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Abstract

We present a novel approach to fully automated delin-
eation of tree structures in noisy 2D images and 3D image
stacks. Unlike earlier methods that rely mostly on local evi-
dence, our method builds a set of candidate trees over many
different subsets of points likely to belong to the final one
and then chooses the best one according to a global objec-
tive function. Since we are not systematically trying to span
all nodes, our algorithm is able to eliminate noise while re-
taining the right tree structure.

Manually annotated dendrite micrographs and retinal
scans are used to evaluate the performance of our method,
which is shown to be able to reject noise while retaining the
tree structure.

1. Introduction

Tree-like structures appear at many different scales and
in many different contexts. They can be micrometer scale
dendrites in light microscopy image-stacks, centimeter-
scale blood vessels in retinal scans, or meter-scale road net-
works in aerial images. Extracting them automatically and
robustly is therefore of fundamental relevance to many sci-
entific disciplines. However, even though the topic has re-
ceived sustained attention ever since the inception of the
field of Computer Vision, both robustness and automation
remain elusive. Fully automated techniques exist but re-
quire very clean data; substantial amounts of manual inter-
vention is required for any other kind.

In this paper, we argue that this is in large part because
current approaches are far too local and do not sufficiently
take into account the global tree structure when making de-
cisions. By constructing a set of plausible trees and select-
ing the one with the highest global score, we achieve good
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(a) (b)
Figure 1. Image data used to evaluate our method. (a) 3D vol-
ume rendering of a neuron micrograph and zoomed-in view of a
detail. The dendrites appear as irregular and often disconnected
elongated structures. The data is noisy due to staining artifacts,
non-Gaussian blur and irrelevant structures close to the neuron.
(b) 2D scan of retinal blood vessels. The main vessels appear as
clean structures, but the secondary ones have very low contrast and
can easily be lost in the background.

results on very noisy datasets, such as the ones depicted by
Fig. 1.

More specifically, we use 3D-steerable features [12] to
assign to image points, and to edges connecting them, prob-
abilities of belonging to the tree. We then select evenly
spaced high-probability points that we treat as anchor points
and connect them using a maximum-probability path. This
turns our set of N anchor points into a weighted graph in
which we look for minimum-weight trees that span K of its
N vertices [3, 11]. We do this for a range of K values and
select the resulting tree with the highest global probability.
This is in contrast to more traditional approaches [8, 13]
that would use a minimum spanning tree to link all vertices
and then prune the branches that do not conform to a shape
or image appearance criterion. Such methods can elimi-
nate spurious branches but cannot recover from incorrect
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connectivity in the initial spanning tree. When K is in the
right range, the tree spanning only K vertices does not suf-
fer from this problem, and our probabilistic score provides
us with an automated way to select K.

This results in a generic and fully automated technique
that we demonstrate on micrographs of eight different neu-
rons and on a database of retinal image scans. In both cases,
we have access to ground truth data to validate our results.

2. Related Work
Early 2D-image delineation approaches such as [9], as

well as far more recent ones [5], involved first generating a
binary overlay of points likely to belong to the linear struc-
tures, linking them using a Minimum Spanning Tree, and
then pruning the tree to retain only the branches most likely
to resemble the target features. While potentially effective,
such approaches require complex heuristics and the results
need to be edited by hand or using semi-automated tools [8].
A popular alternative has been to use semi-automated tech-
niques in which the user is asked to supply anchor points
manually and the system proposes a path linking them,
which can then be edited if needed [18].

Algorithms designed to trace 3D dendritic trees in image
stacks face many of the same difficulties. Most approaches
rely on a dendriteness measure of how dendrite-like fila-
ments look. This measure can be postulated [10, 16], op-
timized given a mathematical dendrite model [15, 18], or
learned [21, 12] from training data. It can then be used in
one of three ways.

First, filaments can be grown from seed points [1, 17],
which has been successfully demonstrated in confocal flu-
orescent microscopy images. This approach is computa-
tionally effective because the dendriteness of filaments need
only be evaluated for a small subset of the voxels. However,
heuristics are usually required to detect branching points.
Worse, such methods may easily fail in noisy data because
of their incremental nature: If the growing process diverges
at one voxel, the rest of the dendritic tree will be lost.

Second, one can find paths of maximum dendriteness be-
tween seed points, which are usually supplied by hand [18,
6, 23, 2]. This can be done using active contour models,
geometric constraints, or the live-wire algorithm [19]. This
yields good results but is manually intensive.

Third, one can first segment the image volume and then
find the skeleton of the resulting binary mask [24]. This
requires high-quality segmentations, which can be obtained
only in very clean data. Even then, pruning may be required
to remove small artifacts [4] and perform topology changes.

By contrast to these methods that rely almost exclu-
sively on local evidence, our approach optimizes an objec-
tive function that infers the most probable tree given the
whole image data. This eliminates drift, explicitly enforces
proper connectivity, and is fully automated.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Delineating dendritic trees in brightfield micrographs.
(a) Minimum intensity projection of an image stack. Each pixel
in the image is the minimum intensity value of the voxels that are
touched by the ray cast from the camera through the pixel. (b) The
dendriteness computed for individual voxels. The colors represent
responses at different scales. (c) The anchor points, which are
local maxima of dendriteness. (d) The minimum spanning tree
computed over all points of (c). (e) A K-MST for a sub-optimal
value of K. (f) The K-MST estimated by Eq. 19.

3. Method

For clarity of explanation, we focus on the problem of
dendrite detection in 3D brightfield images, although the
method is equally applicable to other image modalities and
dimensionalities.

Fig. 2 depicts our method, which goes through the fol-



lowing steps:

1. We compute the dendriteness of every voxel, as shown
in Fig. 2(b). It encodes how likely it is to be on the
centerline of a dendrite. It relies on 3D-steerable fea-
tures [14] designed to account for the fact that den-
drites come in many different widths.

2. We map the dendriteness values to probabilities and
treat high probability voxels that are local maxima as
anchor points. They are shown in Fig. 2(c).

3. We compute the most probable paths between pairs
of nearby anchor points and assign them probabilis-
tic costs that are lowest when all pixels along them are
dendrite-like.

4. We compute the lowest-cost tree among those that span
K of the N anchor points for a wide range of K ≤ N .
This is known as the K-Minimum Spanning Tree (K-
MST) or K-Cardinality Tree (KCT) problem . Even
though it is NP-Hard, approximate solutions can nev-
ertheless be computed efficiently and fast [3, 11].

5. This yields trees such as those of Fig. 2(e,f). We select
the one that optimizes a global objective function.

Steps 4 and 5 are those that most distinguish our approach
from more traditional ones that either build trees spanning
all the anchor points and then attempt to eliminate spuri-
ous branches, or grow the tree incrementally at the risk of
propagating errors. We avoid these problems by minimiz-
ing a well-defined global objective function, as the mini-
mum spanning tree approaches do, but with the possibility
to explore different topologies because we do not force the
tree to systematically connect all vertices.

The approach is exactly the same in regular 2D images,
except that voxels should be replaced by pixels and 26-
connectivity should be replaced by 8-connectivity.

In the remainder of this section, we first formalize our
approach, define our objective function, and argue that,
given the huge amounts of data we have to process, the
proposed algorithm represents a feasible approach to com-
puting an approximate minimum. In Section 4, we will use
ground truth data to show that this minimum is of very good
quality indeed.

3.1. Formulation

We map the image data to a grid graph G = (V,E)
whose vertices V = {xij} are the voxels and whose undi-
rected edges E = {eij} connect each voxel to its 26 neigh-
bors. A subgraph s is represented by a set of indicator vari-
ables {sij}, one for each edge of G, such that

∀eij ∈ E, sij =

{
1, if eij ∈ s
0, otherwise.

(1)

For the purpose of this discussion, let us assume that we can
associate to each edge eij a probability pij = P (sij = 1|I)
of belonging to the skeleton of a dendrite given the image
data I . We will propose in Section 3.3 a mechanism for
evaluating it.

We take the subgraph we look for to be t∗, the tree of
G whose likelihood given the image data is maximal. Let
T = {Tij} denote the set of random variables such that Tij
stands for the true presence of dendrite skeleton on edge eij .
We write

t∗ = argmax
t

P (T = t|I) , (2)

= argmax
t

P (I|T = t)P (T = t) ,

where we used Bayes’ rule to go from the first line to the
second and eliminated the constant term P (I). In this work,
we assume that all trees have the same prior probability and
that subgraphs that are not trees have probability zero. Let
T (G) be the set of all trees in G, and let tij denote the
indicator variable representing the occupancy state of edge
eij by the tree t, we have

t∗ = argmax
t∈T (G)

P (I|T = t) ,

= argmax
t∈T (G)

∏
eij∈G

P (Iij |Tij = tij) , (3)

= argmax
t∈T (G)

∏
eij∈G

P (Tij = tij |Iij)P (Iij)
P (Tij = tij)

, (4)

= argmax
t∈T (G)

∏
eij∈G

P (Tij = tij |Iij) , (5)

= argmax
t∈T (G)

∏
eij∈G

P (Tij = 1|Iij)tij

× P (Tij = 0|Iij)(1−tij) , (6)

= argmin
t∈T (G)

∑
eij∈G

[
− log

P (Tij = 1|Iij)
P (Tij = 0|Iij)

]
tij

+
∑
eij∈G

− logP (Tij = 0|Iij) , (7)

= argmin
t∈T (G)

∑
eij∈G

[
− log

P (Tij = 1|Iij)
P (Tij = 0|Iij)

]
tij , (8)

where Iij stands for the image data around edge eij . Given
that t is represented by a set of 0 and 1 values, Eq. 3 is
justified by assuming that image evidence of dendriteness
along neighboring edges is conditionally independent if we
actually know whether these edges belong to dendrites or
not. This amounts to describing the image in terms of a
generative model where one first specifies where filaments
are and then generate the appearance of every image loca-
tion given that there is a filament or not. In Eqs. 4 and 5, we



use Bayes’ rule again, drop the constant terms, and assume
that edges are a priori equally likely to belong to a tree.
The following equations are obtained by a simple algebraic
manipulation in Eq. 6, taking the negative log in Eq. 7, and
dropping a constant term in Eq. 8. In other words, since
P (Tij = 1|Iij) = pij and P (Tij = 0|Iij) = 1 − pij , the
optimal tree t∗ can be obtained by finding the set of indica-
tor variables {t∗ij} such that the corresponding subgraph is
a tree and minimizes

F (t) =
∑

i,j:tij=1

− log
pij

1− pij
. (9)

In practice, this involves an immense solution space that
cannot be easily searched, which is why we rely on the al-
gorithm outlined at the beginning of the section to reduce it
to a manageable size.

3.2. Sampling the Image Stack

We run the dendrite detector of [12] at different image
scales to obtain a dendriteness measure for each voxel. It is
obtained by convolving the image with high-order Gaussian
derivatives, rotating the feature vector at each voxel to a ref-
erence orientation, and computing the response of an SVM
on that feature vector.

The detections at different scales are then combined.
Since we are applying the same detector f(.) at different
scales σ of the image I , no normalization is needed. For a
voxel xi the dendriteness measure is taken to be

f̂(xi) = max
σ

f(Iσ(xi)). (10)

This measure is then mapped to a posterior probability
of being on the skeleton of a dendrite. We take the posterior
probability of a pixel xi to be

pi = P (xi ∈ t∗|f(xi)) =
1

1 + e−(af(xi)+b)
, (11)

where the parameters a and b are estimated by cross-
validation over a validation set. It has been shown in [20]
that using a sigmoid to convert a SVM output into a prob-
ability is valid because it preserves the sparseness of the
SVM while producing probabilities comparable to those
produced by regularized likelihood kernel methods.

The original image is then sampled to retain only the
voxels whose posterior probabilities given their dendritness
measures are local maxima. The set of such samples is

V ′ = {ai = xi|∀xj ∈ Nxi , (12)
P (xj ∈ t∗|f(xj)) ≤ P (xi ∈ t∗|f(xi))},

where Nxi
is defined as a neighborhood of xi.

(a) (b)
Figure 3. Close up views of delineations obtained using the edge
cost assignments given in (a) Eq. 13 and (b) Eq 18. Green blobs
represent the anchor points and white lines represent the links be-
tween them. Using the costs of Eq. 18 results in overextended
paths and double counting of pixels.

3.3. Linking the Samples

We create a reduced graph G′ = (V ′, E′) that links all
pairs of am ∈ V ′ and an ∈ V ′ samples that are within a
specified distance of each other by the path lmn ∈ E′ that
minimizes

cmn =
∑

eij∈lmn

− log pij , (13)

which is the highest probability path between am and an.
As mentioned in Section 3.1, pij are the probabilities that
individual edges between neighboring voxels belong to the
dendrite skeleton. Note that, in this case, we minimize a
sum of negative log likelihoods instead of minimizing the
sum of log likelihood ratios, as in Eq. 9. This is because we
are not attempting to label all possible dendritic edges. In-
stead, we are only looking for a single path and are not con-
cerned by the fact that there might be other high-probability
edges in the vicinity that do not belong to that path and may
be explained by another one.

We find this path by minimizing cmn using Dijkstra’s al-
gorithm. In essence, we assume that all paths have the same
prior and find the one with the highest probability given the
local image evidence.

To derive the pij values from the pi values of Eq. 11, let
us consider the cmn cost of Eq. 13. It is the sum of negative
log likelihoods over the path joining m to n. To enforce
consistency between the pi and pij values, we require that
cmn should be roughly equal to the integral of the− log(pi)
along the corresponding continuous path. In other words,
we should have

cmn ≈
Z
− log p(s)ds (14)

≈
X

eij∈lmn

Z dij

0

− log p(
dij − s

dij
xi +

s

dij
xj)ds ,

where s represents the curvilinear abscissa along the path,
p(s) the probability that the point at abscissa s belongs to
the dendritic skeleton, and dij the distance between neigh-
boring points xi and xj . Since we work on a voxel grid, to
compute the integral of Eq. 15, we only have values pi and



pj of p((1−s/dij)xi+(s/dij)xj) for s = 0 and s = dij re-
spectively. Assuming that p varies linearly between xi and
xj , we write:

cmn ≈
X

eij∈lmn

Z dij

0

− log(
dij − s

dij
pi +

s

dij
pj)ds,

≈
X

eij∈lmn

− dij
pi(log(pi)− 1) + pj(1− log(pj))

pi − pj
. (15)

In practice, to avoid divisions by zero, we therefore take
pij to be equal to pdij

i if |pi − pj | ≤ ε, and so that

log(pij) = dij
pi(log(pi)− 1) + pj(1− log(pj))

pi − pj
(16)

otherwise. Note that this is consistent because when pj−pi
tends towards zero, log(pij) defined in this manner tends
towards dij log(pi) = dij log(pj).

3.4. Selecting the Best Tree

Assuming that there are N nodes in G′, for all K ≤ N ,
we run a K-MST algorithm based on tabu search optimiza-
tion [3] to find the tree tK that spans exactly K nodes and
minimizes∑

lmn∈tK

∑
eij∈lmn

− log pij =
∑

i,j:tij=1

− log pij , (17)

where {tij} is the set of indicator variables describing tK .
Note that it could have seemed more natural to assign to

the edges of G′ the cost

cmn =
∑

eij∈lmn

− log
pij

1− pij
(18)

so that the cost optimized by the K-MST algorithm would
have directly been the one of Eq. 9. However, the K-MST
algorithm is a greedy algorithm, which selects at each it-
eration an edge to increase the tree score. If the edges are
weighted using the log-likelihood ratios of Eq. 18, the pre-
ferred edge is the one explaining the greatest amount of im-
age, ignoring that there still are edges to be added. This bi-
ases the optimization towards long edges and produces un-
desirable effects, such as over-counting voxels and zigzag-
ging paths, as shown in Fig. 3. The same argument is made
very convincingly, albeit in a different context, in Section
5 of [7]. By contrast, using the log-likelihood of Eq. 13
as edge weights results in the highest density of probability
tree being built. Since we assume that there exists only one
tree per image, once the tree tK is constructed we consider
all remaining edges as background, and assign to the tree
the score F (tK) =

∑
i,j:tij=1 [− log pij

1−pij
] of Eq. 9.

In summary, for each cardinality K= 2 . . . N , we build
the tree that minimizes Eq. 17, and assign to it the score of

(a) (b)

(c) (d)
Figure 4. ROC curves obtained using the evaluation scheme of
Fig. 5. Each tree is shown as a star. Since the K-MST trees are
built by a randomized algorithm, the curve is not smooth. (a) First
retinal scan of Fig. 7. (b) Second retinal scan of Fig. 7. (c) ROC
for dendrites. The True Positive Rate of the K-MST that optimizes
Eq. 19 is similar to that of the MST. The False Positive Rate, how-
ever, is reduced by a factor of two. (d) Cost function of Eq. 9 for
different values of K.

Eq. 9. The final result is the tree that minimizes such score
among all cardinalities,

t̂∗ = argmin
tK∈{t2...tN}

F (tK), (19)

which yields a result such as the one of Fig. 2(f).

4. Results
We evaluate the performance of our algorithm in eight

images of neurons obtained from brightfield microscopy,
such as those depicted in Figs. 2 and 6, and on the DRIVE
database of retinal scans depicted in Fig. 7. Using the avail-
able ground truth data, we compare our algorithm against
a minimum spanning tree based approach. An MST spans
a tree connecting all vertices of a graph such that the sum
of the edge costs is minimized. This includes some anchor
points that correspond to false-positives of the dendriteness
measure. Furthermore, there is no guarantee that the opti-
mal solution is a subset of such a tree. While pruning ap-
proaches [9, 13] can potentially remove false positives, they
can never recover from false negatives present in the initial
MST.

From these sets of experiments, we derive the ROC
curves of Fig. 4 and draw the following conclusions:

1. As can be seen in Figs.6 and 7, our algorithm is able to
connect thin and disconnected filaments while remov-
ing many false positives.



(a) (b) (c) (d) (e)
Figure 5. Evaluation procedure. (a) Original image. (b) Ground truth skeleton overlaid on top of the original image. (c) Estimated skeleton
overlaid on top of the rasterization of the ground truth skeleton. Those pixels in the estimated skeleton outside of the rasterization are false
positives. (d) Ground truth skeleton overlaid on top of the rasterization of the estimated skeleton. The ground truth voxels that lie outside
of the black envelope are false negatives. (e) Skeleton recovered overlaid on top of the original image.

2. The stopping criterion on the K-MSTs represents a
good compromise between the True Positive Rate
(TPR) and the False Positive Rates (FPR). In all ex-
periments the TPR is reduced by at most 10%, while
the FPR is reduced by, at least, a factor of two with
respect to the MST approach.

In the remainder of this section, we first discuss our eval-
uation methodology in more detail. We then focus on the
two datasets where we evaluate our method.

4.1. Experimental methodology

Ground truth data sets were collected for both data types
by experts. The annotations denote the skeleton of the net-
work of filaments on the images. From those annotations,
samples inside and outside the filaments are obtained to
train the dendrite measure. For each data type we collected
a minimum of two fully annotated images. The annotated
data was divided into disjoint training, validation and test
sets, leaving at least one whole image for testing.

After detection, anchor points are selected by taking the
neighborhood of Eq. 12 to be a sphere of radius 20. This
produces between 500 to 2000 anchor points per image.

The K-MST algorithm is then run for values ranging
from two to the number of anchor points. The optimal k
value is obtained using Eq. 19.

The evaluation process is depicted in Fig. 5. Since the
ground truth contains width estimates, we render an image
stack by assigning a one to all points that are within the
corresponding distance from the dendritic spine and zero to
the others. We then consider as true positives all vertices of
our optimal tree that have received the one label. As shown
in Fig. 5(d), to compute the false negative rate, we reverse

the roles of the automatically reconstructed tree and of the
ground truth one. We use the former to assign labels using
the width associated to the dendriteness measure of Eq. 10
and count as false negatives all vertices of the latter that
receive a zero label.

4.2. Dendrites in Brightfield Image Stacks

Images of dendritic trees, shown in Figs. 1, 2, 5 and 6,
were obtained from brain sections of rats. The neuron is
dyed and then imaged with a brightfield microscope at dif-
ferent tissue depths. Each image stack has an approximate
dimensions of 1.5e3 × 2e3 × 1e2 pixels.

Several artifacts appear in these images due to irregulari-
ties of the staining process and non-gaussian blur attributed
to the image acquisition technique. As a result, many in-
teresting filaments appear as faint structures, present abrupt
intensity changes and are severely blurred. Furthermore,
the stain can dye irrelevant structures, such as blood vessels
close to the neuron under analysis. These structures result in
structured and unstructured noise that is difficult to separate
from the observations even for a human expert.

As shown in Fig. 2(c), many false anchor points are
created in the non-maxima suppression step, which yields
over-complete minimum spanning trees, such as the one
of Fig. 2(c). By applying our K-MST based optimization
method we can produce the tree of Fig. 2(f). Such trees
halve the False Positive Rates of the MST while reducing
the True Positive Rate by 5−10%, as shown in the ROC
curve of Fig. 4(a).

4.3. Blood vessels in retinal images

Blood vessel images obtained from the DRIVE data set
[22] are cleaner than the dendrite images described previ-



(a) (b) (c) (d) (e) (f)
Figure 6. (a),(b) Result of the delineation on two 3D brightfield image stacks. One of the main sources of error is around the soma of the
neurons. This is due to the fact that we do not model the topology of such regions and assume that there are only elongated structures in
the image. (c) A close-up of an image stack. (d) MST found by processing (c). (e) The skeleton estimated by the proposed algorithm. (f)
Ground truth skeleton.

a) b) c) d)
Figure 7. Result of the blood vessel delineation on two retinal images of the DRIVE data set. The second row is close-up of the image
of the first row. The third is a close-up of a different image. a) Original Images b) Skeletons of the manual segmentation, which is taken
as ground truth. c) MSTs spanning all anchor points d) Optimal K-MSTs spanning a subset of the anchor points. Note the differences
highlighted by the yellow circles.



ously. The background is mostly uniform and the vessels
appear as dark structures. However, the optic disk region is
a localized source of noise, which causes problems to both
our classifier and to the algorithms of [15, 10] as can be seen
in Fig. 7(a).

The data set contains 20 test images with manual seg-
mentations of blood vessels performed by trained human
observers. We applied a simple erosion-based skeletoniza-
tion algorithm to these segmentations to obtain centerlines
of the vessels, and used these skeletons as ground truth in
the objective evaluation.

Fig. 7 illustrates two sample results of our algorithm on
this data set. While simply spanning all anchor points yields
many false positives highlighted by the yellow ellipses in
Fig. 7(c) which are hard to prune at a later post processing
step, our K-MST based approach eliminates many outliers
through its global optimization procedure. This observation
is also supported objectively by the ROC curves given in
Fig. 4(b),(c), where MST yields a false positive rate almost
twice as high as that of our algorithm with an increase of
only 7% in the true positive rate.

It is important to note that although the 3D brightfield
image stacks occasionally contain very few cases of branch
crossings, 2D retinal images are full of such crossings.
Therefore, there are many loops in the images, which vio-
lates the tree topology model we utilize. As a result, the al-
gorithm removes the least cost edge from each loop, which
produces a dropout in the TPR.

5. Conclusion

We have presented a method to automatically infer tree
structures present on 2D and 3D images. In contrast to ear-
lier methods that take decisions based only on local image
evidence, our algorithm finds the most probable tree by op-
timizing a global cost function. This methodology allows us
to recover faint and disconnected filaments while rejecting
structured noise and is not subject to drifting artifacts that
affect other methods.

In future work, we will use informative tree priors that
encode topological information, such as width and orien-
tation constraints, tortuosity and smoothness into the opti-
mization. They fit perfectly in our framework and should
further boost performance.

References
[1] K. Al-Kofahi, A. Can, S. Lasek, D. Szarowski, N. Dowell-Mesfin,

W. Shain, J. N. Turner, and et al. Median-based robust algorithms for
tracing neurons from noisy confocal microscope images, december
2003.

[2] F. Benmansour, L. D. Cohen, M. W. Law, and A. C. Chung. Tubular
anisotropy for 2d vessels segmentation. In CVPR, 2009.

[3] C. Blum and M. J. Blesa. New metaheuristic approaches for the
edge-weighted k-cardinality tree problem. pages 1355–1377, 2005.

[4] A. R. Cohen, B. Rosyam, and J. N. Turner. Automated tracing and
volume measurements of neurons form 3-d confocal fluorescence
microscopy data. Journal of Microscoopy, 173:103–114, February
1994.

[5] P. Doucette, P. Agouris, A. Stefanidis, and M. Musavi. Self-organised
clustering for road extraction in classified imagery. IJPRS, 55:347–
358, 2001.

[6] J. F. Evers, S. Schmitt, M. Sibila, and C. Duch. Progress in Func-
tional Neuroanatomy: Precise Automatic Geometric Reconstruction
of Neuronal Morphology From Confocal Image Stacks. J Neuro-
physiol, 93(4):2331–2342, 2005.

[7] P. Felzenszwalb and D. McAllester. A min-cover approach for find-
ing salient curves. In CVPRW ’06: Proceedings of the 2006 Confer-
ence on Computer Vision and Pattern Recognition Workshop, 2006.

[8] M. Fischler and A. Heller. Automated Techniques for Road Network
Modeling. In DARPA IUW, Monterey, CA, 1998. Morgan Kaufmann.

[9] M. Fischler and H. Wolf. Linear Delineation. In CVPR, pages 351–
356, June 1983.

[10] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever.
Multiscale vessel enhancement filtering. Lecture Notes in Computer
Science, 1496:130–137, 1998.

[11] N. Garg. A 3-approximation for the minimum tree spanning k ver-
tices. In IEEE Symposium on Foundations of Computer Science,
pages 302–309, 1996.

[12] G. Gonzalez, F. Aguet, F. Fleuret, M. Unser, and P. Fua. Steerable
Features for Statistical 3D Dendrite Detection. In MICCAI, London,
UK, September 2009.

[13] G. Gonzalez, F. Fleuret, and P. Fua. Automated Delineation of Den-
dritic Networks in Noisy Image Stacks. In ECCV, Marseille, France,
October 2008.

[14] G. Gonzalez, F. Fleuret, and P. Fua. Learning Rotational Features for
Filament Detection. In CVPR, Miami, FL, June 2009.

[15] M. Jacob and M. Unser. Design of steerable filters for feature de-
tection using Canny-like criteria. PAMI, 26(8):1007–1019, August
2004.

[16] M. Law and A. Chung. Three dimensional curvilinear structure de-
tection using optimally oriented flux. In ECCV, pages 368–382,
2008.

[17] C. McIntosh and G. Hamarneh. Vessel crawlers: 3d physically-based
deformable organisms for vasculature segmentation and analysis. In
CVPR, pages 1084–1091, Washington, DC, USA, 2006.

[18] E. Meijering, M. Jacob, J.-C. F. Sarria, P. Steiner, H. Hirling, and
M. Unser. Design and validation of a tool for neurite tracing and
analysis in fluorescence microscopy images. Cytometry Part A,
58A(2):167–176, April 2004.

[19] E. Mortensen and W. Barrett. Intelligent Scissors for Image Com-
position. In SIGGRAPH, pages 191–198, Los Angeles, CA, August
1995.

[20] J. Platt. Advances in Large Margin Classifiers, chapter Probabilistic
Outputs for SVM and Comparisons to Regularized Likelihood Meth-
ods. MIT Press, 2000.

[21] A. Santamarı́a-Pang, C. M. Colbert, P. Saggau, and I. Kakadiaris.
Automatic centerline extraction of irregular tubular structures using
probability volumes from multiphoton imaging. In MICCAI, pages
486–494, 2007.

[22] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Gin-
neken. Ridge based vessel segmentation in color images of the retina.
IEEE Transactions on Medical Imaging, 23:501–509, 2004.

[23] A. Szymczak, A. Stillman, A. Tannenbaum, and K. Mischaikow.
Coronary vessel trees from 3d imagery: a topological approach.
Medical Image Analisys, 08 2006.

[24] C. M. Weaver, P. R. Hof, S. L. Wearne, and W. B. Lindquist. Auto-
mated algorithms for multiscale morphometry of neuronal dendrites.
Neural Computation, 16(7), 2004.


