckoo organization uses displacement
to iteratively move entries until a non-conflicting loca-
tion is found. Skewed associativity reduces conflict
frequency, roughly doubling the perceived associativ-
ity of the underlying structure, while the Cuckoo hash
provides nearly the equivalent of a fully-associative
structure with the same lookup energy and latency,
albeit with a more complex insertion procedure.

4.2. Hardware Implementation

The Cuckoo directory is an implementation of the
d-ary Cuckoo hash [15] that extends the Cuckoo hash
to more than two tables. Figure 6 depicts a 4-way
Cuckoo directory. To find an element in the Cuckoo
directory, all ways are looked up in parallel using
hashed values of the searched address. Inserting an
entry into the directory requires a lookup followed by a
write of an entry in one of the ways. If the write
replaces a valid directory entry, the insertion procedure
is repeated for the victim entry, iterating until an inser-
tion finds a vacant location.

We limit the maximum number of insertion
attempts to avoid infinite loops. A counter tracks how
many times an insertion procedure passes way 0. If the
counter overflows, the hardware terminates the proce-
dure and discards the most recently displaced entry,
maintaining correctness by invalidating the blocks in

the private caches that correspond to the evicted entry.
To maintain a uniform distribution of entries across the
ways, each insertion starts at the way at which the pre-
vious insertion stopped.

Upgrade and eviction requests search the directory
and update the corresponding entries. For read and
write misses from private caches, the directory is
searched for a matching tag. If an entry is found, it is
updated with a new sharer, and, if necessary, an invali-
dation vector based on the entry is produced. If the
accessed tag is not found, a new entry is inserted.

In the shared-cache configurations, the directory
lookup is performed in parallel with the L2 lookup.
Because the L2 cache is a larger and slower structure,
the latency of the directory lookup is not on the critical
path and has absolutely no impact on performance. For
shared-configuration directory updates and for all
requests in the private-cache configurations, multiple
insertion attempts may appear on the critical path.
However, in practice, the frequency of long insertions
is too low (see Figure 10) to have a measurable impact
on performance. Furthermore, long insertions can be
immediately prematurely terminated when a new
request arrives at the directory, eliminating any poten-
tial effect on the lookup latency of the new request.

5. Evaluation

We analyze coherence directory access patterns
using full-system simulation executing unmodified
applications and operating systems in FLEXUS [42].
FLEXUS extends the Virtutech Simics functional simu-
lator with models of processor tiles with cores, NUCA
cache, on-chip coherence protocol controllers, and on-
chip interconnect. We simulate a tiled CMP where the
lowest-level cache is the L2 cache. We summarize our
tiled architecture parameters in Table 1.

We simulate systems running Solaris 8 and exe-
cuting the workloads listed in Table 2. We include two
scientific workloads and a range of server workloads
from competing vendors, including online transaction
processing, decision support system, and web server
benchmarks. We start simulation from warm system
checkpoints. For server workloads, we measure 100
million instructions after warming the micro-architec-

Tag Bits

hash1 hash2 hash3 hash4
In

pu
t

Exchange Buffers

Ta
g

&
Sh

ar
er

 B
its

 O
ut

To Exchg.
Buffers

FIGURE 6. 4-way Cuckoo directory hardware. Each direct-
mapped way is indexed through a different hash function.

CMP Size 16 cores

Processing Cores UltraSPARC III ISA

L1 Caches split I/D, 64KB, 2 ways
64-byte blocks, write-back

L2 NUCA Cache 16-core CMP: 1MB per core, 16 ways
64-byte blocks

Main Memory 3 GB memory, 8KB pages
48-bit address space

TABLE 1. System parameters.

tural state for 100 million instructions. For scientific
workloads, we warm the micro-architectural state for
four iterations and measure the 5th iteration.

We present results for two system configurations
presented in Section 2. The Shared-L2 configuration
uses a coherence directory that tracks sharers in private
L1 caches. The Private-L2 configuration tracks sharers
in larger private L2 caches. The Private-L2 results are
also representative of a system with a 3-level cache
hierarchy using two private levels and a shared LLC.

5.1. Cuckoo Hash Characteristics

Figure 7 demonstrates the fundamental Cuckoo
directory behavior by presenting an analysis of the
d-ary Cuckoo hashing technique as a function of occu-
pancy. To avoid bias from hash function selection, we
use strong cryptographic functions to index the ways.
The left graph shows the average number of insertion
attempts until a successful insertion without a victim.
The right graph shows the frequency of not finding a
vacant location for a victim entry in 32 insertion
attempts. Results are presented as a function of occu-
pancy, as the curve is affected only by the occupancy
and is completely independent of the total capacity of
the structure.

In case of low occupancy, a vacant location is typ-
ically found on the initial lookup. Below 50%
occupancy, insertions into 3-ary and wider Cuckoo
hash tables either succeed immediately or require only
a single displacement. Furthermore, for up to 65%
occupancy, 3-ary and wider organizations do not expe-
rience insertion failures.

Based on the results of Figure 7, we conclude that
a Cuckoo directory with occupancy 50% or lower
should never invalidate cache blocks due to directory
conflicts, successfully inserting all directory entries, on
average, after only two attempts. Directory occupancy
below 50% is achieved trivially through sizing of the

Cuckoo directory tables. The maximum number of dis-
tinct tags tracked by a directory slice is equal to the
number of frames in a private cache. Occupancy below
50% is therefore always guaranteed by a 2x over-pro-
visioning of the Cuckoo directory capacity.

5.2. Cuckoo Directory Under-Provisioning

In practice, presence of shared instruction and
shared data blocks limits the number of distinct tags in
the aggregate private caches, leading to a natural
reduction in the directory occupancy and enabling the
Cuckoo directory to function without 2x over-provi-
sioned capacity. We present the average directory
occupancy of our workloads in Figure 8. As expected,
we observe reduced directory occupancy, indicating
that over-provisioning is not needed for the Shared-L2
configuration. For the Private-L2 configuration, deci-
sion support queries and the scientific workloads are
dominated by large private footprints, resulting in pre-
dominantly unique blocks across all private caches,
and calling for a slight Cuckoo directory over-provi-
sioning to achieve the desired occupancy. The ocean
workload demonstrates the extreme case, having
nearly 100% unique private blocks in all caches.

OLTP – Online Transaction Processing (TPC-C v3.0)

DB2 IBM DB2 v8 ESE, 100 warehouses (10 GB),
64 clients, 2 GB buffer pool

Oracle Oracle 10g Server, 100 warehouses (10 GB),
16 clients, 1.4 GB SGA

Web Server (SPECweb99)

Apache Apache HTTP Server v2.0,
16K connections, fastCGI, worker threading

Zeus Zeus Web Server v4.3, 16K connections, fastCGI

DSS – Decision Support Systems (TPC-H)

Qry 2,16,17 IBM DB2 v8 ESE, 480 MB buffer pool, 1 GB database

Scientific

em3d 768K nodes, degree 2, span 5, 15% remote

ocean 1026x1026 grid, 9600s relaxations, 20K res., err 1e-7

TABLE 2. Application parameters.

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 In
se

rt
io

n
A

tte
m

pt
s

Occupancy

2-ary 3-ary 4-ary 8-ary

0%

25%

50%

75%

100%

0.2 0.4 0.6 0.8 1

In
se

rt
io

n
Fa

ilu
re

 P
ro

ba
bi

lit
y

Occupancy

FIGURE 7. Cuckoo hash characteristics. Average insertion
attempts and insertion failure rate for 100,000 random
values, plotted as a function of occupancy.

0%

20%

40%

60%

80%

100%

D
B2

O
ra

cl
e

Q
ry

2

Q
ry

16

Q
ry

17

Ap
ac

he

Ze
us

em
3d

oc
ea

n

OLTP DSS Web Sci

D
ire

ct
or

y
O

cc
up

an
cy Shared L2 Private L2

FIGURE 8. Average directory occupancy.

We use the average number of insertion attempts
and forced invalidation rates to determine the mini-
mum Cuckoo directory size. Figure 9 evaluates a wide
range of Cuckoo directory sizes and organizations,
ranging from under-provisioned to over-provisioned.
In addition to an organization’s way and set counts, in
parenthesis, we indicate the provisioning factor. Fac-
tor “1x” indicates a capacity equal to the worst-case
number of blocks that the directory must simultane-
ously track (equal to the number of cache frames that
map to the directory slice). Greater factors indicate
capacity over-provisioning, while lower values indi-
cate under-provisioning.

We allow up to 32 insertion attempts to ensure ter-
mination in the unlikely event of a loop; in such cases,
we count 32 attempts toward the average. A lookup
always precedes an insertion to confirm that a new
entry should be allocated rather than adding a sharer to
an existing entry. The lookup implicitly reveals if an
empty position, eligible to hold the searched entry,
exists in any of the directory ways. If an empty posi-
tion is found during the lookup, insertion succeeds on
the first attempt, contributing one toward the average.
Addition of sharers to already existing directory entries
does not affect the reported average number of
attempts. Dirty and clean evictions from the private
caches are tracked by the directory, with the directory
entry becoming empty and eligible for reuse at the
time the last sharer evicts the block.

Figure 9 indicates that under-provisioning direc-
tory capacity (factor less than 1x) results in an
exponential increase in insertion attempts and forced
invalidations due to failed insertions. However, as
expected from Figure 8, the Shared-L2 configuration
does not require over-provisioning the capacity to
achieve a small average number of insertion attempts

and near-zero invalidation rates. We find that a small
1.5x capacity over-provisioning is sufficient for the
Private-L2 configuration.

5.3. Worst-case Cuckoo Insertion Attempts

The Cuckoo directory capacity in Section 5.2 is
selected based on the average behavior across a wide
range of workloads. To confirm general applicability,
Figure 10 presents the average insertion attempts for
all workloads using the selected 4x512 and 3x8192
Cuckoo directory organizations for the Shared-L2 and
Private-L2 configurations, respectively. Despite the
small directory size, the average number of insertion
attempts is typically less than two, indicating that a
vacant location is usually found at the time of the ini-
tial lookup. Larger average insertion attempts are
observed in workloads with more private blocks.

Figure 11 presents the insertion attempts for the
benchmarks with the longest-tail distribution. For the
Shared-L2 configuration, OLTP Oracle exhibits the
worst behavior; for the Private-L2 configuration,
ocean exhibits the worst behavior. The distribution of

0%

25%

50%

75%

100%

4
x

81
92

 (
2x

)
3

x
81

92
 (1

.5
x)

8
x

20
48

 (
1x

)
3

x
40

96
 (

3/
4x

)
8

x
10

24
 (

1/
2x

)
3

x
20

48
 (

3/
8x

)

Fo
rc

ed
 In

va
lid

at
io

n
R

at
e

(li
ne

)

Private L2

0
5

10
15
20
25
30

4
x

10
24

 (2
x)

3
x

10
24

 (1
.5

x)
4

x
51

2
(1

x)
3

x
51

2
(3

/4
x)

4
x

25
6

(1
/2

x)
3

x
25

6
(3

/8
x)

A
ve

ra
ge

 In
se

rt
io

n
A

tte
m

pt
s(

ba
r) Shared L2

FIGURE 9. Cuckoo directory insertion attempts and failure
rates for Shared-L2 and Private-L2 configurations. Cuckoo
directory sizes are expressed as (number of ways) x (number
of sets). Parenthesized values indicate provisioning factor.

0.0

0.5

1.0

1.5

2.0

2.5

D
B2

O
ra

cl
e

Q
ry

2

Q
ry

16

Q
ry

17

Ap
ac

he

Ze
us

em
3d

oc
ea

n

OLTP DSS Web Sci

A
ve

ra
ge

 In
se

rt
io

n
A

tte
m

pt
s

Shared L2 Private L2

FIGURE 10. Cuckoo directory average insertion attempts.

0%

2%

4%

6%

8%

10%

0 4 8 12 16 20 24 28 32

Pe
rc

en
t

of
 In

se
rt

 O
pe

ra
tio

ns

Insertion Attempts

OLTP Oracle (Shared L2)

ocean (Private L2)

FIGURE 11. Worst-case insertion attempt distributions.
Values at 1 insertion attempt (85% for Oracle, 73% for
ocean) are not shown to enhance clarity.

insertion attempts confirms expectations: each inser-
tion attempt increases the probability of finding a
vacant location, exponentially reducing the probability
of performing a subsequent attempt. Even for the
worst-case benchmarks, the probability of reaching 32
insertion attempts is nearly zero. Additionally, lack of
a peak at 32 indicates that longer insertions and loops
are practically non-existent.

5.4. Invalidation-Rate Comparison

We compare the forced-invalidation rates of the
Cuckoo directory to competing directory organiza-
tions in Figure 12. We present the invalidation rate as a
fraction of directory entry insertions for (a) an 8-way
Sparse directory with two times capacity over-provi-
sioning (Sparse 2x), (b) an 8-way Sparse directory
with eight times over-provisioning (Sparse 8x), (c) a
4-way skewed-associative directory (Skewed 2x)
adapted from the skewed-associative cache organiza-
tion [33], and (d) the 3- and 4-way Cuckoo directory
organizations selected in Section 5.2. The Sparse 2x
directory has the same capacity as the skewed-associa-
tive organization, both having two times greater
capacity than the Cuckoo 1x directory.

Our results indicate that the Sparse 2x directory
incurs a significant number of set conflicts with nearly
all workloads in both Shared-L2 and Private-L2 sys-
tems. Compared to the Sparse 2x directory, the 4-way
Skewed 2x organization generally reduces the fre-
quency of invalidations in highly contended directory
sets for server workloads, but does not reduce invalida-
tions for scientific workloads that have a more uniform
distribution of accesses. The 8-way Sparse 8x direc-
tory is large enough to provide reasonable invalidation
rates on average, however, the forced-invalidation
rates remain significant for many workloads. Finally,

we note that the Cuckoo directory — having less
capacity and lower associativity compared to the com-
peting designs — experiences near-zero invalidations
with all workloads. Robustness of the Cuckoo design
is highlighted with the ocean workload that has nearly
100% distinct blocks in the Private-L2 system, but
experiences invalidations only on 0.08% of directory
updates with only 1.5x Cuckoo directory.

5.5. Hash Function Selection

We evaluate the Cuckoo directory implementa-
tion using the skewing hash functions from Seznec and
Bodin [34]. We repeated the experiments with crypto-
graphic hash functions and observed no measurable
benefit for the Cuckoo 2x directory. For more aggres-
sive Cuckoo directory designs with lower provisioning
factors, we observed marginally lower average inser-
tion attempts. Additionally, in the case of ocean,
stronger hash functions eliminate the forced invalida-
tions observed in the Private-L2 configuration at 1.5x
over-provisioning. However, fewer insertion attempts
and reduced invalidation rates result in minimal energy
improvements and are offset by the complex hardware
implementation of the hash functions, compared to the
trivial implementation of the skewing hash functions
that require only several levels of logic.

Strong hash functions offered the most benefit in
situations where the directory capacity was severely
under-provisioned. In all configurations that exhibit
high forced-invalidation rates, the stronger hash func-
tions offer multiple-order-of-magnitude reduction in
invalidation rates compared to the skewing functions.
However, these needlessly over-constrained directory
designs are impractical because they gain marginal
area advantages at a huge power penalty due to many
unsuccessful insertion attempts.

0.01
0.02
0.03
0.06
0.13
0.25
0.50
1.00
2.00

D
B

2

O
ra

cl
e

Q
ry

2

Q
ry

16

Q
ry

17

A
pa

ch
e

Ze
us

em
3d

oc
ea

n

OLTP DSS Web Sci

In
va

lid
at

io
n

R
at

e
(%

) a:Sparse 2x b:Sparse 8x
c:Skewed 2x d:Cuckoo 1x

abcd
0.02

0.06

0.25

1.00

4.00

16.00

D
B

2

O
ra

cl
e

Q
ry

2

Q
ry

16

Q
ry

17

A
pa

ch
e

Ze
us

em
3d

oc
ea

n

OLTP DSS Web Sci

In
va

lid
at

io
n

R
at

e
(%

)

a:Sparse 2x b:Sparse 8x
c:Skewed 2x d:Cuckoo 1.5x

abcd

FIGURE 12. Directory invalidation rates with Shared-L2 (left) and Private-L2 (right) configurations.

Shared L2 Private L2

5.6. Power and Area, Trends and Comparison

Figure 13 presents the per-core energy dissipation
and area utilization of the leading directory organiza-
tions. We compute the energy dissipation based on the
number and size of the read and update operations on
the directory storage structures, scaling the energy of
each operation by its frequency as determined from our
workload suite.1 We present directory energy dissipa-
tion relative to the energy of a 16-way set-associative
L2 tag lookup. Directory area is presented relative to
the area of the L2 data array (1MB).

The behavior trends of all directory organizations
are similar across the Shared-L2 and Private-L2 con-
figurations. Even for 16-core systems, the Duplicate-
Tag organization is extremely energy inefficient,
despite consuming minimal chip area. At low core
counts, the small storage requirements of the Tagless
directory lead to energy savings compared to most
other directory organizations. The Tagless organization

remains extremely area efficient to 1024 cores and
beyond. However, like in the Duplicate-Tag organiza-
tion, the number of bits read and written for each
directory access in the Tagless directory scales lin-
early with core count, resulting in quadratic growth in
chip energy dissipation for the aggregate of all Tagless
directory slices. Despite being extremely area-effi-
cient, energy dissipation of the Tagless directory
becomes prohibitive beyond 128 cores.

Traditional Sparse directories storing full bit vec-
tors for each tag suffer from both energy and area
inefficiency. As core counts increase, the vector sizes
increase linearly, dominating the energy and area of the
directory and making the directory organization irrele-
vant. Linear per-core power and area increases render
these designs unreasonable for large core counts.

The inclusive in-cache directory is not applicable
to the Private-L2 configuration, as inclusion of private
L2s in other private L2s is not possible. However, the
inclusive in-cache directory for the Shared-L2 configu-
rations can store full sharer bit vectors and leverage the
L2 cache to avoid tag storage and tag lookup energy.
In-cache directory designs remain practical as long as
the bit-vector size (number of cores) remains moder-

1. The following event frequencies were used: Insert new tag into
the directory: 23.5%, add sharer to existing entry: 26.9%,
remove sharer from existing entry: 24.9%, remove tag from the
directory: 23.5%, invalidate all sharers: 1.2%.

10%

100%

1,000%

10,000%

16 32 64 128 256 512 1024

En
er

gy
 o

f 1
M

B
 L

2
Ta

g
Lo

ok
up

Core Count (1 cache per core)

10%

100%

1,000%

10,000%

16 32 64 128 256 512 1024

En
er

gy
 o

f 1
M

B
 L

2
Ta

g
Lo

ok
up

Core Count (2 caches per core [I+D])

3%

6%

13%

25%

50%

100%

200%

16 32 64 128 256 512 1024

A
re

a
of

 1
M

B
 L

2
D

at
a

A
rr

ay

Core Count (1 cache per core)

1%
2%

3%

6%
13%

25%

50%
100%

200%

16 32 64 128 256 512 1024

A
re

a
of

 1
M

B
 L

2
D

at
a

A
rr

ay

Core Count (2 caches per core [I+D])

Duplicate-Tag Tagless Sparse 8x In-Cache
Sparse 8x Hierarchical Sparse 8x Coarse Cuckoo Hierarchical Cuckoo Coarse

FIGURE 13. Power and area comparison of directory organizations. Directory energy consumption is plotted for varying core
counts. Directory for the Shared-L2 cache configuration is depicted on top, Private-L2 configuration is depicted on the bottom.

Shared L2

Private L2

Shared L2

Private L2

ate. However, beyond 128 cores, in-cache directories
lose their advantages and become dominated by bit-
vector storage, limiting applicability to larger systems.

Sparse directories storing a limited number of bits
per entry (Sparse Coarse and Sparse Hierarchical) are
subject only to a logarithmic increase in energy with an
increasing core count. These organizations scale well
with respect to energy and area, resulting in nearly flat
horizontal lines in Figure 13. However, although these
designs address the bit-vector storage scalability, the
Sparse organization must be over-provisioned to avoid
performance loss due to set conflicts. Over-provision-
ing results in a significant area increase, rendering
these designs unattractive and showing the need for
more area-efficient organizations.

The Cuckoo directory organization eliminates
Sparse directory over-provisioning by resolving set
conflicts while still leveraging the benefits of the
Coarse and Hierarchical bit-vector storage mecha-
nisms. The Cuckoo directory area utilization rivals the
area-efficient Tagless and Duplicate-Tag directory
designs, but also has a low nearly-constant per-core
energy dissipation regardless of core count. The
Cuckoo directory organization achieves up to 7x area
reduction compared to the Sparse Coarse and Sparse
Hierarchical organizations, maintaining reasonable
energy dissipation while bringing the area of the direc-
tory storage under 3% of the L2 area for the Shared-L2
configuration with 1024 cores (2048 sharing caches)
and under 30% of the L2 area for the Private-L2 con-
figuration with 1024 cores. Constant scalability within
the directory slice results in expected linear growth in
the aggregate directory energy and area consumption
as the number of cores increases, yielding a practical
and scalable design to at least 1024 cores.

6. Related Work

Like the Cuckoo directory, a number of prior hard-
ware structure proposals borrow ideas from software
hash tables. Caches using multiple hash functions were
proposed in hash-rehash caches [2] by Agarwal et al.
and later in column-associative caches [4] by Agarwal
and Pudar. Broder and Kalin proposed parallel hash
functions to access independent memory banks [8].
Seznec used parallel hashing memories to reduce con-
flicts in skewed-associative caches [33], the basic
organization used in the design of the Cuckoo direc-
tory. Other mechanisms to reduce conflicts through
hashing [40] and software-controlled functions [41]
were evaluated by Topham and González and Vandier-
endonck et al. The skewed-associativity mechanism
was adapted as a replacement for CAMs [25] by
Mahoney et al., who later provided a mathematical

model for the parallel hashing structure [26] similar to
the skewed-associativity model by Michaud [28]. Cho
et al. relied on a hardware implementation of a hash
table to create content-addressable memories from ran-
dom access memories [12].

Like the skewed-associative cache, the Cuckoo
directory relies on the family of hash functions pro-
posed by Seznec and Bodin [34]. However, unlike
skewed-associative caches and parallel hashing memo-
ries, the Cuckoo directory uses an insertion algorithm
based on moving entries within the structure, as pro-
posed for Cuckoo hash tables by Pagh and Rodler [29].
Hagersten and Hill proposed displacement to improve
storage efficiency of skewed structures [18]. Spjuth et
al. evaluated a displacement-based insertion algorithm
in Elbow caches [37,38], crediting the idea behind dis-
placements to Mark Hill. Similarly to Cuckoo
directories, Elbow caches displace conflicting ele-
ments. However, the Elbow cache is limited to one
displacement per insertion and requires multiple look-
ups to select a displacement victim, resulting in a
complex and power-hungry design that experiences
more forced invalidations than the Cuckoo directory.

Fotakis et al. generalized Pagh and Rodler’s
Cuckoo hash to a d-ary Cuckoo hash [15], improving
the space utilization of the structure. The Cuckoo
directories we evaluate use the d-ary organization.
Panigrahy proposed an alternative mechanism to
improve Cuckoo-hash space utilization by storing mul-
tiple elements per bucket [30]; we do not investigate
this approach, but note that it may offer additional
improvement in the behavior of the Cuckoo directory
at high directory occupancy, potentially allowing a
smaller and more power-efficient 3-ary design instead
of a 4-ary organization for some systems.

Significant benefit of relocation in hardware hash
tables [21] was noted by Kirsch and Mitzenmacher.
Another hardware proposal by Kirsch et al. aug-
mented a Cuckoo hash implementation with a CAM
based stash to maintain overflow entries [22]. Arbit-
man et al. mathematically formalized the stash
approach [5]. This technique is effective if all elements
must be stored. However, the Cuckoo directory can
invalidate blocks in the rare cases of overflow and
does not benefit from a stash.

Many proposals exist to reduce directory over-
heads by reducing the directory entry size. Agarwal et
al. evaluated schemes of storing a small number of
pointers with various overflow handling policies [3].
Krafka and Newton evaluated a sectored organization
to reduce tag storage overhead [23]. Gupta et al. sug-
gested switching to a coarse representation when
limited pointers overflow [17]. Chaiken et al. proposed

software fallback [10] and Chen proposed chained
pointers to handle directory overflow [11]. Choi and
Park proposed a hybrid of bit-vector and limited
pointer organizations [13]. The Cuckoo organization
dictates only the organization of the directory itself,
not the contents of each entry or its home node. In this
work, we constructed the Cuckoo directory with the
coarse [17] and hierarchical [44,45] approaches,
although the Cuckoo organization can be used in con-
junction with any of these space-reduction techniques.

Finally, there exist proposals for coherence mech-
anisms that avoid directories and cannot directly
benefit from the Cuckoo organization. Among these
are: Tagless directories [43] from Zebchuk et al., dem-
onstrated to be highly area-efficient but not energy-
scalable; SCI [20] from James et al., using sharer
pointers in the private caches rather than a directory
structure; token coherence [27] from Martin and Hill,
also avoiding a coherence directory; software-con-
trolled address indirection by Fensch and Cintra [14]
and Hardavellas et al. [19] handle coherence in soft-
ware on shared cache substrates; and DiCo [32] from
Ros et al., eliminating directories in favor of storing
coherence information within the cache tags.

7. Conclusions

The exponential growth in the number of on-chip
cores has highlighted the need for a scalable on-chip
cache coherence mechanism, exposing the energy and
area costs of scaling the coherence directories. Dupli-
cate-Tag directories require highly associative
structures that grow rapidly with core count and
approach prohibitive power consumption. Sparse
directories overcome power barrier by reducing asso-
ciativity while over-provisioning the number of
directory sets, but have a larger area cost and affect
performance when directory overflows must invali-
date active cache blocks.

In this work, we proposed the Cuckoo directory, a
directory organization that eliminates set conflicts and
enables energy- and area-scalable coherence for large
core counts. Based on the Cuckoo hash table, a dense
constant-time lookup structure, the Cuckoo directory
avoids set conflicts without significant capacity over-
provisioning. Through simulation and analytical pro-
jections, we showed that the Cuckoo directory
provides energy and area benefits to existing 16-core
designs and scales to hundreds of cores. At 1024 cores,
the Cuckoo directory is up to 80 times more power-
efficient than the area-efficient Tagless directory and
11% more power-efficient and seven times more area-
efficient than the power-efficient Sparse directory.

REFERENCES

[1] M.E. Acacio, J. González, J.M. García, J. Duato, “A
New Scalable Directory Architecture for Large-Scale
Multiprocessors,” HPCA '01: 7th International Sympo-
sium on High-Performance Computer Architecture,
Washington, DC, 2001.

[2] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache Per-
formance of Operating System and Multiprogramming
Workloads,” ACM Transactions on Computer Systems,
vol. 6, 1988.

[3] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz,
“An Evaluation of Directory Schemes for Cache Coher-
ence,” ISCA '88: 15th Annual International Symposium
on Computer Architecture, Los Alamitos, CA, 1988.

[4] A. Agarwal and S.D. Pudar, “Column-Associative
Caches: A Technique for Reducing the Miss Rate of
Direct-Mapped Caches,” Massachusetts Institute of
Technology TR, 1992.

[5] Y. Arbitman, M. Naor, and G. Segev, “De-amortized
Cuckoo Hashing: Provable Worst-Case Performance
and Experimental Results,” ICALP '09: 36th Interna-
tional Colloquium on Automata, Languages and
Programming, Berlin, Germany, 2009.

[6] J. Baer and W. Wang, “On the inclusion properties for
multi-level cache hierarchies,” ISCA '88: 15th Annual
International Symposium on Computer Architecture,
Los Alamitos, CA, 1988.

[7] L.A. Barroso, K. Gharachorloo, R. McNamara, A.
Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B.
Verghese, “Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing,” ISCA '00: 27th Annual
International Symposium on Computer Architecture,
New York, NY, 2000.

[8] A.Z. Broder and A.R. Karlin, “Multilevel Adaptive
Hashing,” SODA '90: First Annual ACM-SIAM Sym-
posium on Discrete Algorithms, Philadelphia, PA, 1990.

[9] L.M. Censier and P. Feautrier, “A New Solution to
Coherence Problems in Mulicache Systems,” IEEE
Transactions on Computers, vol. 27, 1978.

[10] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “Limit-
LESS Directories: A Scalable Cache Coherence
Scheme,” ASPLOS-IV: 4th International Conference on
Architectural Support for Programming Languages and
OS, New York, NY, 1991.

[11] G. Chen, “SLiD — A Cost-Effective and Scalable Lim-
ited-Directory Scheme for Cache Coherence,” PARLE
'93: Parallel Architectures and Languages Europe, Hei-
delberg, Germany, 1993.

[12] S. Cho, J.R. Martin, R. Xu, M.H. Hammoud, and R.
Melhem, “CA-RAM: A High-Performance Memory
Substrate for Search-Intensive Applications,” Interna-
tional Symposium on Performance Analysis of Systems
and Software, Los Alamitos, CA, 2007.

[13] J.H. Choi and K.H. Park, “Segment Directory Enhanc-
ing the Limited Directory Cache Coherence Schemes,”
IPPS '99/SPDP '99: 13th International Symposium on
Parallel Processing and the 10th Symposium on Parallel
and Distributed Processing, Washington, DC, 1999.

[14] C. Fensch and M. Cintra, “An OS-Based Alternative to
Full Hardware Coherence on Tiled CMPs,” HPCA '08:
14th International Symposium on High Performance
Computer Architecture, Salt Lake City, UT, 2008.

[15] D. Fotakis, R. Pagh, P. Sanders, and P.G. Spirakis,
“Space Efficient Hash Tables with Worst Case Constant
Access Time,” STACS '03: 20th Annual Symposium on
Theoretical Aspects of Computer Science, London, UK,
2003.

[16] R. Golla, “Niagara2: A Highly Threaded Server-on-a-
Chip,” Fall Microprocessor Forum 2006, San Jose, CA,
2006.

[17] A. Gupta, W. Weber, and T. Mowry, “Reducing Mem-
ory and Traffic Requirements for Scalable Directory-
Based Cache Coherence Schemes,” ICPP '90: 1990
International Conference on Parallel Processing,
Urbana-Champaign, IL, 1990.

[18] E. E. Hagersten, M. D. Hill, “Skewed finite hashing
function” U.S. Patent 6308246, filed September 4, 1998.

[19] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Aila-
maki, “Reactive NUCA: Near-Optimal Block Placement
and Replication in Distributed Caches,” ISCA '09: 36th
Annual International Symposium on Computer Archi-
tecture, New York, NY, 2009.

[20] D.V. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi,
“Scalable Coherent Interface,” Computer, vol. 23, 1990.

[21] A. Kirsch and M. Mitzenmacher, “The Power of One
Move: Hashing Schemes for Hardware,” INFOCOM
'08: 27th International Conference on Computer Com-
munications, Cambridge, MA, 2008.

[22] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More
Robust Hashing: Cuckoo Hashing with a Stash,” ESA
'08: 16th Annual European symposium on Algorithms,
Berlin, Germany, 2008.

[23] B.W. O'Krafka and A.R. Newton, “An Empirical Evalu-
ation of Two Memory-Efficient Directory Methods,”
ISCA '90: 17th Annual International Symposium on
Computer Architecture, New York, NY, 1990.

[24] J. Laudon, D. Lenoski, “The SGI Origin: a ccNUMA
highly scalable server,” ISCA '97: 24th Annual Interna-
tional Symposium on Computer Architecture, New
York, NY, 1997.

[25] P. Mahoney, Y. Savaria, G. Bois, and P. Plante, “Parallel
Hashing Memories: an Alternative to Content Address-
able Memories,” NEWCAS '05: The 3rd International
IEEE-NEWCAS Conference, 2005.

[26] P. Mahoney, Y. Savaria, G. Bois, and P. Plante, “Perfor-
mance Characterization for the Implementation of
Content Addressable Memories Based on Parallel Hash-
ing Memories,” Transactions on High-Performance
Embedded Architectures and Compilers II, 2009.

[27] M.M. Martin and M.D. Hill, “Token Coherence: Decou-
pling Performance and Correctness,” ISCA '03: 30th
Annual International Symposium on Computer Archi-
tecture, New York, NY, 2003.

[28] P. Michaud, “A Statistical Model of Skewed-Associativ-
ity,” ISPASS '03: 2003 International Symposium on
Performance Analysis of Systems and Software, Wash-
ington, DC, 2003.

[29] R. Pagh and F.F. Rodler, “Cuckoo Hashing,” Algo-
rithms, vol. 51, 2004.

[30] R. Panigrahy, “Efficient Hashing with Lookups in two
Memory Accesses,” SODA '05: 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, Philadel-
phia, PA, 2004.

[31] S. Patel, S. Phillips, and A. Strong, “Sun's Next-Genera-
tion Multi-threaded Processor - Rainbow Falls,” Hot
Chips 21, Stanford, CA, 2009.

[32] A. Ros, M.E. Acacio, and J.M. Garcia, “DiCo-CMP:
Efficient Cache Coherency in Tiled CMP Architec-
tures,” IPDPS '08: 22nd International Parallel &
Distributed Processing Symposium, Miami, FL, 2008.

[33] A. Seznec, “A Case for Two-Way Skewed-Associative
Caches,” ISCA '93: 20th Annual International Sympo-
sium on Computer Architecture, New York, NY, 1993.

[34] A. Seznec and F. Bodin, “Skewed-associative Caches,”
PARLE '93: 5th International Conference on Parallel
Architectures and Languages Europe, London, UK,
1993.

[35] R. Singhal, “Inside Intel® Next Generation Nehalem
Microarchitecture,” Hot Chips 20, Stanford, CA, 2008.

[36] R. Simoni, “Cache Coherence Directories for Scalable
Multiprocessors,” Stanford University TR, Stanford,
CA, 1992.

[37] M. Spjuth, M. Karlsson, and E. Hagersten, “The Elbow
Cache: A Power-Efficient Alternative to Highly Asso-
ciative Caches,” Technical Report, 2003.

[38] M. Spjuth, M. Karlsson, and E. Hagersten, “Skewed
Caches from a Low-Power Perspective,” CF '05: 2nd
Conference on Computing Frontiers, New York, NY,
2005.

[39] SUN Microsystems, “OpenSPARC T2 Processor Mega-
cell Specification,” 2007.

[40] N. Topham and A. González, “Randomized Cache
Placement for Eliminating Conflicts,” IEEE Transac-
tions on Computers, vol. 48, 1999.

[41] H. Vandierendonck, “Application-Specific Reconfigu-
rable XOR-Indexing to Eliminate Cache Conflict
Misses,” DATE '06: Conference on Design, Automation
and Test in Europe, Belgium, 2006.

[42] T.F. Wenisch, R.E. Wunderlich, M. Ferdman, A. Aila-
maki, B. Falsafi, and J.C. Hoe, “SimFlex: Statistical
Sampling of Computer System Simulation,” IEEE
Micro, vol. 26, 2006.

[43] J. Zebchuk, V. Srinivasan, M.K. Qureshi, and A.
Moshovos, “A Tagless Coherence Directory,” MICRO
'09: 2009 42st International Symposium on Microarchi-
tecture, New York, NY, 2009.

[44] D.A. Wallach, “PHD: A Hierarchical Cache Coherent
Protocol,” Massachusetts Institute of Technology Mas-
ter’s Thesis, Cambridge, MA, 1992.

[45] S.L. Guo, H.X. Wang, Y.B. Xue, C.M. Li, and D.S.
Wang, “Hierarchical Cache Directory for CMP,” Jour-
nal of Computer Science and Technology, 25(2), 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

