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ABSTRACT
This paper investigates the use of phoneme class conditional

probabilities as features (posterior features) for template-based
ASR. Using 75 words and 600 words task-independent and speaker-
independent setup on Phonebook database, we investigate the use
of different posterior distribution estimators, different distance mea-
sures that are better suited for posterior distributions, and different
training data. The reported experiments clearly demonstrate that
posterior features are always superior, and generalize better than
other classical acoustic features (at the cost of training a posterior
distribution estimator).

Index Terms— Speech recognition, template-based approach,
posterior features.

1. INTRODUCTION

The two major paradigms to perform acoustic modelling in Auto-
matic Speech Recognition (ASR) are statistical modelling (e.g. Hid-
den Markov Model, HMM) and template/instance based approach
(e.g. by Dynamic Time Warping, DTW). Both these techniques aim
to find the best match between acoustic input and a set of reference
templates. HMMs model stochastic templates (sequence of states
to model statistical distribution) thus providing high generalization
properties, while DTW uses deterministic templates/instances (se-
quence of feature vectors) that take into account the details of the
speech signal.

ASR systems typically use cepstral features. In such a case, the
use of Euclidean distance for template-based approach can be inter-
preted as a special case of HMM-based approach, where each time
frame in the reference template is a single state HMM with emis-
sion distribution modeled by a single Gaussian with a mean vector
equal to the feature vector and unit covariance matrix. However,
in practice, HMM-based approach uses mixture of Gaussians in or-
der to provide a more flexible representation (to handle variability)
and, thus, better performances compared to template-based approach
(which may need large number of instances to handle variability).

Recently, the use of phoneme class conditional probabilities di-
rectly as speech features has been proposed for both HMM-based [1]
and template-based ASR [2]. We refer to these features as posterior
features (Section 2). In this case, the states of the HMM are mod-
eled by a single multinomial distribution. The emission score is esti-
mated by computing the Kullback-Leibler (KL) divergence between
the state multinomial distribution and observation feature vector (i.e.
posterior feature). The template-based approach also results in a
comparison similar to HMM, where the posterior feature belonging
to the reference template and the one belonging to the test template
can be, again, compared through KL-divergence. From this, it can
be observed that through the use of posterior features HMM-based

approach and template-based approach can converge to a common
framework. Such a common framework can be observed for spectral
features in the case of learning vector quantization HMM [3].

This work focuses on template-based ASR using posterior fea-
tures. In preliminary work, we used an MLP to estimate the pos-
terior features. On small vocabulary task, it was shown that poste-
rior features can yield significantly better performance than standard
spectral-based features. However, there are alternate approaches to
estimate posterior features. For instance, using Gaussians or GMMs
(generative approach). As discussed later in the paper (Section 5),
the choice of estimator can provide its own flexibility.

This paper builds on our previous work investigating the follow-
ing three aspects. The first aspect investigates the use of GMM for
estimation of posterior features and compares them to standard spec-
tral feature. The second aspect is how does the posterior features (es-
timated by GMMs and MLPs) compare to standard spectral feature
when the size of vocabulary is increased. Finally, the third aspect
is the effect of the training data, such as the use of auxiliary/cross-
domain data. This aspect is addressed by using off-the-shelf GMMs
and MLPs, i.e. already-existing estimators trained on different data.

We investigate the above mentioned aspects on task-independent
speaker-independent small vocabulary (75 words) and medium vo-
cabulary (600 words) isolated word recognition tasks using Phone-
book corpus as matched condition data, and with conversational tele-
phone speech (CTS) corpus as auxiliary data. Our studies show
that posterior features perform significantly better than the spectral
based features on both small vocabulary task and medium vocabu-
lary task irrespective of the type of posterior features estimator used
(i.e. GMMs or MLP) and the type of data used (matched condition
data or auxiliary data) to train the estimators.

Section 2 presents the different posterior feature estimators. In
the preliminary works, we investigated the use of KL-divergence,
Bhattacharya distance, and Euclidean distance as local distance mea-
sures for posterior features. In this work, we also investigate cosine
distance and scalar product. We present the distance measures in
Section 3. Section 4 describes the experimental setup and the re-
sults. Finally, Section 5 provides a discussion that puts this work
into a broader context followed by conclusion.

2. POSTERIOR FEATURES

Robustness toward noise and speaker variability are two of the most
challenging problems in ASR when standard spectral features are
used. Traditional features, like MFCC or PLP, contain (desirable
and undesirable) information that gives the feature space a high vari-
ability.

In template-based speech recognition, standard spectral features
are usually transformed into a more stable representation [4]. In this
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work we use a method to transform standard spectral features into
linguistically meaningful features, i.e. phoneme class conditional
probabilities (or posterior features).

Formally, given a spectral-based feature vector at time t,
xt, and given a set of possible phoneme classes ck with k ∈
{1, 2, ...,K}, the vector pt of the posterior probabilities is given
by pt = [P (c1|xt), . . . , P (cK |xt)] = [p1 · · · pk · · · pK ]. As
discrete distribution, the vector pt has two properties: a) ∀k ∈
{1, 2, ...,K},pt

k ∈ [0, 1] and b)
∑K

k=1 p
t
k = 1.

These probabilities can be directly estimated through the use of
a well trained MLP [5]. Alternatively, posterior probabilities can
be obtained through likelihood estimation (using Gaussian Mixture
Model, GMM), according to Bayes’ law:

P (ck|xt,Θ) =
p(xt|ck,Θ) · P (ck|Θ)

p(xt|Θ)
(1)

where P (ck) is the prior probability for the class ck. In the reminder
of the paper, we adopt a simpler representation by omitting the ref-
erence to the time, t, and to the parameter set, Θ.

2.1. GMM-based estimation

The likelihood of each phoneme class ck can be modeled with a
linear combination of Gaussian distributions (i.e. GMM):

p(x|ck) =

N−1∑
n=0

αn,kN (x|µn,k,Σn,k) (2)

where N is the number of Gaussian distributions, αn are the mixing
coefficients, µn,k and Σn,k are the means and the variances of each
Gaussian distribution for the class ck, respectively.

The likelihood of the observation x given the class ck, p(x|ck),
computed with GMM, can be used to estimate posterior probabilities
through Bayes’ law:

P (ck|x) =
p(x|ck) · P (ck)∑
c′
k
p(x|c′k)P (c′k)

(3)

The parameters of GMM are trained maximizing the likelihood
of the training data. Typically, this model provides adaptability and
scalability but may also need large amount of training data to esti-
mate the parameters robustly.

Recently, the posterior features estimated by GMM has been
used for discriminative modeling in HMM-based ASR [6] as well
as for keyword spotting [7] (in this case, using unsupervised train-
ing).

2.2. MLP-based estimation

Given an acoustic input vector x and a target phoneme class output
ck, a well trained MLP can directly estimate the class conditional
probability P (ck|x) [5]. MLPs learn decision boundaries to discrim-
inate optimally between models without making prior assumptions
on the distribution of the data. The MLP training aims to minimize
the classification error increasing the correct class probability while
decreasing the wrong ones.

The discriminative training procedure of the MLP ensures that
posterior features are more robust to noise than spectral-based fea-
tures, while retaining the speech discriminatory information. More-
over, since little prior assumption is made on the distribution of the
training data, several kinds of features can be used as input and dif-
ferent set of classes can be trained as output. Also, MLP training is
scalable with more data. On the other hand, the convergence of the
training algorithm of MLP is slower than GMM training.

3. DISTANCE MEASURES

Euclidean distance or Mahalanobis distance are commonly used to
compare vectors of standard short-term spectral-based features. Let
x = [x1 · · ·xm · · ·xM ]T denote the spectral features vector belong-
ing to the reference template and y = [y1 · · · ym · · · yM ]T denote
the spectral features vector belonging to the test template. The Eu-
clidean distance between these two vectors is:

d(x,y) =

M∑
m=1

(xm − ym)2

When posterior features are used to represent the speech, Euclidean
distance can be used simply replacing the spectral features vectors
with the corresponding posterior features vector. However, by con-
sidering the probabilistic properties of posterior features, different
distance measures can be used to compute local matching scores.
Let p = [p1 · · · pk · · · pK ]T denote the posterior feature vector that
belongs to the reference template and q = [q1 · · · qk · · · qK ]T de-
note the posterior feature vector that belongs to the test template. In
this paper, we investigate the following distance measures:

1. Weighted symmetric KL-divergence (wSKL): KL-divergence
is an asymmetric measure that computes the difference be-
tween two probability distributions. wSKL is a symmetric
version of KL-divergence which takes the uncertainty in the
reference and test posterior features into account [2].

wSKL(p,q) = wp ·KL(p,q) + wq ·RKL(p,q)

where
KL(p,q) =

K∑
k=1

pk log
pk
qk
,

RKL(p,q) =

K∑
k=1

qk log
qk
pk
,

wp =

1
H(p)

( 1
H(p)

+ 1
H(q)

)

wq =

1
H(q)

( 1
H(p)

+ 1
H(q)

)

H(p) is the entropy of p and H(q) is the entropy of q.

2. Bhattacharya distance (Bhatt): Measures the similarity of
two probability distributions.

Bhatt(p,q) = − log(

K∑
k=1

√
pk · qk)

3. Cosine angle (cosine): In a previous work [8], it was shown
that MLP-based posterior features belonging to different
classes tend to be orthogonal, thus they can be modeled using
the cosine angle as distance measure.

cosine(p,q) =
pTq

|p||q|

4. Scalar product (SP ): As cosine, also SP is a measure of
the orthogonality of posterior features. Moreover, it has been
shown that scalar product is the “optimal” estimation of the



probability that a pair of posterior features vectors (p,q) be-
long to the same class when an MLP is used as estimator [8].

SP (p,q) = pTq =

K∑
k=1

pk · qk

More recently, the scalar product has also been used as the
(theoretically optimal) measure of the probability that two
posterior distributions results from the same underlying pho-
netic event [7, 9]. Given its light computational cost, scalar
product can be suitable in case of large dimensional space
representation, such as the case in [6].

4. EXPERIMENTAL SETUP

In this section, we define the different tasks studied and the estima-
tors used for posterior features extraction.

4.1. Task

We use the Phonebook speech corpus [10] (PB) for speaker-
independent task-independent, small vocabulary isolated word
recognition. The test set consists of 8 lists of utterances, each
containing 75 words uttered on average by 11 or 12 speakers once.
None of the speakers present in the training data appear in cross vali-
dation and testing data. There are 42 context-independent phonemes
including silence. We present recognition studies on the following
two tasks:

1. 75 words task: Recognition is performed on 8 lists separately,
using the respective 75 words lexicon. The performance is
measured as average word error rate.

2. 600 words task: Recognition is performed using a single lex-
icon consisting of the words from all the 8 lists.

We adopt the same framework as in [2], where two random ut-
terances of each word were used as reference templates. We use
the state-of-the-art hybrid HMM/MLP system reported in [11] as
reference system. On the 75 words task and 600 words task, the
HMM/MLP system yields word error rates (WERs) of 1.2% and
4.0%, respectively.

4.2. Posterior features extraction

In this section, we describe the posterior features extraction using
two different estimators, namely GMM and MLP, each of them
trained on two different datasets: PB corpus (matched data) and
Conversation Telephone Speech (CTS) corpus (auxiliary data).

The training set of PB corpus consists of 6.7 hours of speech data
represented using 39-dimensional PLP cepstral coefficient extracted
every 10ms. Using this data we trained two estimators:

- GMM: we trained monophone HMM models. Each model,
corresponding to one of the 42 classes, has 3 states and each
emission probability is modeled with a mixture of 32 Gaus-
sians. To estimate the posterior probability, first state level
probability was estimated (42x3 values) and then marginal-
ized to 42 phoneme class probabilities.

- MLP: we trained an MLP taking as input a vector of PLP
features along with a temporal context of 90ms. The MLP
has 800 hidden units and 42 output units, each corresponding
to a phonemic class.

CTS corpus consists of continuous speech utterances from dif-
ferent speakers over a telephone channel. This corpus contains 45
context-independent phonemes including silence. In our work, we
used off-the-shelf systems that were already trained on CTS:

- GMM: trained using 277 hours of speech from CTS training
set. In this case the number of Gaussians used to model the
emission probability is 16. For further details about this sys-
tem, the reader may refer to [12].

- MLP: trained using 232 hours of speech (a subset of the 277
hours used for GMM) from CTS training set. This system
estimates 45 posterior probabilities. For further details about
this system, the reader may refer to [11].

4.3. Results

Tables 1 and 2 present the recognition results measured in terms
of word error rate (WER) across different distance measures for 75
words task and 600 words task, respectively.

It can be observed that, when Euclidean distance is used, simply
transforming PLP features into posterior features (irrespective of the
estimator) allows to achieve significantly better performance. In ad-
dition, the use of other distance measures, that take into account the
probabilistic nature of posterior features, provides a further signifi-
cant improvement.

It can also be observed that MLP-based posterior features per-
form better than GMM-based posterior features. This can be at-
tributed to the discriminative training used for MLPs.

Concerning the use of existing estimators trained on CTS data,
MLP and GMM perform differently. MLP-based feature yields sim-
ilar or better results compared to the use of PB training data. GMM-
based features, on the contrary, perform significantly worse. This
suggests that MLP-based posterior features could be efficiently esti-
mated using existing systems, thus eliminating the need for training
a new estimator on task specific data.

In all the systems described, the best performance was obtained
using wSKL as distance measure.

Distance
measure PLP

Posterior Features
PB CTS

GMM MLP GMM MLP
Euclidean 24.8 7.9 3.8 20.4 3.6
wSKL - 2.0 1.1 6.3 0.9
bhatt - 3.1 1.6 7.5 0.9
cosine - 2.7 1.5 9.4 1.2
SP - 2.6 1.4 8.2 1.4

Table 1. Word Error Rate (WER) on 75 words task. The hybrid
HMM/MLP system on this task yields 1.2% WER.

5. DISCUSSION AND CONCLUSION

One of the main issues in template-based ASR is how to achieve
good generalization with fewer number of templates. This work
attempts to show that one way to achieve this is to transform the
spectral feature into posterior feature. In doing so, we may not be
retaining the finer spectral details. However, if such details are rele-
vant for ASR and can be estimated robustly, then it may be possible
to learn them through the estimators, such as MLP, or find alternate
approaches to integrate them. In addition, the use of posterior fea-
tures for template-based ASR allows the use of additional knowledge



Distance
measure PLP

Posterior Features
PB CTS

GMM MLP GMM MLP
Euclidean 43.4 20.9 10.2 43.3 9.9
wSKL - 6.8 3.4 18.6 2.8
bhatt - 8.0 3.3 21.5 2.9
cosine - 9.5 4.1 26.1 4.1
SP - 8.3 4.4 23.2 5.3

Table 2. Word Error Rate (WER) on 600 words task. The hybrid
HMM/MLP system on this task yields 4.0% WER.

sources, such as lexical knowledge, existing ASR systems, cross-
domain data. In other words, we could leverage from the large body
of existing work on GMMs and MLPs in the context of HMMs. We
discuss a few below.

In our study, we see that the MLP approach consistently per-
forms better than the GMM approach. This can be attributed to the
discriminative learning which makes the MLP posterior features less
susceptible to variations, such as speaker or environment. However,
GMMs could be efficiently adapted in unsupervised manner on small
amount of data to handle such variations.

The use of MLP and GMM lets also to explore different poste-
rior feature representations. For instance, one could use articulatory
features estimated by MLP or, in case of GMM, use the clustered
states of a context-dependent system to estimate posterior features.
Also, the ability to achieve language independence could be inher-
ited through the use of articulatory features, “universal” phonemes,
or subspace Gaussians method [13]. The implication of this can be
further appreciated if we consider languages which have no lexical
resources (they are just spoken) and limited acoustic data. In such
a case, template-based approach using posterior features could not
only help in developing ASR systems but also in generating lexical
resources.

As discussed earlier, the HMM-based approach and template-
based approach can converge to a common framework when us-
ing posterior features. This could be further put to use to combine
HMM-based and template-based ASR for languages, such as Ara-
bic where defining a consistent subword unit based pronunciation is
difficult or a challenging task.

One of the shortcomings with template-based approach is how
to generalize to unseen words. This typically needs subword based
approach. Finding reliable and fewer subword templates can be dif-
ficult with spectral-based features. However, in the case of poste-
rior features there are different possibilities. For example, it may
be possible to extract a fewer robust templates of subword units us-
ing KL-HMM (by alignment). Otherwise, exploiting the robustness
provided by MLP-based posteriors, we could find and use exem-
plars/instances available through resources such as the web 1.

In conclusion, in the context of template-based ASR, this study
through the use of (a) different posterior feature estimators trained on
matched condition data and auxiliary data, (b) different vocabulary
sizes, and (c) different distance measures clearly demonstrated that
posterior features (at the cost of training an estimator) can yield sig-
nificantly better performance than standard acoustic features. Thus,
indicating that posterior features are promising alternative to spectral
features in further pursuing template-based ASR research.

1http://www.forvo.com
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Hierarchical System for Task Adaptation in ASR,” in Proceed-
ings of ASRU, Merano, Italy, 2009.

[12] T. Hain, L. Burget, J. Dines, I. Mccowan, M. Lincoln,
D. Moore, G. Garau, V. Wan, R. Ordelman, and S. Renals,
“The Development of the AMI System for the Transcription of
Speech in Meetings,” in in Proceedings of MLMI, Edinburgh,
UK, 2005.

[13] D. Povey, L. Burget, M. Agarwal, P. Akyazi, K. Feng,
A. Ghoshal, O. Glembek, K. Nagendra Goel, M. Karafit,
A. Rastrow, R. Rose, P. Schwarz, and S. Thomas, “Subspace
Gaussian mixture models for speech recognition,” in Proceed-
ings of ICASSP, Dallas, Texas, USA, 2010, pp. 4330–4333.


