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A B S T R A C T

Inference from data is of key importance in many applications of informatics.
The current trend in performing such a task of inference from data is to utilise
machine learning algorithms. Moreover, in many applications that it is either
required or is preferable to infer from the data in a distributed manner. Many
practical difficulties arise from the fact that in many distributed applications we
avert from transferring data or parts of it due to costs, privacy and computation
considerations. Admittedly, it would be advantageous if the final knowledge,
attained through distributed data inference, is common to every participating
computing node.

The key in achieving the aforementioned task is the distributed average
consensus algorithm or simply the consensus algorithm herein. The latter has
been used in many applications. Initially the main purpose has been for the
estimation of the expectation of scalar valued data distributed over a network
of machines without a central node. Notably, the algorithm allows the final
outcome to be the same for every participating node.

Utilising the consensus algorithm as the centre piece makes the task of dis-
tributed data inference feasible. However, there are many difficulties that hinder
its direct applicability. Thus, we concentrate on the consensus algorithm with
the purpose of addressing these difficulties.

There are two main concerns. First, the consensus algorithm has asymptotic
convergence. Thus, we may only achieve maximum accuracy if the algorithm
is left to run for a large number of iterations. Second, the accuracy attained at
any iteration during the consensus algorithm is correlated with the standard
deviation of the initial value distribution. The consensus algorithm is inherently
imprecise at finite time and this hardens the learning process.

We solve this problem by introducing the definitive consensus algorithm. This
algorithm attains maximum precision in a finite number of iterations,namely
in a number of iterations equal to the diameter of the graph in a distributed
and decentralised manner. Additionally, we introduce the nonlinear consensus
algorithm and the adaptive consensus algorithm. These are modifications of the
original consensus algorithm that allow improved precision with fewer iterations
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in cases of unknown, partially known and stochastically time-varying network
topologies.

The definitive consensus algorithm can be incorporated in a distributed data
inference framework. We approach the problem of data inference from the
perspective of machine learning. Specifically, we tailor this distributed infer-
ence framework for machine learning on a communication network with data
partitioned on the participating computing nodes. Particularly, the distributed
data inference framework is detailed and applied to the case of a multilayer feed
forward neural network with error back-propagation. A substantial examination
of its performance and its comparison with the non-distributed case, is provided.

Theoretical foundation for the definitive consensus algorithm is provided.
Moreover, its superior performance is validated by numerical experiments.
A brief theoretical examination of the nonlinear and the adaptive consensus
algorithms is performed to justify their improved performance with respect to
the original consensus algorithm. Moreover, extensive numerical simulations
are given to compare the nonlinear and the adaptive algorithm with the original
consensus algorithm.

The most important contributions of this research are principally the definitive
consensus algorithm and the distributed data inference framework. Their
combination yields a decentralised distributed process over a communication
network capable for inference in agreement over the entire network.

Keywords: Consensus, Distributed, Learning, Distributed algorithms, Dis-
tributed Inference, Distributed Data, Collaborative Learning, Agreement, Non-
linear Consensus, Adaptive Consensus, Definitive Consensus, Finite time con-
sensus, Networks, Communication networks, Neural networks, Graphs, graph
Diameter, graph Radius, Groebner bases, Multilinear Polynomial systems of
equations, nonlinear Optimisation, Dynamical Systems.
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R E S U M É

L’inférence à partir des données est d’une importance capitale pour nombreuses
applications de l’informatique. L’utilisation des algorithmes de l’apprentissage
automatique est la tendance actuelle pour l’accomplir. De plus, dans de nom-
breuses applications il est préférable ou requis de d’effectuer l’inférence à partir
des données d’une manière distribuée. En fait, dans de nombreuses applications
distribuées on aimerait éviter de communiquer les données à travers le réseau à
cause des considérations de coût, de confidentialité, et de quantité des calculs.
De plus, il serait avantageux si la connaissance atteinte à partir des données sera
commune à tous les ordinateurs impliqués.

L’algorithme clé dans la conception d’inférence distribuée est l’algorithme du
consensus moyen distribué, appelé simplement algorithme du consensus par
la suite. Il y a de nombreuses des applications où cet algorithme a été utilisé.
Initialement, celui-ci a été prévu pourle calcul de la moyenne d’une quantité
scalaire distribuée sur un réseau d’ ordinateurs qui n’ont pas de noeud central
de calcul. Notons que l’algorithme fonctionne de sorte que cette moyenne est à
la fin connue par chaque ordinateur du réseau.

L’utilisation de l’algorithme distribué du consensus moyen comme la pièce
maîtresse rend la tâche de l’inférence à partir des données distribuées faisable.
Cependant, il y a beaucoup de difficultés qui entravent de son application. Par
conséquent, nous nous concentrerons sur l’algorithme distribué du consensus
dans le but d’adresser ces difficultés.

Il y a deux problèmes principaux. En premier lieu, l’algorithme distribué
du consensus converge asymptotiquement. Par conséquent la précision max-
imum est atteinte quand l’algorithme tourne pour de nombreuses itérations.
En deuxième lieu, la précision atteinte durant l’exécution est corrélée avec la
déviation standard de la distribution initiale des valeurs distribuées. Ainsi,
l’algorithme est intrinséquement imprécis à temps fini ce qui rend le processus
d’ apprentissage plus difficile.

Nous résolvons ce problème en introduisant l’algorithme distribué du con-
sensus définitif. Cet algorithme atteint la précision maximale en un nombre
fini d’itérations, plus précisément en un nombre des itérations égal au diamètre
du graphe qui représente le réseau de communication. Il fonctionne d’ une
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manière distribuée et décentralisée. De plus, nous introduisons les algorithmes
du consensus non-linéaire et adaptif. Ce sont des modifications de l’algorithme
du consensus original qui permettent l’amélioration de la précision en faisant
moins d’itérations dans les cas de topologies inconnues, partialement connues
et stochastiquement variables dans le temps.

L’algorithme du consensus définitif peut être utilisé dans le cadre de l’inférence
à partir des données distribuées. Nous étudions ce problème dans la perspective
de l’apprentissage automatique. Spécifiquement, nous concrétisons ce cadre de
l’inférence distribuée dans le cas d’un réseau de communication des ordinateurs
où les données sont distribuées aux ordinateurs. En particulier, l’inférence des
données distribuées est détaillé dans le cas d’ un réseau de neurones multicouche
“feed-forward” avec rétro-propagation de l’erreur. Nous fournissons une analyse
substantielle de sa performance ainsi que la comparaison avec le cas non-
distribué.

La fondation théorétique de l’algorithme du consensus définitif est fournié.
En plus, sa performance supérieure est validée par des simulations numériques.
Également, une analyse sommaire des algorithmes non-linéaire et adaptif
est fournie pour justifier leur performance améliorée en comparaison avec
l’algorithme du consensus original. De plus, nous présentons les résultats de
simulations numérique qui permettent de comparer les algorithmes non-linéaire
et adaptif avec l’algorithme original.

Les contributions les plus importantes de cette thèse sont l’algorithme du
consensus définitif et le cadre de l’inférence automatique à partir de données
distribuées. La combinaison de ces deux algorithmes réalise le processus de
l’inférence décentralisée et distribuée avec consensus sur le réseau entier.

Mots clés: le consensus, distribué, l’apprentissage, les algorithmes distribués,
l’inférence distribué, les données distribuées, l’apprentissage collaboratif, l’accord,
le consensus non-linéaire, le consensus adaptive, le consensus définitif, le con-
sensus en temps fini, les réseaux, les réseaux de communication, les réseaux de
neurones, le diamètre du graphe, le rayon du graphe, les bases de Groebner, les
systèmes d’équations polynomiales, l’optimisation non-linéaire, les systémes
dynamiques.
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Part I

B A S I C S





1
I N T R O D U C T I O N

In the preface we have briefly described the problem, our motivation, the main
purpose of this thesis, provided a silhouette of the proposed solution, and the
main contributions of this research. In this chapter, we embark to provide
detailed arguments that justify this research, introduce the main notions in more
detail, and enumerate the contributions of this work. A discussion of related
research is necessitated for the reader to be persuaded for the novelties of our
contributions. Finally, we provide a brief outline of the remainder of this thesis
in order to guide the reader and communicate the main purpose of each chapter.
Throughout this chapter we avert from using mathematical nomenclature to
facilitate understanding; before we embark on more complex analysis.

1.1 introduction

This thesis directly relates to the field of distributed information processing
by consensus, or simply information consensus (Olfati-Saber and Murray, 2004).
We extend this notion to treat a larger class of problems by introducing the
distributed data inference framework. Notably, in such a setting, the distributed
average consensus algorithm has a central role and its performance, and thus
its finite time accuracy as well, is of key importance. The latter necessitates our
research with respect to consensus. Our purpose is to improve its convergence
behaviour. This results in the introduction of the so-called definitive consensus
algorithm.

In order to avoid misinterpratation of the term consensus, in this work it is
important to distinguish it from the standard computer science nomenclature. process consensus,

and information
consensus

There, consensus is related to termination criteria of a distributed set of processes
such that these terminate when they are in agreement. This relates to the
Byzantine generals problem and agreement of faulty processes (Lamport et al.,
1982), (Lamport, 1983), (Fischer et al., 1985). Our work lies far from that field of
research.

Our motivation draws initially from distributed average consensus estima-
tion in wireless sensor networks (WSN). There a sensed physical quantity, e.g.
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temperature or humidity, is measured at each wireless sensor node. Assuming
a normal distribution of observations, one applies the consensus algorithm to
approximate the expectation of the initial data distribution, as in (Xiao et al.,
2005). This is achieved with local only communications between one-hop nodes
by exchanging the associated state variable. Subsequently, a local average is
computed at each node. Finally, the state at each node is updated with this new
estimate. The algorithm proceeds iteratively with this two step communication -
update process. The latter converges asymptotically such that all nodes in the
network obtain the same approximation of the distribution of the initial values.

The most important advantage of the consensus algorithm is that eventually
the average becomes available at every computing node in the WSN, without the
need of a central computing node. This alleviates many problems, like routing,
congestion, and computation burden while at the same time augments overall
robustness of the network. However, one might object that the assumption of
normality may not always hold. In contrast, we support that the consensus
algorithm can be modified such that it can be applied to an augmented class of
possible applications through a distributed data inference framework.

Having the latter in mind, we concentrate on determining the class of problems
that can be treated with the consensus algorithm. These include the cases where
due to the nature of the data, or due to computational restrictions, data has to
be treated distributively. Additionally, there are numerous conjoined problems
where the outcome should preferably be available at every computing node. The
union of these two classes forms the class of problems which can be treated with
the consensus algorithm within the distributed data inference framework. In
this class, data has to be treated both distributively in order to achieve inference,
and simultaneously all participating computing nodes should agree on the final
outcome.

Particularly, problems in such a class arise from data having four principal
properties. First, data is unobtainable when its collection is either impossibleproblems for

distributed data
inference

or undesirable. Second, data cannot be computed with a designated inference
algorithm by a single machine of specific computing power. Thus, within
this context it is incomputable. Third, data is intrinsically distributed; hence
the collection of the data at a central node for computation would not be
advantageous, given an equivalent distributed algorithm for the same task.
Fourth, data is private, and collection of the data centrally would expose the data
to the computing node. Inevitably, one has to infer from data distributively. We
refer to this class of problems as UIDP (Unobtainable, Incomputable, Distributed,
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Private). In order to treat this class of problems, we introduce a distributed
data inference framework based on a variant of the consensus algorithm. Our
purpose is to treat all problems, falling in the aforementioned class (UIDP),
collectively.

The consensus algorithm is of key importance, in achieving many information
processing tasks distributively such that the final outcome at each computing
node is in agreement with the rest. The main drawback is that convergence
to the average is asymptotic. Therefore, the algorithm can be very slow and
imprecise in early stages. Moreover, given that the algorithm is executed for
a fixed number of iterations, precision can be significantly correlated to the
distribution of the initial observations.

This fact raises difficulties both in the case of contemporary applications of the
consensus algorithm, e.g. WSN, and our envisioned generalisations for the treat-
ment of the (UIDP) class of problems, as well. In order to overcome this, we shall
introduce three modifications of the consensus algorithm. Principally, the defini-
tive consensus algorithm which alleviates this problem, and achieves maximum
accuracy in minimum number of iterations. The latter can be applied in the case
of synchronous network communication and fully known non-varying topology.
In order to treat other cases where topology is partially known, we introduce
the nonlinear consensus algorithm. The later demonstrates improved precision
in early stages when comparing with consensus algorithm. Finally, in cases of
uncertain communication we introduce the adaptive consensus algorithm.

Let us now avert the discussion from the abstract description of the themes
and problems handled to introduce the consensus algorithm, the key notion
within this thesis.

1.2 preamble on the consensus algorithm

Assume a class of machines able to store information and perform the following
two functions. First, perform computation; second, communicate with another
machine of the same class. Usually, memory is very small, in the range of a few
variables of single precision floats.

Furthermore, suppose such machines are arbitrarily connected, and form a
communication network. It is sufficient that the communication network has
an associated graph that is connected. This implies that for any two machines
on the network there is a sequence of hops, a route, through other machines
connecting these two machines such that information on the first machine can
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be transferred onto the second through this sequence of hops. Moreover, assume
that each machine stores an associated state variable.

The discrete time distributed average consensus algorithm, or just consensus
algorithm, is an iterative distributed algorithm. It allows the computation of thewhat is the

consensus
algorithm?

average of the state variables, distributed on the machines in the communication
network, without routing, and in a completely distributed and decentralised
manner. The latter is achieved in the following manner.

Each machine is able to communicate directly on the network with at least one
other machine, i.e. a neighbour. In the first step of the algorithm, each machine
communicates with all its neighbours and performs two actions. Firstly, it sends
its own state, and thereafter retrieves the states of its neighbouring machines.
The manner that this communication happens, i.e. packet transmission protocols
and communication frames, is not within the scope of this research. However,
we mention that there are more than just a few protocols to allow this type of
communication in an ad-hoc, non routed network.

Secondly, in the next step of the algorithm, the machine computes a local
weighted average of the values retrieved from its neighbouring machines along
with its own. Subsequently, the state variable of the machine is updated with
this local weighted average. This two step process, communicate and update,
converges asymptotically to the sample average of the initial value distribution
for every participating machine. A nice presentation of the algorithm can be
found in (Lynch, 1996). A thorough examination of the algorithm’s asymptotic
behaviour is given in (Chapter 2).

Given that the aforementioned machines perform finite precision arithmetic,
we can affirm the following two. First, that after a large, but finite number of
iterations, the algorithm will attain maximum precision. Thus, at any machine
the absolute of the difference of the state variable from the average will not
decrease in subsequent iterations. Second, that the absolute of the difference of
a machine from any other in the network will not decrease any further. In that
case, the machines are in agreement and we say that they are at consensus.

The principal disadvantage of the algorithm is its asymptotic convergence.
The latter implies that many iterations are needed. These are costly in terms of
communication, energy, and time. Moreover, another predicament deduced from
the fact that states of any two machines may not by identical; instead, these vary
near the average. Even when the algorithm has reached agreement, the states
among different machines may present differences in the least significant digit.
However, the algorithm’s significant advantage of non-centralised completely
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distributed ad-hoc computation capability over a set of machines fuels this
research with the purpose of ameliorating these problems.

1.3 purpose and target problems

The principal purpose of the research, presented within this thesis, is the creation
of algorithms based on the aforementioned consensus algorithm that retain its
advantages, ameliorate its deficiencies, and at the same time solve the following
problems:

Problem 1.1. Suppose that the topology of the communication network is completely
known. Then, minimise the number of update iterations needed to reach consensus up
to precision.

Problem 1.2. Infer from data belonging to the UIDP class in a completely distributed
fashion over a communication network.

Moreover, in order to extend the applicability of the distributed data inference
framework, the following problems are considered, as well.

Problem 1.3. Maximise the accuracy of the consensus algorithm while minimising
the number of iterations in all three cases of completely known, partially known, and
unknown topology.

Problem 1.4. Maximise the accuracy of the algorithm while minimising the number
of iterations in the case of uncertain communications.

1.4 application domain and motivation

In order to capture the interest of the reader, we provide an introductory
discussion of possible applications of this work. This may also serve as further
justification of our motives in the research field of information consensus. A
broader discussion of envisaged applications is given in (Section 7.2).

The consensus algorithms, developed within this thesis, can be primarily
applied to any field where the linear average consensus algorithm is applicable.
There are some additional minor demands on memory; however, even for huge
networks, these should not surpass the kilobyte limit. Some of the algorithms
need floating point arithmetic which can be usually taken care with look-
up tables, in systems with limited processing power; something that would
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require more memory. However, with the advent of modern computer systems
and low-cost, low-energy processors these matters are without great practical
importance. Hence, such memory demands should not be regarded as an
important drawback. Summarising a few of the contemporary applications
of the consensus algorithm, one should include WSN, distributed computing,
parallel computing, multi-agent coordination and collaboration.

The application of the distributed data inference framework has greater de-
mands computationally. However, the computational burden is primarily due to
the machine learning algorithm being employed. Therefore, this predicament is
not a result of the distributed inference algorithm but depends on the learning
algorithm of choice. The machine learning algorithm can be chosen per case to
correspond with the computing power available at each machine on the network.

The distributed data inference can be possibly applied in a number of applica-
tions where inference from complex patterns is required, such that environmen-
tal monitoring, data mining on large datasets, social network mining, clinical
data mining, banking data mining. Some examples of envisaged application are
provided in (Section 7.2).

1.5 thesis contributions

Our contribution in the field of information consensus is twofold. Firstly, we
add to the research area related to the distributed average consensus algorithm,
which has been primarily initiated from the work of (Tsitsiklis, 1984). Secondly,
we introduce the framework for distributed data inference by consensus. Cur-
rently, machine learning is principally employed to perform the task of inference.
We follow this trend in our work, as well.

The principal contribution is the definitive consensus algorithm, accompanied
by a scheme to determine the coefficients of the weighted edges. This algorithm
is both theoretically sound and numerically verified. The second major addition
is the distributed data inference framework and its application in the case of a
multilayer feed-forward neural network with back-propagation.

However, the definitive consensus algorithm cannot be applied when the
communication network is huge or its topology partially known. Moreover, the
case of uncertain communication cannot be treated. In order to handle these
deficiencies, we explore the convergence behaviour of the consensus algorithm.
This results in another important contribution. Specifically, we introduce the
notions of the transient and the asymptotic phase. Something that leads to the
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claim that the modulation of the edge weights, throughout the process, may
improve the rate of convergence. This can be best performed by varying the
weights with respect to state. The development of the nonlinear average con-
sensus algorithm is founded on these observations. Finally, following the same
research direction, we attempt to treat the case of uncertain communications
with the adaptive consensus algorithm.

1.6 related research

This thesis relates directly with current ongoing research in the field of dis-
tributed average consensus algorithms and the area of ad-hoc distributed data
inference. An overall description of past and current research, in the aforemen-
tioned fields, is provided within this section. Moreover, the differences between
the approaches found in the literature and our work are highlighted.

1.6.1 Literature on Consensus

The applications of distributed average consensus are mainly targeted in wireless applications of
consensussensor networks, parallel computation and multi-agent coordination. One

should refer to (Bertsekas and Tsitsiklis, 1989) and (Tsitsiklis et al., 1986), for
the application of the consensus algorithm in distributed computing. Also, the
method in (Hendrickson and Kolda, 2000) may be combined with the consensus
algorithm in a distributed setting. Even though the method is not explicitly
outlined for the case of distributed computation, it provides nevertheless an
abstract framework.

In the case of WSNs the related literature is rapidly increasing in the past few
years. Particularly, the research described within this thesis has been partially
funded by the WINSOC project, refer to Acknowledgments. The project has
been a EU initiative with main purpose of applying decentralised algorithms
for environmental monitoring; something that demonstrates a larger interest in
this field of research. An application of the algorithm in the case of landslide
detection, within the context of the WINSOC project, can be found in (Ramesh
et al., 2009). Another application in the case of fire detection has been presented
in (Khadivi and Hasler, 2010). Additional research in the field of WSNs can be
found in (Zhao et al., 2003), (Gupta et al., 2005). Numerous applications of the
algorithm are also found in the field of multi-agent coordination and indicative
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current work may be found in (Blondel et al., 2005), (Olfati-Saber, 2006), (Ren
et al., 2008), (Dimarogonas and Kyriakopoulos, 2008), (Tanner et al., 2007).

Our research has been mainly theoretical, and to our knowledge, none of the
algorithms or mathematical proofs contained within this thesis can be found
in the literature, unless specifically cited. However, a large part of our work is
based on previous research, and the algorithms developed can be considered as
extensions or variants of the consensus algorithm. For completeness’ sake, we
mention the related theoretical work.

The distributed average consensus algorithm has been initially mentionedinitial work on
consensus in (Tsitsiklis, 1984). The reader should consult pages 121-140 of the afore-

mentioned thesis for a thorough theoretical presentation of the algorithm. A
preceding description of the algorithm is given in (Borkar and Varaiya, 1982). A
rather abstract approach of the communication-update process can be found in
(Geanakopolos, 1982).

A discussion of the algorithm in the specific perspective of WSNs is given in
(Lynch, 1996). Moreover, a rather detailed review and analysis is given in (Olfati-
saber et al., 2007) for both continuous and discrete time systems. Specifically,
we consider only the discrete time case; a comprehensive discussion of the
algorithm for discrete time systems is given in (Section 2.3).

As already mentioned, the problem of consensus in scalar values, or informa-
tion consensus, may be treated with the distributed average consensus algorithm.
However, the number of iterations until convergence can be large due to the
algorithm’s asymptotic nature; something that deteriorates as the size of the
associated communication network increases. The convergence time can beconvergence

improvements for
the consensus

algorithm

improved by adjusting the weights in the weighted average associated with the
retrieved states from the neighbouring machines. In this such an approach, one
tries to minimise an associated utility function. In the work of (Xiao and Boyd,
2003) and (Xiao et al., 2007), it has been demonstrated that the maximisation of
the spectral gap of the weight matrix, associated with the network, results in a
convex problem. Optimising the weights (Boyd and Vandenberghe, 2004) results
in maximum asymptotic speed of convergence, as demonstrated in (Xiao et al.,
2007). Details, related to the problem’s graph theoretic notions, are provided in
(Section 2.2).

The case of partial knowledge of topology can be handled in a non-optimal
manner by using the so called Metropolis-Hastings or local-degree weights
(Xiao and Boyd, 2003). Constant edge weights may be used in case of unknown
topology (Xiao and Boyd, 2003). The latter, require knowledge of the degree
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of each node on the network. Moreover, with a simple framework based on
these weights, one is able to handle failing links. This is due to the fact that the
node’s own degree is always known. Another reference, involving time-varying
weights, has been made in (Olshevsky and Tsitsiklis, 2006).

Our work relates to the aforementioned research. Particularly, one finds at
the core of our research the problem of selecting the weights at each step such
that time to convergence is reduced. Specifically, our work is differentiated time-varying

weightsfrom the work of (Xiao and Boyd, 2003); mainly for the fact that the weights
are modulated during the process, with the purpose of improving the rate of
convergence during the duration of the process. There, this is suggested for the
purpose of treating uncertain communications. However, we similarly vary the
weights with the purpose of improving the rate of convergence.

Similar attempts are made in (Olfati-Saber and Murray, 2004), where the notion
of dynamic graphs is introduced, and a proof of convergence is given for the case
of strongly connected balanced digraphs. We have shown this in (Georgopoulos
and Hasler, 2009b) for any undirected graph. Additional research with the
purpose of treating the problem of failing links with time-varying weights may
be found in (Gupta et al., 2005), (Moreau, 2005).

In our work, we relate the weight modulation with the state variable instead
of the number of failed communication links, as in the aforementioned literature.
Moreover, we distinguish the existence of two phases, the asymptotic and the
transient. Furthermore, we recognise the impact of the latter, in the number
of iterations to convergence. Concluding, we employ time varying weights
for both reducing the number of iterations to convergence and the treatment
of uncertainties in communications. Specifically, the reduction of iterations to
convergence, is performed with the definitive, and the nonlinear consensus
algorithm. The case of uncertain communications with failing links can be
improved by the adaptive consensus algorithm.

1.6.2 Literature related to Distributed Data Inference

The most closely related research area is the field of distributed optimisation,
(Rabbat and Nowak, 2004). The latter can be considered a specific case of distributed

optimizationdistributed computation, as in (Bertsekas, 1996). The past few years a growing
interest in the field has lead to a number of publications, as in the case of
distributed gradient estimation through sub-gradients by consensus (Johansson
et al., 2008). Also, a distributed Newton method employing the consensus
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algorithm has been introduced in (Jadbabaie et al., 2009). Additional work on
distributed optimisation may be found in (Nedic et al., 2010), (Cavalcante et al.,
2009). The common factor in the aforementioned work is that a local gradient
is associated with the state of each machine in the network. Subsequently, by
application of the consensus algorithm, it is made possible to retrieve an estimate
of the gradient at each participating machine in the entire network.

However, the interest of researchers in distributed optimisation is different. Andistributed
machine learning
and optimisation

differences

optimisation differs from a learning problem; the generative function of the data
is known a priori. Instead, in standard machine learning jargon, it is implied that
data is generated from an unknown generative function. In the simplest case, one
is aware of the class of generative functions but this still poses a hard problem.
Its treatment is usually attempted with parametric methods; these result in an
optimisation problem. However, in the general case, the generative function of
the data is unknown. The first successful machine learning algorithm to treat
the problem in its general form was the multilayer neural network with back-
propagation. There no assumptions are made for the model of the data, and it
has been theoretically supported that a neural network with one hidden layer can
learn any problem (Bishop, 1996). Alas, this theoretical result does not guarantee
the performance of the network in practice. Concluding, the aforementioned
methods in the literature of distributed optimisation are the tools that may be
employed to perform distributed data inference, in the same sense that machine
learning algorithms utilise non-distributed optimisation to infer from data. Yet,
machine learning is not considered the same as optimisation.

Particularly, in the field of distributed machine learning there is some ongoing
research. This is mainly focused in the case of distributed or parallel supportdistributed

machine learning
literature

vector machines, (Ang et al., 2008), (Navia-Vazquez et al., 2006), (Lu et al.,
2008). Another notable attempt in modifying the EM-algorithm for distributed
computation by information consensus is found in (Kowalczyk and Vlassis,
2005). However, these studies are specific to each of the learning algorithms. In
contrast, our work may be applied to larger class of machine learning algorithms.

1.7 thesis layout

This thesis is organised in three parts, the Basics, the Algorithms and the
Discussion. The first part has the purpose of introducing the reader to the theme
of this thesis and provide the necessary theoretical foundation. Specifically,
in (Chapter 1) we describe the problem, the basic notions, and the foreseen
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solutions while avoiding any mathematical formulation. Then, in (Chapter 2), we
shall give the necessary theoretical foundation and introduce all the necessary
mathematical formulation.

In part ii we present the algorithms. Particularly, in (Chapter 3) the nonlinear
and the adaptive consensus algorithms are presented. Then, in (Chapter 4) we
present the definitive consensus algorithm which is the major contribution of this
research. In (Chapter 5) we present the second major contribution, which is the
distributed data inference framework. This is applied in the case of distributed
machine learning, specifically for the multilayer feed-forward neural networks
with back-propagation.

The next part, part iii, has the purpose of persuading the reader of the
truthfulness and the practicality of our claims. For this reason, we present in
(Chapter 6) the results of extensive numerical experiments for all the algorithms
presented in this thesis. Finally, in (Chapter 7), we summarise the thesis, provide
a discussion on the possible application domains of this work, and detail possible
future directions.
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2
T H E O RY

Within this chapter, we illustrate the theoretical arrangement that is necessary
for the comprehension of successive chapters. Additionally, this should serve as
reference for notions subsequently mentioned . The subjects developed within
this chapter are Graph theory, Consensus, Groebner Bases. The acquainted reader
of these subjects may advance to (Chapter 3) and refer here as needed. We
assume the reader to be knowledgeable in linear algebra and dynamical systems
theory.

2.1 communication network

We commence by considering a number of machines able to compute and
communicate in an arbitrary manner. The term communication permits the
complete process of emission of a packet of digital information from a machine
A and its reception from another machine B without the intermediation of a
third machine C. Machines A and B are said to be directly connected, but for
simplicity’s sake we just refer to as connected; such machines are also called
neighbours. We do not consider particularly the manner that this communication
is achieved in detail. Hence, the incorporated communication protocols are of
no interest within the scope of this research. In terms of the OSI layered model
for communications, our work resides in the application layer (number 7).

Moreover, we assume that all machines in the network are capable to com-
plete a round of communications with all their neighbours within a given time
frame. Communications outside this time frame are considered dropped; these
are going to be indicated as link failures, later on. Therefore, matters of de-
layed communications evade the purpose of this research. This time frame is
considered to be the basic time unit. The sequence of communications, with
respect to this time unit, defines a time sequence for the system of networked
machines or simply time. The time index shall be denoted as t herein. As
direct consequence of this assumption, the communications shall be considered
synchronous. Even though the specific communication protocols, incorporated
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to achieve these communications, can be asynchronous, have delays, use routing,
and treat congestion, in our perspective these are of no concern.

This network of connected machines gives rise to a topology at each time unit.
Such a topology can be well described with a graph depicting the connections
as edges and the machines as vertices for each time instantiation. Graphs are of
key importance for the advancement of the analysis performed herein, and we
provide subsequently an introduction on graph theoretical matters of interest.

2.2 graph theory related

The literature on the subject is vast. The reader may consult the following
introductory (Biggs, 1974),(Godsil and Royle, 2001) and advanced (Hatcher,
2001) material for additional details on the subject. We illustrate some the
notions, found in the literature, hereafter.

2.2.1 Graphs

Graphs are often used to indicate the relation of a group objects in an large area
of science such as biology, informatics, economics, chemistry, social sciences
and physics. In computer science, graphs have been initially related to the
representation of state machines and automata. In communication sciences,
graphs are vastly employed to represent networked machines. Herein as well,
graphs are adopted to describe the topology of the communication network
arising from the operation of the consensus algorithm.

Definition 2.1 (Graph). A graph G is a pair of sets, the vertex set V and the edge set
E, along with an incidence function γ; one writes G(V, E,γ).

The essential part of a graph is the vertex set, which is the representation of
the objects of which the relations are being modelled with the edges. The vertex
set is necessarily not empty.

Definition 2.2 (Vertex Set). A vertex set V is a finite non empty set with its elements
called vertices.

The vertices’ labels can be unordered. However, an ordered labelling eases the
discussion. Herein vertices are labelled as vi where i ∈ {1, 2, . . . ,n} and n is the
number of elements in V, i.e. the cardinality of the vertex set. One also writes
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Figure 1: Graph Examples. The vertices are denoted by grey dots and edges are the lines
connecting them. Left: Tutte’s 8-cage. Right: Largest 3-regular of diameter 3.

V(G) to denote the vertex set of the graph G, e.g. V(Gk) denotes the vertex set of
graph Gk.

In order to model the relations between the objects included in the vertex set,
the edge set of the graph is defined. Each edge in the set signifies a relation
between two vertices.

Definition 2.3 (Edge Set). An edge set E is a finite set of tuples of vertices; the tuples
are called edges.

The edge set can be an unlabelled unordered set, possibly empty. In order
to facilitate the discussion, the elements of the edge set are denoted ek and
k ∈ {1, 2, . . .m} with m denoting the cardinality of E. As in the case of the vertex
set, we write E(G) to signify the edge set of a graph G.

Conventionally, vertices are graphically depicted as points and the edges as
lines connecting the associated vertices. In fact, the naming of the edges and
vertices draws from this intuitive graphical representation of relations between
the objects. A couple of example graphs are depicted in (fig.1).

The incidence function maps each edge ek to a pair of vertices {vi, vj} where
i ∈ {1, 2, . . . n} and j ∈ {1, 2, . . . n}, denoting a relation of objects. Generally, an
edge may be mapped to an tuple of vertices, called multi-edges. Conventionally,
an edge is a pair of vertices. Particularly, within the scope of our research,
multi-edges evade the purpose of modelling the the communication network’s
topology, arising from the operation of the consensus algorithm. We only
consider edges between pairs of not necessarily distinct vertices. In the latter
case, i.e. the edge is {vi, vi}, these are called self-edges or self-loops.
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Figure 2: Induced GraphsThe red edges and vertices depict a subgraph which is both vertex
and edge induced

Definition 2.4 (Incidence function). The incidence function γ of the graph G is a
map γ : E→ V×V.

Notation can be simplified by omitting the incidence function, and define the
edge set as the set of associated vertices. We shall follow this convention from
here on.

Definition 2.5 (Edge Set). An edge set E is a finite unordered set of pairs of vertices,
called edges.

We can redefine the graph using this simplified notion of an edge set. The inci-
dence function may also be omitted and write G(V, E). Usually, this subsequent
simplified definition of a graph is used.

Definition 2.6 (Graph). A graph G is a pair of sets, the vertex and the edge set,
denoted G(V, E) where the vertex set V is a finite non empty set and the edge set E is
set of pairs of the elements of V.

2.2.1.1 Subgraphs

Suppose two graphs such that the vertex and the edge set of the first are subsets
of the second. Then, the first is a subgraph of the latter. Particularly, given a
graph G(V, E) and another graph Gs satisfying V(Gs) ⊆ V(G) and E(Gs) ⊆ E(G),
then Gs is a subgraph of G.

An important class of subgraphs are the so-called induced subgraphs. An
induced subgraph can be edge induced or vertex induced. In an induced
subgraph G∗, the inducing set is a subset of the corresponding set of G and the
induced set of G∗ includes those elements of the conjoined set of G which are
adjacent to the elements of the inducing set.
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Definition 2.7 (Vertex induced subgraph). A vertex induced subgraph G(V∗) of
a graph G(V, E) has a vertex set which is a subset of the vertex set of G, satisfying
V∗ ⊆ V, and an edge set E∗ that includes all the edges associated with the elements in
V∗.

Hence a vertex induced subgraph has fewer vertices and all the edges incident
on these vertices from the edge set of the original graph. The edge induced
subgraphs are likewise defined.

Definition 2.8 (Edge induced subgraph). An edge induced subgraph G(E∗) of a
graph G(V, E) has an edge set E∗ which is a subset of the edge set of G, i.e. satisfying
E∗ ⊆ E, and a vertex set V∗ that includes all the vertices associated with the elements
in V∗.

A subgraph that spans the entire graph is a spanning subgraph. Specifically,
given some G(V, E), a spanning subgraph G has the same vertex set V with G.

2.2.2 Elementary Graph Structures

Examining a graph, one trivially observes that these are rich in structure. Nev-
ertheless, apart from the basic elements of a graph, vertex and edge, there are
structures that recur in almost any graph. These exhibit specific characteristics,
can be easily defined and bear specific importance for the represented network.

In fact, there are many research areas where graphs are used as a model. The
number of such structures, their presence or absence, and or their concentration
allow to perform important abstractions related to each specific application.
Moreover, in graph theory their existence, absence and quantification are of
great importance.

The simplest structure identified on a graph is a walk. The latter is a sequence
of vertices and edges. Based on a walk another two structures are identifiable,
the path and the trail. The path is a walk where each vertex is found only once.
The trail is a walk where each edge is found only once.

Another important structure on a graph is a closed walk, also called a cycle.
The latter is a closed trail without duplicate vertices. A cycle cannot be found in
all types of graphs. A cycle that visits every vertex in a graph is a Hamiltonian
path. A graph with a Hamiltonian path is a so-called Hamiltonian graph. A
summary of the basic structures of a graph is given below.
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Definition 2.9 (Basic graph properties). A subgraph of a graph G that exhibits
some abstract property is a structure of the graph G. The following basic structures are
defined.

• A walk from v1 to vk is an interlacing sequence of adjacent vertices and edges
v1, {v1, vj1}, {vj1 , vj2}, . . . , {vji−1 , vji}, {vji , vji+1}, . . . , vk

• A path is a walk without any duplicate vertices

• A trail is a walk without any duplicate edges

• A cycle is a closed trail, v1 = vk, without any other duplicate vertices except v1.

For sake of simplicity, p{vi, . . . , vj} and c{vi, . . . , vj} shall denote a path and
a cycle respectively from vertex vi to vj. Similar notation, w{vi, . . . , vj} and
t{vi, . . . , vj}, will be used where needed for walks and trails respectively.

2.2.3 Elementary Graph Properties

The elementary properties of a graph are the cardinalities of its vertex and edge
sets. The connectivity and the connectedness of a graph are typically considered
the two most important macroscopic properties of a graph. Literature related to
connectedness can be found in (Erdos and Renyi, 1961), (Erdos and Renyi, 1959).

Definition 2.10 (Connectedness). Let an undirected graph G(V, E), then the con-
nectedness of a graph c(G) is the minimum number of edges needed to remove for the
graph to become disconnected.

A graph is said to be connected if there is a walk from any vertex to any other
vertex in the graph.

Definition 2.11 (Connected Graph). A graph G(V, E) is connected if and only if for
any two vertices vi, vj ∈ V exists a walk {vi, . . . , vj}. Such a graph is called a connected
graph.

Distinguishing between connected and disconnected graphs is of great im-
portance, particularly in the case of networks with stochastic communication.
Moreover, a graph where any two vertices are adjacent is said to be fully con-
nected.

Definition 2.12 (Fully Connected Graph). A graph G(V, E) is fully connected if and
only if for any two vertices vi, vj ∈ V exists a walk with only one edge, {vi, {vi, vj}, vj}.
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In a disconnected graph, a unique decomposition into maximal connected
components exists. These are the disconnected components. Particularly, a
disconnected component is a disjointed connected subgraph. Hence, there is
no walk between a vertex belonging in the component and another vertex not
belonging to the subgraph. Apart from knowing if the graph is connected or not,
one often wants to know the number disconnected components in the graph.

It is advantageous to generalise the notion of a disconnected component to
that of a component. Conceptually, the notion is abstract and remains difficult Components of a

graph are abstract
structures

to define. Intuitively, component of a graph can be considered any subgraph
where the connectivity within the subgraph is larger than the connectivity of the
entire graph. Connectivity, even though it can be conceptually understood, still
remains an abstract notion. We proceed to the clarification of the term, and for
this purpose Menger’s theorem is included. The theorem can be found in (Godsil
and Royle, 2001).

Theorem 2.1 (Menger’s Theorem). A graph G is k-connected if and only if for each
pair of vertices vi and vj are k in number paths {vi, vj} which have only vi and vj
common.

Otherwise put, considering any pair of vertices {vi, vj}, a k-connected graph
has k distinct paths p{vi, . . . , vj}. Obviously, k-connected graphs are also (k− 1)- Connectivity of a

graph and
k-connectedness

connected as well. This observation directly leads to the definition of connectiv-
ity.

Definition 2.13 (Graph Connectivity). The connectivity of a graph κ(G) is the max-
imum value of k for which a graph is k-connected.

In other words, connectivity is the minimum of the number of distinct paths
over all pairs of vertices {vi, vj}, in the graph.

In fact, connectivity, as defined, tells nothing about the number of compo-
nents in a graph. However, connectivity can be incorporated to determine the
components of a graph, which can be achieved by considering the difference
in connectivity between subgraphs and the connectivity of the graph itself.
Nevertheless, the resulting components might be unnatural.

This can be further understood by examining the graphs in (fig.3). There, any
subgraph has smaller connectivity than the corresponding graph. However,
one should not be able to distinguish undoubtedly components by simple
observation.
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Figure 3: Connectibity and Components ambiguity. Connectivity cannot always be em-
ployed to distinguish components. The top graph is a uniform graph with κ(G) = 3.
Components are difficult to identify in a natural manner

The dual problem of defining a component and determining components of
a graph, remains abstract. In the literature, many attempts have been made
to define quantities for this purpose. Specifically, this problem connects with
graph clustering, also known as grouping, partitioning and segregating. The
latter remains an open problem. Connectivity does not fully capture the notion
of components in a graph even though they are closely related. Nevertheless,
the terms, connectivity and graph components are going to be employed in
subsequent discussion as they can be commonly conceived. Connectivity in
the perspective of algebraic graph theory is discussed in (Section 2.2.6). We
concentrate on other basic properties of a graph for the remainder of this
section.

A very basic property defined on a graph is the distance function. Evengraph distance
function though it does not capture a conceptual notion related to the entire graph, it

allows the definition of other properties.
Any function defined on the graph which has the properties of a metric is

a graph distance function. Distances may be between vertices or edges, but
distance are usually defined between vertices. Commonly, a distance function is
defined with respect to a path between two vertices. In some cases a continuum
can be defined on the graph along with a continuous function on that continuum.
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This function can validly be considered as a distance function. Cases can be
found in the literature where distance functions are not metrics. Usually, this
occurs because these functions are not symmetric.

The shortest path between vertices is in many cases an appropriate choice for
the definition of a distance. Specifically, the shortest path is a path, possibly not
unique, that consists of the least number of elements; that is vertices, edges or
both.

Definition 2.14 (Shortest Path). Let the shortest path π{vi, vj} (or πij for short) be-
tween any two vertices vi, vj ∈ V be the path p{vi, . . . , vj} with the smallest cardinality,
i.e. number of elements.

π{vi, vj} = arg min
vi,vj

|p{vi, . . . , vj}|

Summarising, within the scope of this research a distance function is implied to
be defined with respect to the shortest path. The definition follows.

Definition 2.15 (Distance). Assume a graph G(V, E) and let two vertices vi and vj
with i 6= j. The number of edges of the shortest path between vertices vi and vj defines
their distance d(vi, vj). Let d(vi, vj) = ∞ if and only if there is no path between vi
and vj.

It can be easily verified that (Definition 2.15) satisfies

d(vi, vj) > 0 with d(vi, vj) = 0 iff vi = vj

d(vi, vj) = d(vj, vi)

d(vi, vj) 6 d(vi, vh) + d(vh, vj)

and therefore it is a metric. An important property of all graphs is their diameter.
The latter is defined as the length of the longest shortest path, or simply the
maximum distance between any two vertices on the graph,

d(G) =max
i,j

d(vi, vj) (2.1)

where d(G) denotes the diameter of the graph. The diameter has an important
role for our research. As it shall be illustrated in (Chapter 5), consensus cannot
be reached in less than d(G) communication steps, i.e. the diameter of the graph.
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2.2.4 Classes of Graphs

Unlike vertices, which are a rather dull construct, edges can be found in many
different types. Graphs can be classified with respect to the types of edges
defined on the graph. The edges can be undirected, directed, multiple, and loops.
The latter, may be present in all three classes of graphs, undirected, directed and
multi-graphs. Thus, we can define three classes of graph depending on the edge
type found on them, undirected, directed and multi-graphs. Their presentation
follows, subsequently.

2.2.4.1 Undirected Graphs

The undirected graph is the simplest type of graph. There, any two connected
vertices are linked with only one edge. The definition follows.

Definition 2.16 (Simple Graph without loops). An undirected graph G(V, E) is a
graph having an edge set E satisfying:

1. The pairs {vi, vj} in the edge set E are unique.

2. The pairs {vi, vj} and {vj, vi} are considered identical ∀i, j.

3. There is no pair {vi, vj} ∈ E such that i = j ∀i, j.

Clarifying, an undirected graph does not have duplicate edges. These do not
have a direction and they can be equivalently signified by writing either {vi, vj}
or {vj, vi} for some i and j. Commonly, in the definition there are no edges
connecting a vertex with itself. However, omitting the last constraint we can
define a so-called undirected graph with self-edges, also called loops. We do not
make distinction among the two in the text and normally it should be assumed
that loops may be present. It shall be noted otherwise.

Definition 2.17 (Simple Graph). An undirected graph G(V, E) is a graph having an
edge set E satisfying all the following conditions.

1. The pairs {vi, vj} in the edge set E are unique.

2. The pairs {vi, vj} and {vj, vi} are considered identical ∀i, j.

Undirected graphs without loops are an appropriate model for the case of
synchronous bidirectional communication in networks. However, local compu-
tations or communications, e.g. the loopback interface, cannot be represented
with an undirected graph. In such a case, an undirected graph with self-edges
is appropriate for the description of the network’s operation.
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2.2.4.2 Directed Graphs

A directed graph or digraph is a graph where edges have direction. An edge is
either incoming to a vertex or outgoing.

Definition 2.18 (Directed Graph, without loops). A directed graph G(V, E) has an
edge set E satisfying the following conditions.

1. The pairs {vi, vj} in the edge set are unique.

2. There is no pair {vi, vj} such that i = j ∀i, j.

Figure 4: A directed graph.

The first condition designates that for each pair of adjacent vertices there can
be only one edge per direction. The second condition implies that there cannot
be an edge connecting a vertex with itself. As in the case of an undirected
graph we can define self-edges. However, it does not make sense to define
directed edges onto ones self. Hence, loops {vi, vi} should always be considered
as undirected.

Definition 2.19 (Directed Graph). A directed graph G(V, E) has an edge set E with
unique pairs {vi, vj}.

Directed graphs are appropriate to describe communication in networks where
transmission and reception may not be performed between any two machines.
Again, the self-edge may represent a local computation, local communication,
or just a local state update.

Directed graphs are connected if the associated undirected graphs, obtained
by transforming each directed edge to an undirected, is connected. A digraph
is said to be strongly connected when there exists a path connecting any two
vertices.
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2.2.4.3 Multi-graphs

A directed multi-graph has both directed edges and self-edges. For each pair of
vertices there can be multiple edges defined.

Definition 2.20 (Multi-graph). A multigraph G(V, E) has an edge set with at least
two edges connecting the same two vertices vi and vj.

Figure 5: A directed multi-graph with self-edges.

In accordance with the simple graph definition (Definition 2.6), the edge
set may include multiples of some pairs {vi, vj}. Conceptually, this poses no
difficulties. However, one might want for some purpose to discriminate among
these multiple edges. There are two ways to tackle this. One either uses an
additional label of the multiple edges or uses the complex definition (Definition
2.1) which is inclusive of the incidence function. Hence, only the latter needs
to be defined. However, it would be convenient to avoid the definition of the
incidence function. Below, such a definition of a multi-graph is given.

Definition 2.21 (Directed Multi-graph). Let G be a directed multi-graph with vertex
set V and an edge set E. Let the edge set be a triple {{vi, vj},k} where k ∈ {1, 2, . . . ,nij}
and nij is the multiplicity of the elements of E that contain the pair {vi, vj}, signifying
a directed edge from vertex vi to vj. Moreover, let {{vi, vj},k} be unique.

Illustrating, we have modified the definition of the edge set and introduced
triplets instead of pairs. The third index introduced is a numbering of the
multiple edges, going from one up to the multiplicity of each pair {vi, vj}.
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2.2.5 Types of Graphs

Four specific types of graphs are of interest to us, trees, random graphs, random
geometric graphs, and small world graphs. The first, because it is related to
the definitive consensus algorithm, presented in (Chapter 4). Random graphs
are employed to research the properties of large graphs. These can also be
used as a model of stochastic communication. Random geometric graphs are
an appropriate model in the case of random placement on a surface of wireless
sensor nodes. Finally, small world networks are commonly employed to model
computer networks and social networks, e.g. the Internet. We proceed in their
definition and the presentation of their most important properties.

2.2.5.1 Trees

Intuitively a tree is graph having a root, branches and leaves. The vertices are
ordered hierarchically from the root to the leaves. Specifically, there is a root
vertex which is adjacent directly to at least another two vertices. There, are also
leaves which are adjacent with exactly one other vertex. Every leave is connected
to the root node through a unique path. Therefore, in a tree there are no cycles.
The latter is the definitive property for trees.

Definition 2.22 (Tree). A maximal undirected connected graph without cycles is a
tree.

Moreover, a tree has n− 1 edges, where n is the number of vertices. In fact
any connected graph with n− 1 edges is a tree and therefore has no cycles. A
connected graph with n edges has exactly one circle and is called an unicyclic
graph.

In many cases, it is important to find a tree in a graph that spans the entire
vertex set of the original graph. These are called spanning trees and are very
important, especially in applications that involve routing, e.g. in computer
networks or transportation networks. Spanning trees bear importance in our
work as well.

Definition 2.23 (Spanning Tree). Given a graph G, a spanning tree of G is a spanning
subgraph of G that is a tree.

The number of spanning trees in a graph is given by Kirchhoff’s Matrix-Tree
Theorem. The theorem simply states that the number of spanning trees in a
graph is the product of the non-zero eigenvalues of the Laplacian matrix divided
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by the cardinality of the vertex set. The definition of the Laplacian matrix is given
in (Section 2.2.6.4).

Theorem 2.2 (Kirchoff’s Matrix Tree Theorem). Let a graph G(V, E) with cardinality
|V| = n. Let T(G) denote the number of spanning trees in G and λi(L) denote the
eigenvalues of the Laplacian matrix. Assume, that the eigenvalues for i = k,k +

1, . . . ,n are non-zero. The equation holds:

T(G) =
1

n

n∏
i=k

λi(L) (2.2)

2.2.5.2 Random Graphs

Erdos and Renyi introduced a random generating process of a graph in an effort
to capture the emerging structural properties in large graphs. The so-called
random graphs describe allegedely a “typical” graph of a certain vertex set size,
(Durrett, 2006).

The generating process of an Erdos-Renyi random graph is as follows. Assume
that there are n vertices in the vertex set. Then, one picks at random s edges
from the n(n− 1)/2 possible edges in the fully connected graph. This process
can be slightly modified by assigning a probability p ∈ (0, 1) for the presence of
each edge on the graph. Obviously, the second method is inclusive of the first for
p = 2s/n(n− 1) . The generating process of random graphs shall be employed
in the theoretical model for the case of communication with link failures.

The most important property of a random graph is the emergence of the
giant component. The latter, aids our intuition of the convergence in the case of
stochastic communications.

Let the probability of the edges be p = c/n with c > 1. We remark that there
is a constant θ(c) > 0 such that for n large the largest component has near θ(c)n
vertices and the second largest component has size in the order of log(n) , see
(Durrett, 2006), (Erdos and Renyi, 1959). In the case that c < 1, then for large n
the graph has many small components and the largest component has order of
size log(n). These conjectures are supported by the theorem below, found in
(Erdos and Rényi, 1959)

Theorem 2.3. Let Gn,m be a random graph with n possible vertices and m edges.
Let Pk(n,m(c)) denote the probability of the greatest connected component of Gn,m

consisting of n− k points. Then we have

lim
n→∞Pk(n,m(c)) =

e−2kc−e−2c

k!
(2.3)
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where m(c) =
[
1
2n logn+ cn

]
.

Hence, the probability that there exists a component with less than n− 1

vertices is almost zero when c > 1. In contrast, for c < 1 this is larger than zero.
Apart from random graphs, other categories of graphs are employed to model

various types of real networks. Such a model for computer and social networks
are the small world networks. Random placement of wireless sensor nodes can
be modelled with random geometric graphs. We introduce these two graphs
below. The reader could consult (Wang and Chen, 2003) for an illustration of
the subject.

2.2.5.3 Random Geometric Graphs

The construction process of a random geometric graph consists of selecting a
square region, e.g. [0, 1]2, and uniformly distributing points on it. Then by
defining a range r > 0, edges can be assigned between those nodes that have
distances smaller than r. The resulting graph might not be connected.

These types of graphs are a good representation for a topology emerging from
the random placement of wireless sensor nodes that form a communication net-
work. This model is going to be used extensively for our numerical simulations,
see (Chapter 6).

The emergence of the giant component occurs also in the case of random
geometric graphs. However, in comparison to random graphs, where the giant
component occurs when the “mean vertex degree exceeds the critical value 1” for n
large, in this case this happens when the mean vertex degree is finite, (Penrose,
2003).

2.2.5.4 Small World Graphs

Small world graphs emerge often in social or community networks, like friend-
ship, author and actor networks. In those cases, the random graph model does
not entirely capture the result nor the generative process can be represented
with the Erdos-Renyi generating process.

The small world network has two principal properties. First, it is a connected
network. Second, it has the small world property. The latter is somehow vaguely
defined in the literature, see (Wang and Chen, 2003), (Watts and Strogatz, 1998).
One could intuitively state that the small-world property is that large networks
retain a surprisingly small diameter or “’remain small while large”.
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The construction of a network with the small world property has been pio-
neered by (Watts and Strogatz, 1998). The process is as follows. First, construct
a ring network with n vertices and m/n edges per vertex. Then, each edge is
rewired with some probability p connecting two vertices at random. Another
construction process is described in (Newman and Watts, 1999). There, the edges
are not rewired at random but some edges are added between long distance
pairs with some probability. The number of shortcuts is drawn from a Poisson
distribution with mean np/2.

Within this thesis we are going to utilise the second process (Newman and
Watts, 1999) for a number of simulations in (Chapter 6).

2.2.6 Algebraic Graph Theory

The combinatorial foundation of a graph found in (Section 2.2) can be extended
algebraically. The definition of the adjacency, the incidence and the Laplacian ma-
trix are based on accounting the relations of edges and vertices. The properties
of these matrices, and especially their spectral properties, lead to an algebraic
approach to the examination of graphs that describes well many macroscopic
properties of the system represented by the graph. Particularly, the conver-
gence of the consensus algorithm, under a dynamical system approach, is well
described with the eigenvalues and the eigenvectors of the Laplacian matrix,
(Section 2.3).

2.2.6.1 The Adjacency Matrix

The adjacency matrix accounts which vertices are connected to each vertex.
Hence, it captures the information of the vertex-vertex relation; the definition
follows.

Definition 2.24 (Adjacency Matrix). Suppose a graph G(V, E). Let the adjacency
matrix A ∈ Rn×n be the matrix of elements [A]ij = aij with aij = 1 if the edge
{vi, vj} ∈ E and aij = 0 otherwise.

The adjacency matrix is also known as connectivity matrix or communications
matrix; we prefer the term adjacency matrix.

In the case of undirected graphs without self-edges, the adjacency matrix is a
symmetric matrix with all the elements on the diagonal equal to zero. Consider-
ing self-edges in undirected graphs then there are elements on the diagonal. In
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the case of a directed graph with self-edges, the matrix is asymmetric. The case
of a multi-graph cannot be represented by the adjacency matrix.

2.2.6.2 The Incidence Matrix

The incidence matrix accounts the relation of edges with vertices, i.e. the vertex-
edge relation. Specifically, the elements of the matrix record the connection of
an vertex with the edges it is connected.

Definition 2.25 (Incidence Matrix, Simple Graph). Assume an undirected graph
G(V, E,γ). Let the incidence matrix be a matrix of elements [Q]ij = qij with qij = 1

and qmj = −1 if ej ∈ E with {vi, vm} = γ(ej) otherwise qij = 0.

Other definitions of the incidence matrix for undirected graphs are also present
in the literature. Specifically, the elements are strictly positive. The elements
of the matrix qij and qmj are both signified with 1. Instead we chose positive
and negative values indicating direction because in that manner this can be
directly extend to digraphs. In the case of a digraph the definition is only slightly
different. Particularly, we have to explicitly assign −1 for the outgoing and 1 for
the incident edges.

Definition 2.26 (Incidence Matrix). Assume a directed graph G(V, E,γ). Let the
incidence matrix Q ∈ Rn×m be a matrix of elements [Q]ij = qij with qij = 1 if
ej ∈ E with γ(ej) = {vi, vk}, qij = −1 if ej ∈ E with γ(ej) = {vk, vi} for some
k ∈ {1, 2, . . . ,n}, otherwise qij = 0 where n = |V| and m = |E|.

[Q]ij =


1 ej ∈ E γ(ej) = {vi, vk}

−1 ej ∈ E γ(ej) = {vk, vi}

0 ej /∈ E

This definition includes as well the cases of directed, multi-graphs, and
simple graphs. The case of a simple graph’s incidence matrix is included in
the aforementioned definition for directed graphs by replacing each undirected
edge with a couple of directed edges, one for each direction. However, we chose
to define it explicitly in order to present the matter to the reader in an intuitive
manner, instead of leaving this to be vaguely implied.

2.2.6.3 The Weight Matrix

In the case of the adjacency matrix the presence or absence of an edge between
two vertices is marked is noted with 1 and 0, respectively. Instead in the case of
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the weight matrix the a connection’s strength or importance can be related to a
coefficient; the absence of a connection should be marked with 0.

In some cases the coefficients, defined on the edges, may resemble transition
probabilities or graph traversal probabilities, as in probabilistic modelling. In
other cases the weights may determine information flow throughput. Therefore,
their meaning is specific to the application at hand. In our perspective we
avoid to strictly define their meaning. Instead, letting these coefficients be
abstractly related to an edge allows to disconnect the discussion from a bottom-
up approach and let us develop a top-down method for their determination.
Hence, the weight matrix can be defined as the matrix of coefficients associated
with each separate edge, as in the case of the adjacency matrix.

Definition 2.27 (Weight Matrix). Given a graph G(V, E), the weight matrix W ∈
Cn×n is defined as

[W]ij =

 wij iff {vi, vj} ∈ E

0 otherwise

where wij ∈ C and n = |V| the cardinality of the vertex set.

In contrast with the definition commonly given by many authors, we do not
restrict the edge weights to the positive real domain. Complex coefficients and
negative weights do not have an intuitive meaning like transition probabilities.
It is for this reason that these are overlooked in the literature. However, as we
are going to see in (Chapter 4) their usage provides many advantages. Moreover,
this justifies our decision to disconnect the definition from the meaning of the
edge weights.

2.2.6.4 The Laplacian Matrix

The Laplacian matrix has an established position in the literature. This is mainly
due to the fact that its spectrum relates to many properties of natural systems
which can be described by a graph.

The term Laplacian matrix draws from the study of vibrations of membranes,
initiated from the paper of (Kac, 1966). A discrete approximation of the mem-
brane with a set of points leads to a graph. The vertical displacement of the
membrane is an eigenfunction of the Laplacian operator of the drum. There, the
Laplacian matrix is a discrete approximation of the drum. Initially, the Laplacian
matrix was introduced by Kirchoff in view of the matrix tree theorem, (Theorem
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2.2). It has been evident throughout the years that the Laplacian matrix bares
significance in many fields of research.

The Laplacian matrix is retrieved from the difference of the degree matrix
minus the adjacency matrix, L = D − A. The matrix D is a diagonal matrix with
the vertex degrees across the diagonal. Hence, the degree of the ith vertex is the
element Dii. The degree of a vertex is the number of adjacent edges. In the case
of digraphs and multi-graphs the in-degree and out-degree is defined as the
number of incoming and outgoing edges respectively.

The Laplacian matrix of an undirected graph is equal with the square product
of the incidence matrix.

L = QQT (2.4)

The latter will prove to be a rather useful equality. The Laplacian has row and
column sums equal to zero. The Laplacian matrix for a digraph is difficult to
define. Usually, it is suggested that the in-degree or the out-degree should be
used, as seem fitting.

The weighted Laplacian matrix can also be defined in a similar manner. The
latter is the difference of the unity matrix minus the weight matrix L = I − W. In
the case of an undirected weighted graph, the equality L = Qdiag(w)QT holds,
where diag(w) is a diagonal matrix with the edge weights on the diagonal.

2.2.6.5 Spectral properties of Graph Matrices

Every graph has an associated unique Laplacian matrix but the reverse does
not hold. The spectrum of the Laplacian is very important for the study of the
consensus algorithm’s convergence.

The eigenvalues of the Laplacian and the weight matrix are associated with the
formula:

λi(L) = 1− λi(W) (2.5)

where λi(x) is the ith eigenvalue of a matrix x.
The Laplacian of an undirected graph is a symmetric positive semi-definite

matrix. This follows from (eq.2.4)

Lx = λx⇒
λxTx = xTLx = xTQQTx = ‖(QTx)‖2 > 0
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where λ is an eigenvalue of the Laplacian matrix. Similar results can be retrieved
for the weighted Laplacian of an undirected graph,

Lx = λx⇒

λx∗x = x∗Qdiag(w)QTx =
∑
i

wi[(QTx)2]i (2.6)

where i is an index of the edges. Hence, the positiveness of the eigenvalues is
determined from the positive edge weights. In this case, positive edge weights
guarantee that the eigenvalues are positive semidefinite. This is also supported
from the Perron-Frobenius theorem below.

Theorem 2.4 (Perron-Frobenius). Let a matrix x ∈ Rn×n such that [x]ij > 0,
∀i, j ∈ {1, 2, . . . ,n}. Then x has a non-negative eigenvalue ρ > 0, called the perron
eigenvalue, such that 0 < |λi| < ρ, ∀i ∈ {1, 2, . . . ,n− 1} . The associated eigenvector
with the perron eigenvalue ρ is entry-wise non-negative, i.e. xj > 0, ∀j ∈ {1, 2, . . . ,n},
called the Perron eigenvector. All other eigenvectors are not strictly positive, i.e. any
other eigenvector has at least one negative, zero, or complex element.

The theorem cannot be applied in general to any weight matrix. Since it is
expected that there shall be zero elements, marking non-connected pairs of
vertices. In (Corollary 2.1), (Theorem 2.4) is extended to include matrices that are
not strictly positive but contain at least one zero element.

Corollary 2.1. Let a non-negative matrix x ∈ Rn×n, then x has a non-negative
eigenvalue ρ > 0, such that |λi| 6 ρ, ∀i ∈ {1, 2, . . . ,n− 1} . There is an associated
eigenvector x with the perron eigenvalue ρ that is non-negative x > 0.

where x > 0 implies element-wise comparison xi > 0 ∀i ∈ {1, 2, . . . ,n}. Arbi-
trary selection of positive real weights guarantees that the eigenvalues of the
weight matrix are going to be smaller in modulus than a positive eigenvalue.
According (eq.2.6) the eigenvalues of the Laplacian shall also be positive. The
eigenvalues of the weight matrix are found in λ(W) ∈ [−ρ, ρ] when W is Her-
mitian. Otherwise, these are upper bounded by the Perron eigenvalue from
(Corollary 2.1). Thus, the eigenvalues of the Laplacian are λ(L) ∈ [0, 1+ ρ].

The eigenvalues of the Laplacian matrix of G an undirected graph are bounded
and ordered as

0 = λ1(L) 6 λ2(L) 6 . . . 6 λn(L)

with λn(L) = ρ(L). Since row sums are always 0, it follows that λ1 = 0, and
the associated eigenvector is the unity vector 1 = (1, 1, . . . , 1)T . Furthermore,
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the number of the connected components in G is equal to the number of zero
eigenvalues. Therefore, a connected graph has an associated Laplacian with a
unique zero eigenvalue.

Remark 2.1. A graph G is connected if and only if the associated Laplacian matrix has
a unique eigenvalue equal to zero. Therefore the associated spectrum is

0 = λ1(L) < λ2(L) 6 . . . 6 λn(L) (2.7)

In the case of weight matrices with complex and possibly negative elements
we have to result in Gerschgorin’s circle theorem. We include this here for ease of
reference.

Theorem 2.5 (Gerschgorin’s Circle Theorem). Let X be a square complex matrix.
Around every point on the complex plain corresponding to an element [x]ii on the di-
agonal of the matrix, we draw a circle with radius the sum of the norm of the other
elements on the same row ri =

∑n
j=1,j6=i |xij|, called Gerschgorin discs. Every eigen-

value of A lies in one of these Gerschgorin discs. Hence the eigenvalues lie in the union
of the Gerschgorin discs.

n⋃
i=1

{z ∈ C : |z− [x]ii| < ri}

Drawing from (Theorem 2.5), the following result can be obtained for the
eigenvalues of a digraph (Godsil and Royle, 2001).

Theorem 2.6. Let X ∈ Cn×n associated with a weighted digraph G, then x has n
eigenvalues that lie in the union of the cycles⋃

c

{
z ∈ C :

∏
c

|z− xii| 6
∏
c

ri

}
where ri =

∑n
j=1,j6=i |xij| and

⋃
c implies the union over all cycles c of G and

∏
c is

the product of the elements corresponding to the vertices along c.

2.3 consensus

The consensus algorithm has been introduced in (Section 1.2). Here we present
a detailed mathematical presentation of the matter. The algorithm is designed
to be executed in a distributed and decentralised manner on a set of machines.
These machines can perform some simple local computations and are able to
communicate arbitrarily. What needs to be noticed is that this communication is
expected to be synchronous.
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2.3.1 Model of Communication

Suppose a set of machines, possibly different, but for simplicity’s sake, we can
assume them to be identical; at least in their basic manifestation for computation
and communication. This does not lead to loss of generality. The connection
topology between them can be described with a graph G(V, E). The vertex set
V is in fact a labelling of the machines. Assume that in a given a time frame
the machines can complete all necessary communications, and that given an
identical time frame in the future, these communications can similarly recur.
These persistent connections are represented by the edges in E.

If we assume communications to be bidirectional, then an undirected graph is
an appropriate choice of model. In contrast, if the edge coefficients are assigned
differently for the incoming and outgoing edges, the associated graph with
the network is a weighted digraph. In case that bidirectional communications
cannot be guaranteed, the resulting graph should necessarily be conceived as a
digraph.

The case of failing links can also be easily represented. In that case, the
assumption is that communication between these links cannot be guaranteed
to have been completed within the predefined time frame. This case can be
modelled with a digraph with a presence probability associated with each edge.

2.3.2 The Consensus Algorithm

Suppose that every vertex in the graph has an associated scalar value. The
purpose of the algorithm is to compute the mean over these scalar values, and
make it available at each vertex. These tasks is achieved by the consensus
algorithm by local synchronous communication between connected vertices and
computation of local weighted averages.

The linear consensus algorithm (Lynch, 1996) consists of a simple vertex-local
update equation.

xi(t+ 1) =
∑
j

wijxj(t) (2.8)

where xi ∈ R is the state variable defined on the vertex, and wij ∈ R+ are the
coefficients associated with the edges of the graph. Specifically, wij 6= 0 when
vertices vi and vj are connected by an edge on the graph G(V, E) and wij = 0
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otherwise. These coefficients are such that the coherence of the local estimates is
guaranteed.

The global update equation can be readily retrieved in matrix form. Hence,
(eq.2.8) becomes,

x(t+ 1) = Wx(t) (2.9)

where the states associated with each vertex constitute now the elements of a
vector x ∈ Rn associated with the vertex set V. The elements of W ∈ Rn×n are
the coefficients on the edges, [W]ij = wij. The process is presented in (Algo.2.1)
where t is the iteration index, and q is the number of iterations executed until

Algorithm 2.1 Consensus Algorithm, C(W, x,q)

1: Execute the while loop for every ith machine simultaneously
2: for t = 1 to q do
3: xi ←

∑n
j=1[W]ijxj

4: end for

termination of the algorithm. The convergence of the algorithm depends solely
on the selection of these coefficients. Sufficient conditions for convergence are

WT = W (2.10)

W1 = 1 (2.11)

ρ(W − 11T/n) < 1 (2.12)

where 1 = (1, 1, 1, . . . , 1)T ∈ Rn, and ρ(·) denotes the spectral radius. Due to
the presence of the eigenvector 1 with eigenvalue 1, the dynamical system has
an infinity of fixed points of the form x∗ = α1 where α ∈ R. Asymptotic
convergence of the solutions of (eq.2.9) to a fixed point is enforced due to
condition ρ(W − 11T/n) < 1 and that fixed point under conditions in (eq.2.10),
(eq.2.11), (eq.2.12) is such that α = 1Tx(0)/n, i.e. α is the arithmetic mean of the
initial states. The reader is directed to (Xiao et al., 2007) for further details on
the subject.

The conditions can be enforced easily when the topology of the graph is
known a priori. In fact, the problem of selecting the coefficients of the matrix
W in order to minimise ρ(W − 11T/n) has been shown to be convex (Xiao et al.,
2007). In cases of unknown topology there is a number of coefficient assignment
schemes (Xiao and Boyd, 2003) that guarantee that the unknown matrix W will
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satisfy the conditions in (eq.2.10), (eq.2.11), (eq.2.12). These matters are detailed
below in (Section 2.3.3).

Practically, we cannot execute the algorithm for an infinite number of iterations.
The number of iterations executed, denoted by q ∈ Z+, affects the precision of
estimation of the mean and the level of agreement. Moreover, depending on
the graph and the initial variance of the state vector x, maximum arithmetic
precision supported by a specific machine will be attained, after a large number
of iterations, i.e. for q large.

2.3.3 Fixed Matrices

There is a number of issues related to the consensus algorithm, among the
most prominent being the selection of the edge coefficients. These affect the
convergence and the speed of convergence of the algorithm. Another important
matter is the case of failing communication links between machines. In the
literature, the current trend is to set the coefficients a priori. This results in a
fixed weight matrix W. We proceed in detailing the different cases which arise
with respect to the communication model.

2.3.3.1 Symmetric

In the case of bidirectional communication, we can select the edge weights such
that wij = wji. This results in a symmetric weight matrix; thus the condition in
(eq.2.10) is automatically satisfied. When the other two conditions are satisfied,
(eq.2.11), (eq.2.12) from the selection of the edge weights, the system will converge
to the mean of the values initially distributed over the nodes in the network.

A few remarks can be made about these weight matrices. The matrix is sym-
metric but not necessarily Hermitian. The weight assignment may be such that
the conditions for consensus are satisfied but the matrix is not diagonalisable.

In case that the matrix is real W ∈ Rn×n, then it is necessarily Hermitian,
normal and diagonalisable. Thus it has a full set of distinct eigenvalues and a
full set of orthonormal eigenvectors U−1 = UT,

W = UΛUT (2.13)

where the columns of U are the eigenvectors of W. The eigenvectors of W form
a basis of Rn×n.

In case that W is definitely complex, i.e. it has at least one non-real element, it
cannot be Hermitian, instead we say that it is complex symmetric. Unfortunately,
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we cannot guarantee that it is diagonalisable. However, if W has a full set of
distinct ,possibly complex, eigenvalues, then it also has a full set of orthogonal
eigenvalues as in

W = UΛU∗ (2.14)

Furthermore, the weight matrix has an eigenvalue equal to 1 due to (eq.2.11).
When W ∈ Cn×n is not diagonalisable, then it is fairly trivial to show that the

system diverges when there are two eigenvalues equal in modulus to 1. This
is mainly due to the additional binomial terms in the relative Jordan block that
would cause the state x(t) not to converge as t→∞. The proof is included in
(Chapter A). Hence, the eigenvalues of the weight matrix are bounded such that
|λi(W)| ∈ [0, 1), ∀i ∈ {2, 3, . . . ,n} and λ1(W) = 1.

In the case that W ∈ Cn×n and diagonalisable, it has a full set of distinct
eigenvalues, possibly complex, and the eigenvectors are orthogonal. Moreover,
these eigenvalues satisfy |λi(W)| ∈ [0, 1), ∀i ∈ {2, 3, . . . ,n} and λ1(W) = 1. The
presence of two eigenvalues equal to 1 and −1, respectively, would imply that
there are two eigenvectors u1 = 1 and u−1, respectively; which is excluded due
to (eq.2.11).

Applying (eq.2.5), we arrive at the conclusion that the eigenvalues of L(G),
where G(V, E) in an undirected weighted graph with possibly complex coeffi-
cients, have to be such that |λi(L)| ∈ [0, 2), ∀i ∈ {1, 2, . . . ,n}. Moreover, due to the
fact that the one eigenvalue λ1(W) = 1 is unique, the zero eigenvalue λ1(L) = 0

is unique, as well. We remind that the number of connected components are
equal to the number of zero eigenvalues of the Laplacian matrix. Therefore, G

has to be a connected graph something that is intuitively expected. Obviously,
the consensus algorithm cannot convey information among disconnected com-
ponents. Therefore, these cannot be in consensus unless the initial state x is
already such. A summary of the properties of W when W = WT is given below.

Corollary 2.2. Let a connected weighted undirected graph G(V, E), its weight matrix
W, and state vector x ∈ Rn associated with V. Let W satisfy W = WT, W1 = 1,
ρ(W − 11T/n) < 1. The following predicates are true for W:

1. If W ∈ Rn×n, then the following statements are true:

• W is Hermitian

• W has a full set of distinct real eigenvalues

• W is diagonalisable as W = UΛUT
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• It has a full set of eigenvectors which are orthogonal

• Its eigenvectors form a basis in Rn×n

• There is a unique eigenvalue equal to 1

• The eigenvalues are bounded such that λi(W) ∈ (−1, 1]

2. If W ∈ Cn×n and there is at least one element that is not purely real then the
following statements hold:

• W is definitely not Hermitian

• There is a unique eigenvalue λ1(W) = 1

• The eigenvalue equal to 1 has multiplicity 1

• The eigenvalues are bounded such that |λi(W)| ∈ [0, 1), ∀i ∈ {2, 3, . . . ,n}

3. If W ∈ Cn×n and it has a full set of eigenvalues then the statements hold:

• W is definitely not Hermitian

• W is diagonalisable as W = UΛU∗

• It has a full set of eigenvectors which are orthogonal

• There is a unique eigenvalue λ1(W) = 1

• The eigenvalue equal to 1 has multiplicity 1

• The eigenvalues are bounded such that |λi(W)| ∈ [0, 1), ∀i ∈ {2, 3, . . . ,n}

The associated discrete time dynamical system x(t+ 1) = Wx(t) attains average con-
sensus as t→∞. However, maximum machine precision will be achieved, after a finite
number of iterations of the consensus algorithm.

2.3.3.2 Asymmetric

In the case that bidirectional communications cannot be guaranteed or that for
some reason we want to assign different edge weights for the incoming and
outgoing edges, then the resulting weight matrix will not be symmetric. The
conditions laid out above have to be modified as follows.

1TW = 1T (2.15)

W1 = 1 (2.16)

ρ(W − 11T/n) < 1 (2.17)

The left eigenvalue 1T guarantees that the mean is preserved and the right
eigenvalue 1 that the discrete time dynamical system reaches consensus.
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What is mentioned in (Corollary 2.2) for the case that W is real (1), holds in
this case as well, when the weight matrix W is Hermitian. The contrasting case
has to be considered. We examine the cases that W ∈ Rn×n and W ∈ Cn×n are
not Hermitian. The theory of dynamical systems provides a sound basis for this.

Given an asymmetric weight matrix, complex or not, that has a full set of
eigenvalues, then these have to be bounded as |λi(W)| ∈ [0, 1), ∀i ∈ {2, 3, . . . ,n}

and a unique eigenvalue λ1(W) = 1 must exist. If W does not have a full set of
eigenvalues, then it is sufficient that λ1(W) = 1 is simple and there is no other
eigenvalue such that |λi(W)| = 1.

2.3.4 Stochastic Matrices

The case that communication is performed over unreliable links can be modelled
with a random graph. One only needs to define a probability for each edge
in the graph. This type of approach fits the case that communications have
different reliability for each direction, as well. In the case of a digraph, one
should define a different probability for incoming and outgoing edges.

2.3.4.1 Symmetric Link Failures

Assume a weighted undirected graph G(V, E). In the general case, we assume
that each edge {vi, vj} ∈ E is present with probability pij and that the presence
of one edge in the graph is independent of the presence of another edge. We
also assume that communication links fail in both directions simultaneously.
Consequently, we assign probabilities only for i > j, and enforce wij = wji.
Thereafter, a stochastic weight matrix W can be defined, having as elements the
random variables defined below.

[W]ij =


wij i < j with probability pij

0 i < j with probability 1− pij

wij = wji i > j

1−
∑n
k=1wik i = j

(2.18)

However, such a matrix has row sums smaller or equal to 1. In order to guarantee
convergence of the consensus algorithm the weight on the self-loop wii can be
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adjusted to guarantee column and row sums equal to 1. The resulting matrix,
included below, satisfies (eq.2.11).

[W]ij =


wij i < j with probability pij

0 i < j with probability 1− pij

wij = wji i > j

1−
∑n
k=1[W]ik i = j

(2.19)

A less worrisome assumption is to consider every edge on the graph having
equal presence probability 0 < p < 1. The diagonal elements of the weight
matrix can be adjusted such that the row and column sums remain equal to 1;
therefore the matrix remains doubly stochastic. Thus, we may define a stochastic
weight matrix W where the elements are random variables as shown below.

[W]ij =


wij i < j with probability p

0 i < j with probability 1− p

wij = wji i > j

1−
∑n
k=1[W]ik i = j

(2.20)

Consequently, the corresponding weighted graph Laplacian is L = I − W.
The random graph described by the weight matrix (eq.2.20) is an appropriate

model for a wireless network where communication links fail with the same
probability and link failures are bidirectional. We explore how this model affects
the convergence of the consensus algorithm (Algo.2.1).

Let us define a stochastic dynamical system by replacing the system defined
in (eq.2.8) with the following,Convergence under

symmetric link
failures x(t+ 1) = W(t)x(t) (2.21)

where W(t) are independently chosen instances of the random matrix. We
prove that for almost all sequences W(t), t = 1, 2, . . . x(t) converges to 11T

n x as
t→∞.

Theorem 2.7. Assume a random graph G̃(V, Ẽ) associated with a connected undirected
graph G(V, E), where if ei ∈ E then ei ∈ Ẽ with probability p ∈ (0, 1). Suppose, W
and W are respectively the weight matrices corresponding to G and G̃ as in (eq.2.20). If
W satisfies conditions in (eq.2.10), (eq.2.11),and (eq.2.12) then the solution of the time
dependent dynamical system (eq.2.20) converges for almost all sequences W(t), t =

1, 2, . . . x(t) as x(t) −→
t→∞ 11T

n x(0)
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Proof. The subspace span{1} is invariant under all instances of W, and the
stochastic weight matrix is symmetric W(t) = W(t)T, ∀t ∈ {1, 2, . . .}. Thus, it
holds that (W(t) − 11T/n)(

∏0
k=t−1W(k) − 11T/n) =

∏0
k=tW(k) − 11T/n. We

are lead to

‖
0∏
k=t

W(k) − 11T/n)‖ =

0∏
k=t

‖W(k) − 11T/n‖

where ‖ · ‖ denotes a matrix norm. However we are interested in the spectral
radius. A similar result can be retrieved for the spectral radius by employing
Gelfand’s formula ρ(A) = limk→∞ ‖Ak‖1/k

0∏
k=t

ρ(W(k) − 11T/n) =

0∏
k=t

lim
m→∞ ‖(W(k) − 11T/n)m‖1/m

= lim
m→∞

0∏
k=t

‖(W(k) − 11T/n)m‖1/m

= lim
m→∞

(
0∏
k=t

‖(W(k) − 11T/n)m‖

)1/m

= lim
m→∞

(
‖
0∏
k=t

(W(k) − 11T/n)m‖

)1/m

= lim
m→∞

(
‖(

0∏
k=t

W(k) − 11T/n)m‖

)1/m
which leads to the identity.

ρ(

0∏
k=t

W(k) − 11T/n) =

0∏
k=t

ρ(W(k) − 11T/n) (2.22)

where ρ(·) denotes the spectral norm.
Since the eigenvalues of the Laplacian are non-increasing when an edge is

removed, then for all instances of W the eigenvalues satisfy 1 = λ1(W) >

λ2(W) > . . . > λn(W) > −1, where λn(W) is not smaller than the correspond-
ing eigenvalue λn(W) of W. Therefore, it holds that

ρ(W(t) − 11T/n) 6 1 (2.23)

with equality only when λ2 = 1. Such a case is when the corresponding graph
G̃(t) is not connected. Furthermore, there is only a finite number of possible
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instances G̃ and for a finite number of possible connected graphs. Since each of
these connected graphs satisfies (eq.2.23), then there is some constant 0 < γ < 1
such that for any connected graph, it holds that

ρ(W(t) − 11T/n) 6 γ (2.24)

One writes for the state of any sequence of W(t) in (eq.2.20).

‖x(t) − µ1‖ = ‖x(t) − 11Tx(0)/n‖
= ‖W(t)W(t− 1) . . .W(0)x(0) − 11Tx(0)/n‖
6 ρ(W(t)W(t− 1) . . .W(0) − 11T/n)||x(0)||

6
0∏
k=t

ρ(W(k) − 11T/n)‖x(0)‖ (2.25)

If for infinitely many t the graph is connected, there are infinitely many
inequalities ρ(W)(t) − 11T/n) 6 γ. The remaining terms satisfying ρ(W(t) −

11T/n) = 1. Hence, according to (eq.2.25) this converges ρ(x(t) − µ1) → 0 as
t→∞.

The set of sequences of graphs where only finitely many are connected has
probability 0. Indeed, in this case, for any sequence there is a time t0 such
that all graphs for t > t0 are disconnected. The probability of a graph to
be disconnected is smaller or equal to (1− p)|E|, where |E| is the number of
edges. In fact, the original graph is by assumption connected and its probability
is p|E| as an instance. Therefore the probability that the graphs at time t0 +

1, t0 + 2, . . . , t0 +m are all disconnected is bounded by (1− p|E|)m. Thus the
probability that all graphs chosen after time t0 are disconnected is 0, and this is
true for all t0.

The theorem holds in the case that the link presence probabilities are different,
as well. Then, the argument for infinitely many t that the graph is connected
is still true. Just consider that we can build an equivalent problem by selecting
a common link presence probability such that p < pij, ∀i, j . Therefore, the
probability that there are no connected graphs should vanish as t→∞ and is
bounded from above with (1− p|E|)m. Therefore, the theorem can be shown to
hold in that case as well.

2.3.4.2 Asymmetric Link Failures

The case of uncertain communications where link failures are directional can
be represented with a directed random graph G̃(V, Ẽ). Naturally, each edge
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{vi, vj} ∈ E can be associated with a coefficient and a link presence probability
pij. This results in asymmetric random weight matrix W.

[W]ij =


wij i 6= j with probability pij

0 i 6= j with probability 1− pij

1−
∑n
k=1[W]ik i = j

(2.26)

As with the symmetric case we may select a global probability p ∈ (0, 1) for
each link.

[W]ij =


wij i 6= j with probability p

0 i 6= j with probability 1− p

1−
∑n
k=1[W]ik i = j

(2.27)

(Theorem 2.7) may be extended in this case as well. What one has to guarantee,
in order to achieve average consensus, is that row and column sums equal to one,
as in (eq.2.15), (eq.2.16) and (eq.2.17). Thus, the weight matrices W(t) shall be
invariant with respect to 11T/n, ∀t. The proof in (Theorem 2.7) does not change
much, since the spectral radius remains bounded due to (Theorem 2.5).

2.3.5 Weight Assignment

Until this point, it has not been addressed the manner how the coefficients have
to be set to satisfy the conditions for convergence of average consensus. We
illustrate below how this can be performed, according to current methods.

2.3.5.1 Max degree

The degree of the vertices can be employed to define an heuristic for the weight
assignment. The amount of information required on graph topology is global
but the full knowledge of graph topology is not required. Particularly, the
degrees of all the vertices must be known, i.e. only the diagonal of the adjacency
matrix is needed. The weight coefficients are set as the inverse of the maximum
degree among all vertices on the graph.
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α =
1

maxi∈V{di}
(2.28)

wij = α (2.29)

wii = 1− diα (2.30)

The latter can be transformed to the matrix equation below

W = I −αL

where L is the non weighted Laplacian matrix. The selection of α is dictated
from a well known heuristic for bounding the spectral radius of L

λ2(L) 6 max
{vi,vj}∈E

{di + dj} (2.31)

where di and dj are the degrees of vertices vi and vj, respectively, adjacent to
edge {vi, vj}.

2.3.5.2 Metropolis-Hastings

The relation in (eq.2.31) provides another method for assigning the weights on
the edges. The weight of an edge is set as the inverse of the maximum degree of
two connected vertices. The definition follows.

wij =
1

max{dj,di}
(2.32)

wii = 1−

n∑
j=1,j6=i

wij (2.33)

The information on graph topology required is only second order knowledge of
degrees, i.e the vertex degree and the degree of the neighbouring vertices. This
method may be applied both globally and distributively. The weights guarantee
convergence of the consensus algorithm (Algo.2.1) if and only if the graph is not
bipartite. The weights are mentioned as local degree weights in (Xiao and Boyd,
2003).

2.3.5.3 Subgraph weights

Drawing from the definition of the MH-weights, we can generalise as follows.

wij =
1

max{f(Gi), f(Gj)}
(2.34)

wii = 1−
∑
j∈βi

wij (2.35)
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Where in (eq.2.34) Gi is a vertex induced subgraph G inclusive of all the vertices
vk ∈ V such that there is a path from vk to vi that is not inclusive of vj. Similarly
Gj is defined. The function f(G) is a map f : G → N. In that sense, it can
be a function accounting the edges, the number of paths, or the number of
trees in the subgraph. Such functions result in a symmetric weight matrix, and
condition of having row sums equal to one has to be enforced. This is achieved
by appropriately setting the weights on the diagonal as wii = 1−

∑
i 6=jwij.

The number of all shortest paths in the subgraph Gi and Gj can be chosen.
Conditions for convergence in (eq.2.10), (eq.2.11), (eq.2.12) can be enforced with:

W→W/ρ(W)

[W]ii = 1−

n∑
j=1,j6=i

[W]ij

In fact, any abstract function can be selected in (eq.2.34) as long as the resulting
weight matrix satisfies convergence conditions. An interesting choice is node
betweenness centrality , introduced in (Freeman, 1977) and (Anthonisse, 1971) .
Also, the connection graph stability measure can be incorporated as well, see
(Belykh et al., 2004) and (Khadivi and Hasler, 2010). The definitions are included
below for completeness.

Definition 2.28 (Betweenness Centrality). Let a graph G(V, E) and

CB(u) =
∑

i 6=u 6=t,t∈V

σst(u)

σst
(2.36)

be the betweenness centrality of a vertex where u ∈ V is some vertex, σst(u) is the
number of shortest paths π{s, . . . ,u, . . . , t}, i.e. starting from vertex i and ending at
vertex j, σst =

∑
{u 6=s6=t} σst(u) the total number of shortest paths from vertex s to

t.

Definition 2.29 (Connection Graph Stability, CGS). Let a graph G(V, E) and let
a collection of paths C(G) built by arbitrarily selecting one path p{vs, . . . , vt} between
any two vertices vs, vt ∈ V, let be the kth, for all possible pairs. Given C(G), the CGS
for each edge est ∈ E is defined:

Θk(C(G)) =
1

2

n∑
i=1,j=1

φij(est)|p{i, . . . , j}|

where

φij(est) =

 1 est ∈ p{i, . . . , j}
0 otherwise

47



Maximum CGS can be used directly to assign the weights since it arguably
captures the importance of an edge.

2.3.5.4 Weights by Convex Optimisation

Instead of setting the weights based on some property of the graph, like the de-
gree, one can find the appropriate weight coefficients with convex optimisation.

The dynamical system (eq.2.8) converges to the average of the initial state as

xi(t) −→
t→∞ 1

n

n∑
i=1

xi(0), ∀ i ∈ {1, 2, . . . n}

with exponential speed of convergence. Since the eigenvalues should satisfy:

1 = λ1 > λ2 > λ3 . . . > λn > −1

the exponent is time-dependent, and is determined by the initial state and the
eigenvalues of W. Therefore the exponential speed of convergence is at least

| log min{1− λ2, 1+ λn}| (2.37)

The latter is as well the asymptotic exponential speed of convergence as t→∞.
Under the current weight assignment scheme the purpose is to maximise the
asymptotic rate of convergence.

This minimisation problem is convex with respect to the weights and thus can
be solved in polynomial time. Extensive analysis of the method is presented in
(Xiao et al., 2007), (Boyd and Vandenberghe, 2004).

2.4 groebner bases theory

The methods illustrated in (Section 2.3.5) result in symmetric weight matrices.
Moreover, the weight assignment scheme presented in (Section 2.3.5.4) maximises
only the asymptotic speed of convergence. We are going to see in (Chapter 3)
that by varying timely the weight coefficients with respect to the state x is
advantageous. Furthermore, in (Chapter 4), we are going to show that selecting
appropriately time varying weight coefficients allows to minimise the duration
of the consensus algorithm. The determination of these coefficient yields a set
of multivariate polynomial equations. The necessary theoretical background, to
understand the difficulties of such problems, is provided within this section. We
illustrate very basic notions of Groebner bases theory. A concise study of the
subject can be found in (Adams and Loustaunau, 1994).

48



2.4.1 Algebraic Definitions

Definitions of necessary notions are given below. These can be found in many
introductory texts to algebra. However, for completeness and ease of reference,
we have decided to included them herein.

Definition 2.30 (Field). A field is a set F together with two binary operations on F,
called addition and multiplication, which are denoted with + and · respectively and
satisfying the following properties, for all a,b, c ∈ F:

1. a+ (b+ c) = (a+ b) + c (associativity of addition)

2. a+ b = b+ a (commutativity of addition)

3. a+ 0 = a for some element 0 ∈ F (existence of zero element)

4. a+ (−a) = 0 for some element −a ∈ F (existence of additive inverses)

5. a · (b · c) = (a · b) · c (associativity of multiplication)

6. a · b = b · a (commutativity of multiplication)

7. a · 1 = a for some element 1 ∈ F, with 1 6= 0 (existence of unity element)

8. If a 6= 0, then a · a−1 = 1 for some element a−1 ∈ F (existence of multiplicative
inverses)

9. a · (b+ c) = (a · b) + (a · c) (distributive property)

Equivalently, a field is a commutative ring F with identity such that:

• 1 6= 0

• If a ∈ F, and a 6= 0, then there exists b ∈ F with a · b = 1.

Definition 2.31 (Ring). A ring is a set R together with two binary operations, denoted
+ : R× R −→ R and · : R× R −→ R, such that

1. (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) for all a,b, c ∈ R (associa-
tive law)

2. a+ b = b+ a for all a,b ∈ R (commutative law)

3. There exists an element 0 ∈ R such that a + 0 = a for all a ∈ R (additive
identity)
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4. For all a ∈ R, there exists b ∈ R such that a+ b = 0 (additive inverse)

5. a · (b+ c) = (a · b) + (a · c) and (a+b) · c = (a · c) + (b · c) for all a,b, c ∈ R
(distributive law)

Definition 2.32 (Ideal). Let R be a ring. A left ideal (resp., right ideal) I of R is a
nonempty subset I ⊂ R such that:

• a+ b ∈ I for all a,b ∈ I

• r · a ∈ I (resp. a · r ∈ I) for all a ∈ I and r ∈ R

A two-sided ideal is a left ideal I which is also a right ideal. If R is a commutative
ring, then these three notions of ideal are equivalent. Usually, the word “ideal” by itself
means two-sided ideal.

Definition 2.33 (Closure). The closure A of a subset A of a topological space X is the
intersection of all closed sets containing A.

2.4.2 Solving Systems Polynomials

We are interested in determining the solution of a system of nonlinear multi-
variate polynomials. The related theory aids us in justifying the existence of
solutions. Specifically, let a set of polynomials

S = {fi|fi ∈ k[x1, x2, . . . , xn], i = 1, 2, . . . , s}

where k[x1, x2, . . . , xn] is a so-called k-vector space with the set

Tn = {xb = x
b1
1 x

b2
2 . . . xbnn |bi ∈N, i = 1, 2, . . . ,n}

as a basis. The kernel of S is its solution set, and defines its ideal I which is
a finite generating set of S. The solution set is where the evaluation of the
functions, defined by the polynomials in I, are found to be equal to zero. Simply
stated, the solution through substitutions and algebraic operations produces a
possibly empty set of polynomials, an ideal. We denote an ideal defined by a set
of polynomials S as I =< S > or explicitly I =< f1, f2, . . . , fs >. Such an ideal is
a set consisting of all polynomial linear combinations.

< S >= {

s∑
i=1

hifi|fi ∈ S,hi ∈ k[x1, x2, . . . , xn]∀i ∈ {1, 2, . . . , s}}
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The matter is mathematically immense, and a thorough discussion is avoided.
The existence of a finite solution set is guaranteed by the Hilbert Basis Theorem.
A finite solution set is not be mistaken with the case that the system of equations
has a finite number of points that it is equal to zero.

Theorem 2.8 (Hilbert Basis Theorem). In the ring k[x1, x2, . . . , xn] the following
two propositions always hold:

1. Given any ideal I ∈ k[x1, x2, . . . , xn], then there exists a possibly empty finite
set of polynomials {f1, f2, . . . , fs} such that I =< f1, f2, . . . , fs > and the set is
empty if and only if I is null.

2. Let I1 ⊆ I2 ⊆ . . . In ⊆ . . . be an ascending chain of ideals of k[x1, x2, . . . , xn],
then there exists a finite N such that the chain terminates, IN = IN+1 =

IN+2 = . . . .

The theorem tells us that the solution set of the ideal, which is its generating
set as well, is finite. Therefore, we can describe algebraically the solution of
the system of equations. However, the evaluation of the solutions may not be
a finite set of points, instead it can be a set of lines, curves, manifolds, and so
on. Therefore, the theorem considers only the existence of such sets, and states
that a system of polynomial equations is consistent if that set describes an ideal
which is not null.

The process of determining the solution set is similar to Gaussian elimina-
tion. The operations of addition, subtraction, multiplication and division are
employed. The first three are easy to comprehend. However, in order to define
polynomial division, one needs to generalise the notion of division for natural
numbers. Particularly, dividing two numbers a with b, implies determining the
number of times that b has to be added to itself such that the result is equal to
a. Specifically, the quotient q is that number, that we say it is multiplied with b,
and the remainder r is added to retrieve a.

This simple thought can be extended to the field of univariate polynomials.
Given two polynomials f1 and f2 we wish to divide f1 with f2. This can be
done if we are able to find another couple of polynomials q (quotient) and
r (remainder) such that f1 = qf2 + r. In general, this can be performed by
sequentially cancelling out the leading terms of f1 with terms found in f2.

Multivariate polynomials are extensions of univariate polynomials. The no- Division of
multivariate
polynomials

tions of addition, subtraction, and multiplication are also easy to define and
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comprehend. However, division of multivariate polynomials bears some dif-
ficulties and has to be treated explicitly. The general idea is the same as in
the case of univariate polynomials. Given two polynomials one finally seeks
the quotient and the remainder. The process is more or less the same as with
univariate polynomials. However, now one has to define a term ordering of
the variables since the leading term cannot be uniquely defined. This poses a
problem in determining which term can be divided with another. In fact, we
cannot tell intuitively which is a larger term, e.g. x21x2 or x1x22. In contrast, in
natural number we are aware that 5 > 3, and in univariate polynomials that
x6 > x3.

Definition 2.34 (Term order). Let Tn = {xb|bi ∈ N, i = 1, 2, . . . ,n} be the set of
power products with k[x1, x2, . . . , xn] an associated field. A term order satisfies

1. for any two terms xa, xb exactly one relation (<,>, =) holds

2. 1 < xb,∀xb ∈ Tn and xb 6= 1

3. If xa < xb then xaxs < xbxs, ∀xs ∈ Tn

In clarification of nomenclature, the term monomial and power product are
frequently used in the literature without distinction. Herein we distinguish
among the two in that the power product is a finite multiplicative product of
variables raised to a power, e.g. x1x72x

2
3, and the monomial is a finite multiplica-

tive product of variables raised to some power and numbers , e.g. 6x13x72x
2
3.

The product of these numbers is the coefficient of the monomial. A term can be
either a monomial or a power product.

Remark 2.2 (Well-ordering). Any term order on Tn is a well-ordering. Hence, there
is no infinite descending chain xa1 > xa2 > xa3 > . . . in Tn.

This remark is much important because it guarantees that a term order defines
finite chains of power products. This further supports that all term orders are
equivalent for determining the existence of solutions. This can be intuitively
understood from (Theorem 2.8) since it would imply that different term orders
lead to different solution sets that describe different ideals. That contradicts the
uniqueness of the ideal implied in (Theorem 2.8). However, different term orders
do not require the same effort for the retrieval of solutions. This is related to the
algorithm employed to perform this as well. The algorithms to perform the task,
of which we are aware of, are based on the notion of multivariate polynomial
division, which is defined below.
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Definition 2.35 (Multivariate Polynomial Division). Suppose a polynomial f defined
over a ring k[x1, x2, . . . xn] where xi ∈ K, ∀i = 1, 2, . . . ,n and K is a field. Addition-
ally, assume a set of polynomials F = {f1, f2, . . . fn} over k as well. Then one divides f
by F to determine polynomials r 6= 0 and uj over k with j = 1, 2, . . . t , t ∈ Z+, t 6 n

such that f =
∑t
j=1 ujfj + r and r is not divisible by fi ∈ F∀i.

The process of performing the division is called reduction, it is denoted f F→ r,
and we say f is reduced modulo F to r. There is a well known algorithm for
performing this kind of division of polynomials but it is not necessary for our
purpose and consequently it is omitted. The reader is kindly directed to (Adams
and Loustaunau, 1994) to cultivate his interest in the matter.

According to theory, for a given set of polynomial equations S = {fi|i =

1, 2, . . . , s} in k[x1, x2, . . . , xn] there is a set of polynomials G = {g1,g2, . . . ,gl} in Groebner bases

k[x1, x2, . . . , xn] such that for any i then any set of polynomials in S is reduced

to null through G, fi
G→ 0. We say that G is a Groebner basis.

Definition 2.36 (Groebner Basis). Let I a non-empty ideal of k[x1, x2, . . . xn]. A
Groebner basis G = {g1,g2, . . . ,gl} is a set of non zero polynomials in k[x1, x2, . . . xn]

such that any polynomial f ∈ I is reduced through subsequent divisions with polyno-
mials gi gi ∈ G to null. We write f G−→+ 0.

Where −→+ implies subsequent appropriate divisions of the elements of I with
the elements G such that the ideal I is reduced to an empty set.

Sadly, Groebner bases are not unique. Even though evaluation of equivalent
Groebner basis will lead to the same result, they can be troublesome theoretically.
Particularly, in the case of determining finiteness and existence of a solution set.
Enforcing a few conditions on the polynomials allows to obtain uniqueness.

Definition 2.37 (Minimal Groebner Basis). A Groebner basis is called minimal if for
all i, lc(gi) = 1 and for all i 6= j, lp(gi) does not divide lp(gj).

Where lp() and lc() are the leading power product and leading coefficient,
respectively.

Minimal Groebner bases are not unique. However, these can be transformed
into a unique form which is also minimal to form a reduced Groebner Base.

Definition 2.38 (Reduced Groebner Basis). A Groebner basis G = {g1,g2, . . . ,gl
is called reduced if, for all i, lc(gi) = 1 and gi is reduced with respect to G − {gi}.
That is, for all i, no non-zero term in gi is divisible by any lp(gi) for any j 6= i.
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Simply put, a reduced Groebner basis is a minimal G such that the polynomials
in G are not divisible by other polynomials in G.

The existence of a Groebner basis and additionally of a solution set is supported
from the theorem below.

Theorem 2.9 (Weak Hilbert Zero Point). Let I be an ideal contained in k[x1, x2, . . . xn].
Then the varieties (solution set) is empty V(I)k = ∅ if and only if I = k[x1, x2, . . . xn]

.

The theorem states that an ideal without a solution set is the whole ring.
Intuitively thinking, this is so since its kernel is empty. The theorem below
makes a connection of the theoretical result in (Theorem 2.9) with the properties
that the Groebner base of a finite ideal must have. The theorems are given
without proof but are known to hold. Please consult (Adams and Loustaunau,
1994).

Theorem 2.10. The following statements are equivalent.

1. The variety Vk is finite

2. For each i = 1, 2, . . . ,n there exists j ∈ {1, 2, . . . ,k} such that for some gj ∈ G

the leading power product is univariate, lp(gj) = xνi .

The method for solving a polynomial system of equations can be summarised
as a simple four step process. Firstly, select a term order. Secondly, retrievegetting the

solutions of a
polynomial set of

equations

a Groebner basis by employing Buchberger’s Algorithm or any other appropriate
algorithm (Faugère, 1999), (Buchberger, 1998). Thirdly, obtain a minimal Groeb-
ner basis. Fourthly, obtain the reduced Groebner basis from the minimal. This
process is guaranteed from Buchberger’s theorem. The algorithms for the com-
putation of a Groebner basis are a generalisation of the Gaussian elimination for
linear polynomials with obvious representations. An excellent illustration of the
matter can be found in (Sturmfels, 2005). Finally, specific solution points can be
obtained by solving the simplest equation in the Groebner basis and subsequently
substituting and solving in equations with higher term orders.

Theorem 2.11 (Buchberger). Fix a term order. Then every non-zero ideal has a unique
reduced Groebner basis with respect to this term order.

Examination of the terms in the polynomials of the reduced Groebner basis
allows to determine if the system of polynomial equation has no solution, a
finite, or an infinite solution set. Particularly, if the reduced Groebner base is
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G = {1} then the system has no solution. In contrast, when the leading power
product is univariate, then the solution set is finite, otherwise it is infinite.

Corollary 2.3 (Solution of polynomial systems). Let a set of polynomials S =

{f1, f2, . . . , fs}. The solution set of < fi = 0 > for i = 1, 2, . . . , s is:

1. void when G = 1.

2. finite when for each polynomial gi ∈ G the leading power product lp(gi) = xν

is univariate.

3. infinite otherwise.

where G is the reduced Groebner basis of S.

Given that the solution set is null, then by division with G the set of polyno-
mials S can be reduced to 0. This implies that the polynomials in S are linearly
independent. Therefore,

s∑
i=1

hifi = 1 (2.38)

for some hi, i = 1, 2, . . . , s. We are lead to the following remark.

Remark 2.3. Given a set of polynomials S = {f1, f2, . . . , fs}, then the associated system
of polynomial equations < fi = 0 > has an empty set of solutions if and only if there
does not exist a set of polynomials H = {h1,h2, . . . ,hs} such that:

s∑
i=1

hifi = 1

Summarising, we have illustrated a method for determining the solution
set of a system of polynomial equations. Groebner basis theory is of central
importance for this purpose. In this section, we have given a primer on the
subject . However, the matter is immense and complicated. Solutions to a system
of polynomials can be obtained by computing the Groebner basis, which can be
achieved with Buchberger’s algorithm. The latter has in best case polynomial
time complexity, and in worst case exponential, with respect to the number of
variables. However, in many cases, we are interested in determining if a system
has a null, finite, or infinite set of solutions. Having retrieved a reduced Groebner
basis, then we need only examine the leading power product. However, due to
an immense computational effort required, the method is impractical in many
cases. Nevertheless, the knowledge of such a result affirms the existence of a
solution, which is of great theoretical importance.
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Part II

A L G O R I T H M S





3
D Y N A M I C C O N S E N S U S

Within this chapter we acknowledge the main issue with the consensus algo-
rithm; its slow rate of convergence. This hinders its applicability. Our main
interest within this chapter is the performance of the consensus algorithm under
reliable and stochastic communications. Specifically, but not necessarily limited
to, we concentrate on the case that topology may be unknown or partially
known. We examine the convergence of the algorithm by taking into account
the impact of all the eigenvalues of the weight matrix. Our analysis recognises
the existence of two distinct phases, the transient and the asymptotic. Based
on this observation, we introduce a modification of the update equation of the
consensus algorithm, the nonlinear consensus algorithm. The latter allegedly
has better performance. Numerical simulations are presented to support this
claim. Furthermore, the case of unreliable link communication is of interest. The
adaptive consensus algorithm is introduced to compensate for the effects of link
and node failures. These two algorithms are improvements of the consensus
algorithm, and can be considered mainly in cases that the definitive consensus
algorithm (Chapter 4) cannot be applied.

3.1 introduction

Selecting the weights to maximise the speed of convergence in the asymptotic
phase has been examined in (Section 2.3.5.4). A similar approach of the transient
phase would pose a nonlinear optimisation problem, which is a difficult task,
due to its high dimensionality. We circumvent this problem by introducing
a modulation of the weights with respect to state differences of adjacent ver-
tices. This enhances the speed of convergence during the transient phase. The
nonlinear average consensus algorithm, based on that principle of operation, is
presented in (Section 3.4).

Furthermore, we consider the case of bidirectional link failures in a commu-
nication network. Such failures hinder the convergence of the algorithm, and
may shift the final value from the average. However, this effect is ameliorated,
if one can implement the algorithm in such a manner that the weights are
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adjusted according to (eq.2.19). With the purpose of enhancing the speed of
convergence, we propose the so-called adaptive consensus algorithm, presented
in (Section 3.5) which is based on the same principle as the nonlinear average
consensus algorithm. This is achieved with adaptation of the weights based on
the one-step and two-step time difference of the vertices’ states by modulation
of the parameters of the nonlinear consensus algorithm.

A theoretical discussion is provided, and a validation of the algorithm’s
efficacy is made by numerical simulations. Comparisons are performed against
the linear consensus algorithm (Algo.2.1). Extensive validation results for these
algorithms are presented in (Chapter 6). Herein, the necessary simulation plots
are provided to persuade for the validity of our claims.

3.2 the problem

The original version of the average consensus algorithm is slow in larger net-
works. This has been partially improved by selecting edge weights such that the
spectral gap of the associated Laplacian matrix is maximised. Consequently, the
asymptotic speed of convergence is maximised. The latter is given asRate of

convergence

R = sup
x(0) 6= 11T

n x

lim
t→∞

(
‖x(t) − 11T

n x‖2

‖x(0) − 11T

n x‖2

)1/t
(3.1)

which can be determined from the eigenvalues of the weight matrix.

R = max
i 6=1

λi(W)2 (3.2)

However, the aforementioned approach does not maximise the rate of conver-
gence throughout the entire process of the algorithm. We consider the stepwise
rate of convergence

r(t) = sup
x(t) 6= 11T

n x

(x(t+ 1) − 11T

n x)2

(x(t) − 11T

n x)2
(3.3)

It holds that limt→∞ r(t) = R, (Xiao and Boyd, 2003).
In fact, the asymptotic rate of convergence is the minimum speed that the

algorithm may attain throughout the process. Hence, the algorithm can have
larger speed of convergence in early stages. Therefore, selecting weights that
maximise the asymptotic rate of convergence does not necessarily imply that the
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rate of convergence is maximised as well throughout the entire process. Slower
rate of convergence shall result in lower precision in the determination of the
average at some given iteration.

This effect becomes even more evident as the graph increases in size. There,
the state space is of higher dimension and the contribution of each eigenvalue,
apart from λi = arg maxi 6=1 λi(W)2, bears importance.

One could perform an optimisation in order to maximise the stepwise speed of
convergence along every direction. However, such an optimisation is nonlinear
and the space of indeterminants can be highly-dimensional. Alas, a very difficult
problem to solve, that may as well be ill-posed. Such a process would become
infeasible for prevalent computers as the size of the network increases. Instead
a workaround is proposed, that is to modulate the weights along the process in
an appropriate manner.

The eigenvalues of the weight matrix, and consequently of the Laplacian matrix
as well, determine the rate of convergence. Obviously, there are eigenvectors
whose contribution to the rate of convergence is higher than others. Ideally, it
would suffice to modulate the weights in such a fashion that the eigenvector
of the Laplacian matrix with the fastest eigenvalue is aligned with the state
vector at each time step. Alas, this is a perhaps unsolvable problem. Instead
we consider modulating the weights such that when the state vector is far
from consensus, then most of the eigenvalues of the Laplacian are concentrated
near values contributing to high speed of convergence. Even if this results in
slower asymptotic speed of convergence, the total contribution of the rest of
the eigenvalues is larger than r(t) in early stages. Therefore, we benefit by
having a larger rate of convergence early on in the process. Later on, as the state
approaches the consensus eigenspace, i.e. the span of 1, it suffices to modulate
the weights back to the values that maximise the asymptotic rate of convergence.

Experience shows that, in the case of the original consensus algorithm, there
might be a tradeoff between maximum initial and asymptotic rate of convergence.
However, that research direction has not been followed further within this thesis,
and remains open for future investigation. We examine the two phases of the
consensus algorithm subsequently.
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3.3 the two phases of the consensus algorithm

We start from the fact that the consensus algorithm has two phases. In the
first phase, the so called transient phase, all the eigenvectors of the associated
dynamical system

x(t+ 1) = Wx(t)

contribute to the rate of convergence. In the second phase only one component
is active, the asymptotic. The asymptotic phase is easier to understand and is
subsequently presented.

3.3.1 Asymptotic Phase

The dynamical system in (eq.2.9), also restated above, representing the operation
of the consensus algorithm (Algo.2.1) will converge to the average of the initial
state as

xi(t) −→
t→∞ 1

n

n∑
i=1

xi(0), ∀ i ∈ {1, 2, . . . n} (3.4)

with exponential speed of convergence if conditions (eq.2.10) to (eq.2.12) are
satisfied. The exponent is time-dependent, and it is determined by the initial
state and the eigenvalues of W. The eigenvalues satisfy:

1 = λ1(W) > λ2(W) > λ3(W) . . . > λn(W) > −1 (3.5)

Therefore the speed of convergence is at least:

R = max{1− λ2(W), 1+ λn(W)} (3.6)

This is as well the asymptotic exponential speed of convergence as t→∞.The
eigenspace spanned by the eigenvector corresponding to the eigenvalue λm such
that

m = arg max
i∈{2,n}

{|λi(W)|} (3.7)

is the slowest eigenspace. We distinguish the eigenspace corresponding to
λm(W) from the rest, and name the corresponding eigenspace um.

This implies that the other components are exponentially faster. That is, the
projection of the initial state onto the corresponding eigenspaces vanishes much
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faster than um. The time interval during which the projection of the state onto
the eigenvector corresponding to λm(W) is larger than the rest, it is called
asymptotic phase. The latter is dominated by um. Theoretically, this extends
from some finite time instance to infinity. Though, in machines performing finite
precision arithmetic, this extends from some iteration until system precision has
been reached. The asymptotic phase is preceded by the so called transient phase.
The length of the latter is determined by the iteration that the asymptotic starts.
We proceed in its examination in the next section.

3.3.2 Transient Phase

The consensus algorithm determines after convergence the average, at each
participating machine, of the scalar initially associated with the each machine’s
state.

µ =
1

n
xT1 =

1

n

n∑
i=1

xi

In many applications, it is assumed that the initial state is sampled from some
normally distributed quantity. Hence, the average is the maximum likelihood
estimate of the expectation for the elements of the initial state vector. However, in
many applications, the estimate does not have to be extremely precise. Thus, the
consensus algorithm is stopped long before convergence has maximum precision
has been achieved for the specific computer. Moreover, in many applications,
execution of the consensus algorithm for a large number of iterations implies
the utilisation of an enormous amount of time, energy and other related costs.

The current trend and most prominent approach in selecting the weights is
to utilise convex optimisation, as in (Section 2.3.5.4). These weights maximise
the asymptotic convergence rate, hence the minimum speed of convergence
throughout the execution of the algorithm. This is usually attained in later stages
of the algorithm, and there are no guarantees about the speed of convergence
in earlier stages. The finite time speed is larger or equal to the asymptotic rate.
However, for a given graph, it cannot be maximised with the aforementioned
method. Thus, it may not be the best choice to maximise the asymptotic
convergence rate. This observation motivates us to examine specifically the
initial transient dynamics.

In (fig.6), we provide an example, where given the same graph the rate of
convergence is different for two weight assignments throughout the execution
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Figure 6: The Transient Phase. The plot was generated by executing the consensus algorithm
with 1000 different initial states. The states were sampled from a normal distribution
with standard deviation 1 and 0 mean. A geometric graph was randomly generated to
have |V| = 100 and |E| = 350. The quantity shown is the mean standard deviation over
all 1000 different executions of the algorithm. Two different weighting schemes are
compared. The blue line illustrates the realisations of the algorithm with the Metropolis-
Hastings weights. The red indicates the case where weights have been assigned by
convex optimisation. The Metropolis-Hastings weights have better performance on
average early on, until two lines intersect, near the end.

of the consensus algorithm. Selecting different weights than those assigned by
maximising the asymptotic rate of convergence, results in having higher speed
of convergence and precision, early in the process. The two realisations of the
consensus algorithm intercept at a much later stage. We examine the mechanics
of this phenomenon hereafter.

We commence our analysis from the simplest case where the eigenvalues
of the weight matrix W are 1 = λ1(W) > λ2(W) > λ3(W) . . . > λn(W) > −1

and |1 − λi(W)| > |1 − λ2(W)|, ∀i ∈ {3, 4 . . . ,n}. This covers a larger part of
weighting graph assignments and simplifies the discussion. The other case,
which might be a bit more difficult to construct, will be considered throughout
the text. Initially, the exponential speed of convergence is expected to be much
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higher than its asymptotic value. This is due to the fact that the components
corresponding to the eigenvalues 1− λi(W), where i ∈ {3, 4, . . . ,n}, diminish
rapidly. Therefore, in early stages of the process these eigenvalues contribute
and essentially determine the speed of convergence. Their impact vanishes later
on. Finally, only the spectral gap 1− λm(W), where m is given by equation
(eq.3.7), is important as t→∞. This transient effect is rather evident in larger
networks where the number of the eigenvalues is large and many of them are
close to λn and λ2. Therefore, in these networks, the collapse of the projections
of the state onto the eigenvectors requires more iterations to complete.

Assume that the initial state of each vertex is sampled from a normal distri-
bution xi(0) ∼ N(µ,σ2), ∀i ∈ {1, 2, . . . n}. Therefore the initial state on the graph
is sampled from a normal distribution x ∼ N(µ1,σ2I). The weight matrix is a
diagonalisable matrix according to:

W = UΛU−1

Suppose that W is a symmetric matrix, according to (Section 2.10). Thus,
its eigenvectors form an orthonormal basis UTU = I. Hence, the state x can
be decomposed as y = UTx. Subsequently, the components follow a normal
distribution,

y(0) ∼ N(UTµ1,σ2I)

which leads to,

y(0) ∼ N(unµ/c,σ2I)

where u1 = {1, 0, 0 . . . , 0} and c = 1/
√
n is a normalisation constant on U. It

holds that

‖x(t) − 11Tx(0)/n‖2 = ‖(W − 11T/n)tx(0)‖2

where ‖ · ‖ denotes the L2 norm. Let define the deviation from consensus as the
quantity

Φ(t) =
1

n− 1
‖(W − 11T/n)tx(0)‖2 (3.8)

which is in fact the mean square deviation from consensus of the dynamical
system. Since y(t+ 1) = Λy(t), then one can readily show that the deviation
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from consensus of the dynamical system in (eq.2.8), given some initial state x(0),
is given by

Φ(t) =
1

n− 1
y(0)TΛ̃2ty(0) (3.9)

where y(0) = UTx(0) and Λ̃ = diag{0, λ2, λ3, . . . , λn}. Thereafter, its expectation,
given a normal random state vector at time-step (t), may be obtained by

E[Φ(t)] =
1

n− 1
Tr[Λ̃2t]E[y(0)Ty(0)]

which leads to

E[Φ(t)] =
1

n− 1

n∑
i=2

λ2ti σ
2 (3.10)

Examining the latter equation, in early stages the contribution of the compo-
nents related to fast eigenvalues is larger than those related to slow eigenvalues.
Given that the weight matrix W is known, there can be a critical time that
separates the transient from the asymptotic phase. This can be recovered from,∑

i∈α
λi(W)2t = (n− |α| − 1)λm(W)2t (3.11)

where α is the set of indices for some small ε such that α = { i ∈ {2, 3, . . . ,n} :

|λi| < |λm(W)| − ε }, where we remind that λm(W) refers to the slowest eigen-
value. The purpose of ε is to allow to include in the summation those eigenvalues
that are relatively close in modulus to λm(W). These in practice contribute to
the asymptotic phase due to the errors introduced by finite precision arithmetic.

These claims can be readily verified by examination of (fig.7). There, we have
plotted the contribution of the slow components in the expected deviation from
consensus E[Φm(t)] versus the fast components E[Φα(t)].

E[Φm(t)] =
n− |α| − 1

n− 1
λm(W)2t (3.12)

E[Φα(t)] =
1

n− 1

∑
i∈α

λi(W)2t (3.13)

The critical time, of the transition between the transient and the asymptotic phase,
is evident. In (fig.7), even though the presence of both phases is identifiable,
the transient phase lasts only a few iterations, and its impact is small. An
example where the transient phase is larger is given in the subsequent figure.
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Figure 7: Contribution comparison of slow and fast components. The contributions to
the expected mean deviation from consensus are compared with ε = 0.1. Evidence
of the transient phase is given for the depicted weighted graph. The weights have
been set with respect to Metropolis-Hastings weighting scheme, (Section 2.3.5.2). (a) The
contributions of the fast minus the slow components. The negative values indicate
that after t = 10 the slow component dominates convergence. (b) The Red line is
the contribution of the slow component. The Blue line is the contribution of the fast
component. The two intersect at about t = 10. (c) The ratio of contributions of slow

and fasts components with respect to the total is shown,
E[Φm(t)]

E[Φ(t)]
and

E[Φα(t)]

E[Φ(t)]
, red

is slow and blue is fast, respectively. (d) The contribution of the fast plotted against
the slow components’ contribution. The curve is convex, illustrating the impact of the
fast components. The larger the curvature the larger the impact of the transient phase.
(e) The spectrum of the weight matrix. (f) The graph.
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There the same graph has been weighted with a different scheme. In (fig.7),
the weights have been set according to the Metropolis-Hastings weight scheme
(Section 2.3.5.2), whereas the weights in (fig.8) have been selected in accordance
with the maximum degree method, (Section 2.3.5.1).

All figures follow the same layout. The top three graphs compare the contribu-figures’
explanation tion (eq.3.10) of the components corresponding to the fast and slow eigenvalues

as in, (eq.3.13) and (eq.3.12), respectively. There, going from left to right, the
first plot (a) is the difference E[Φα(t)] − E[Φm(t)]. Negative values indicate that
the slow components are expected to contribute more in the deviation from
consensus. In contrast, positive values indicate that fast components contribute
more. The x-axis indicates the time-step (t) of the algorithm.

The second plot (b) illustrates the contributions of the fast E[Φ(t)]α and
the slow E[Φ(t)]m components with red and blue lines, respectively. The
point where the two lines intersect designates the end of the transient phase.
Nevertheless, the fast components can still affect the speed of convergence
during the asymptotic phase, as in (fig.8). However, their contribution is much
smaller and diminishes rapidly.

The third plot (c) at each graph illustrates the partition of contribution of each
of the fast and slow components in respect to the total. In fact the quantities
plotted are E[Φα(t)]/E(Φ(t)], blue line, and E[Φm(t)]/E(Φ(t)], red line.

At the bottom part of (fig.7), (fig.8) and (fig.9), the phase plot (d) of fast versus
slow illustrates the impact of the transient phase. The curvature indicates that
the transient phase dominates. Specifically, the larger the curvature, the larger
is the impact of the slow components, and consequently of the transient phase.
This is evident by comparing plot (d) in (fig.9) and (fig.8).

The next two plots (e) and (f) are the spectrum of the weight matrix and the
graph itself. The same graph was utilised among all three figures. It is important
to observe, by comparing again (fig.8) with (fig.9), that with a spectrum that
spans evenly the entire range (−1, 1], the transient phase is suppressed and the
asymptotic phase is more important.

Overall, in these three figures (fig.7), (fig.8), and (fig.9) the impact of theobservations on
components’
contribution

so called fast and slow components is illustrated, with respect to different
weighting schemes for the same graph. The fast and slow components are
primarily involved in the emergence of the transient and asymptotic phases,
respectively. The two phases have a conjoined relation. The fast components
may be suppressed when the weights are selected in such a manner that the
minimum speed of convergence is maximised, that is the slow components
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Figure 8: Prominent transient phase. Evidence of the transient phase is given for the de-
picted weighted graph with ε = 0.1. The weights have been set with respect to
Maximum degree weighting scheme, (Section 2.3.5.1). (a) The contributions of the fast
subtracted the slow components. After about t = 30 the value becomes slightly neg-
ative, and the slow component dominates convergence. (b) The Red line is the slow
components and blue is fast. (c) The ratio of each component with respect to the total
is depicted, using the same color code. (d) The ratio of contribution of the fast versus
the slow components. The larger the curvature the larger the impact of the transient
phase. (e) The spectrum of the weight matrix. (f) The graph.
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Figure 9: Impact of convex optimisation onto transient phase. Convex optimisation
enhances slow components. Evidence of the transient phase is given for the depicted
weighted graph (f), having ε = 0.1. The weights have been set by convex optimisation,
(Section 2.3.5.4). (a) The contributions of the fast subtracted the slow components are
shown. After about t = 5 slow components dominates convergence. The (b) red line
designates contribution of the slow components and blue of the fast. (c) The ratio of
the two components, slow and fast, with respect to the total is depicted. Likewise, the
red depicts the slow and blue the fast. (d) The ratio of contribution of the fast versus
the slow components is shown. The larger the curvature, the larger is the impact of
the transient phase. Here the transient phase is suppressed. (e) The spectrum of the
weight matrix. (f) The graph.
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become as fast as possible given a specific graph. However, one can assign the
weights in such a fashion that fast components become faster, as in (fig.6). In
that manner, the iterations needed to achieve some level of precision can be less
than in the case where the asymptotic phase has been favoured. In many cases,
the required precision by the application may be such that it can be attained in
the transient phase, given that the weights have been set appropriately.

The transient phase is more important in larger networks. There, convergence
requires more iterations, and the transient phase has larger duration. Addi-
tionally, the impact of the total energy and other costs, related to the number
of communications, is much larger. This is due the fact that the number of
communications per iteration, with respect to the number of vertices, increases
at least with 2n for trees and with

(
n
2

)
p in random graphs, where p is the

edge presence probability. In such cases, it is of interest to achieve maximum
precision as fast as possible. An example has been given already in (fig.14).
Assume that an application requires precision to the first decimal digit, then
the algorithm will need about 100 iterations less, in this case, if we select the
Metropolis-Hastings (Section 2.3.5.2) weights, in comparison to having had set the
weights by Convex optimisation (Section 2.3.5.4). This might be the scenario in
many applications. Therefore, we would like to favour having better precision as
soon as possible. That requires considering the stepwise speed of convergnece
instead of the asymptotic.

However, as already noted before (Section 3.2), this is a difficult nonlinear
optimisation problem. Instead, we propose the nonlinear consensus algorithm
(Section 3.4), which aims at achieving a similar result online. The algorithm
achieves better performance than the linear consensus algorithm on average
throughout the entire process.

Summarising, in this section two principal ideas are communicated. Firstly,
the weights assigned on the graph shall result in different speed of convergence
throughout the process. The speed of convergence has a minimum value which
can be maximised by appropriately assigning the weights. This however does
not guarantee that the stepwise speed of convergence is maximum for the given
graph, throughout the process. Secondly, there are two distinct phases of the
algorithm, the transient and the asymptotic. These are present in any graph
and given any initial state vector, except those where the initial state vector
is proportional to the eigenvector with eigenvalue equal to |λm(W)|, i.e. the
slow component. Therefore, the selection of the weights can be such that the
maximum precision is attained in the least number of steps, or such that a
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specific precision is reached in the minimum number of iterations. The first case
can be posed as an easy convex optimisation problem. The second is a non-linear
optimisation problem which is difficult to solve. An alternative approach is
needed which is presented subsequently.

3.4 nonlinear consensus

Our intention is to have high exponential speed in both the transient and
the asymptotic phase by using a nonlinear function. The trick is to leave the
system with weights at the asymptotic phase that maximise the minimum rate
of convergence given the graph while modulating them appropriately during
the transient phase.

The proposed local update rule can be summarised in

xi(t+ 1) = xi(t) +
∑
j

wijf(υij(t)) (3.14)

where υij = xj − xi and the nonlinear function in the summation can be anyNonlinear update
protocol C1 function which has

f(0) = 0, f(−u) = −f(u),
df

du
> 0

This family of functions for consensus has been mentioned in (Saber and Murray,
2003). However, in contrast to this work, their study is focused on the continuous
time case, and does not acknowledge the advantages of this function in relation
to the transient phase, thus overlooking its importance. Moreover, we provide
a theorem that suffices for the convergence of this discrete time non-linear
dynamical system (Georgopoulos and Hasler, 2009a).

Theorem 3.1. Suppose that W ∈ Rn×n is a doubly stochastic matrix. Let f be an
odd, increasing scalar function f : R → R, with a bounded first order derivative
0 < df

du 6 1. Assume ρ(W − 11T/n) < 1, then the evolution of the discrete dynamical
system x(t+ 1) = A(x(t))x(t) converges according to:

xi(t) −→
t→∞ 1

n

n∑
i=1

xi(0), ∀ i ∈ {1, 2, . . . n}

Proof. Equation (eq.3.14) can be written

xi(t+ 1) = xi(t) +
∑
j∈βi

wij
f(υij(t))

υij(t)
υij(t)
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as long as xj(t) 6= xi(t).
Define the matrix [A]ij = wij

f(υij)
υij

[A]ij , ∀i 6= j and [A]ii = 1−
∑n
j=1,j6=i[A]ij,

where A is the adjacency matrix. When υij = 0 the matrix element is defined as
[A]ij = lim

υij→0
wij

f(υij)
υij

.

The matrix A is a function of f(υij). Since υij is a function of x, then A is a
function of x as well. Subsequently, we are led to the following global update
equation.

x(t+ 1) = A(x(t))x(t) (3.15)

The matrices A and W can be written A(x) = I − L(x) and W = I − L. Where
L is the weighted graph Laplacian, Godsil and Royle (2001), and L(x) the corre-
sponding weighted graph Laplacian of the nonlinear system. The time index is
omitted for simplicity where it is not necessary.

Let µk and λk be the eigenvalues of L(x) and L, respectively. Therefore the
eigenvalues of the two matrices, A and A, are 1− µk and 1− λk, respectively.
Due to the fact that these matrices are symmetric, their eigenvalues are ordered
as λ1 6 λ2 6, . . . , λn and µ1 6 µ2 6, . . . µn . One can see that A is symmetric
by considering:

[A]ij = wij
f(υij)

υij
[A]ij = wji

f(υij)

υij
[A]ji

= wji
f(−υji)

−υji
[A]ji = wji

f(υji)

υji
[A]ji

= [A]ji

The eigenvalues of λk and µk are increasing functions of [W]ij, [A]ij respec-
tively. This follows from

xTLx = 2

n∑
i=1

n∑
j=1

[W]ij(xj − xi)
2

Hence xTLx is a positive increasing function of wij. Therefore the Courant-
Fischer theorem holds for L(x). This extends to A, therefore we need only the
conditions on W to hold, (eq.2.10), (eq.2.11), and (eq.2.12). The first has already
been shown. The second is trivial since by definition the diagonal elements [A]ii

are such that Aii = 1−
∑n
j=1,j6=i[A]ij. The last condition ρ(A(x) − 11T

n ) < 1, also
holds. Indeed, mun 6 λn, therefore 1−µn > 1− λn and 1−µ2 < 1 because the
graph remains connected.
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A function that satisfies the conditions of theorem (Theorem 3.1), and modulates
the weights appropriately is

f(υ) = tanh(θυ)κ (3.16)

where parameters {θ, κ} ∈ R+ are assigned such that

κθ 6 1 (3.17)

We are going to verify in (Chapter 6) by simulation that this function performs
better than the linear consensus algorithm. We provide (fig.10) within this section
as evidence of our claims. There we have simulated the nonlinear consensus
algorithm and the consensus algorithm for 1000 different initial states, all
sampled from the same initial distribution with mean 10 and standard deviation
1, i.e. x ∼ N(101, I). The standard deviation of the state is an appropriate
measure for the level of agreement in the network. The average of the state’s
standard deviation from the arithmetic mean for each realisation, over all the 100

executions, is shown in (fig.6). The weights assigned on the edges were obtained
with convex optimisation, as in (Section 2.3.5.4), and the algorithm parameters
where κ = 1 and θ = 1.

By examination of the plots in (fig.10) two conclusions may be deduced. First,
that the nonlinear consensus algorithm outperforms the consensus algorithm
throughout the entire process. This is due to the modulation of the weights with
respect to the state, which results in increased speed of convergence during the
transient phase. Subsequently, in the asymptotic phase, the speed of convergence
is maximised, since the modulated weights converge to the preassigned weights,
assuming that it holds df

dx(0) = 1 for the given function. In this case, these
weights are such that the speed of convergence is optimal during the asymptotic
phase for the given graph.

One arrives at the second conclusion by comparison of the performance plots
of the two example graphs (fig.10). The left graph consists of 30 vertices, whereas
the graph of the right consists of 100 vertices. Our claim that the impact of the
fast components is more evident in larger graphs is verified by comparing the
slopes. The difference in performance of the larger graph between the execution
of the nonlinear and the original consensus algorithm is roughly 10 times the
corresponding performance difference for the smaller graph.

We have also executed the following experiment to examine the performance of
the algorithm in small and large graphs. We have generated 10-tuples of randomEvidence of better

performance geometric graphs with [10, 20, . . . , 400] vertices and average vertex degree of 1.3 .
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Figure 10: Average performance of the Nonlinear algorithm versus the Linear. The
average standard deviation of the state is plotted for 1000 different initial
states sampled from a normal distribution with standard deviation 1 and
mean value 10. Red line indicates nonlinear average consensus algorithm.
Blue indicates the consensus algorithm. Left plot is a graph of 30 vertices
and about 50 edges. Right plot is a graph of 100 vertices and about 170 edges.
The nonlinear algorithm performs better on average by taking advantage
of both the transient and the asymptotic phase. The nonlinear consensus
algorithm has been executed with parameters κ = θ = 1.

Thereafter, we simulated the nonlinear (eq.3.14) and linear protocols (eq.2.8) of
the consensus algorithm (Algo.2.1) for each graph, for 100 different initial states
sampled from a normal distribution x ∼ N(101, I). For each 10-tuple we have
computed the average of the standard deviation at each time-step of the process.
The nonlinear consensus algorithm parameters had been set to κ = θ = 1. The
resulting data-set was fitted with a cubic smoothing spline which is depicted in
(fig.11). The smoothness parameter was 10−5.

In (fig.11) two concepts are illustrated. First, the benefit in precision by
incorporating the nonlinear consensus algorithm in random geometric graphs.
Justifiably, the importance of profiting from the transient phase by performing
weight modulation is evident. Second, the improved performance in comparison
to the linear consensus algorithm in larger graphs. Therefore, we claim that the
transient phase is more important as the number of vertices increases in random
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geometric graphs. This work has been presented in (Georgopoulos and Hasler,
2009a).

Figure 11: Comparison Nonlinear versus Linear. (a) The ratio of the standard deviation
of the state of the linear consensus algorithm over the linear is depicted. The linear
algorithm has up to twice the standard deviation when compared to the nonlinear
algorithm.. (b) The contour graph of (a). Better performance in larger graphs is
evident for the nonlinear consensus algorithm. (c) The difference of the standard
deviation of the state of the linear consensus algorithm from the nonlinear case is
illustrated. (d) Similarly the contour graph of (c). The nonlinear consensus algorithm
parameters had been κ = θ = 1 and εi was adapted with a typical momentum
like policy. The surfaces displayed have been fitted a cubic smoothing spline. The
smoothness parameter was 10−5.
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3.5 adaptive consensus

Communications cannot be guaranteed in many applications of the consensus
algorithm. We discuss this case here, for the purpose of understanding how the
consensus algorithm is affected by edge variability. Based on our observations
we introduce the adaptive consensus algorithm, which may perform better than
the nonlinear and the linear consensus algorithms in case of symmetric link
failures.

In such cases a model of stochastic link failures (eq.2.19) is appropriate, as
presented in (Section 2.3.4.1). The convergence of such a stochastic dynamical
system is supported by (Theorem 2.7). The theorem can also be extended to the
case of asymmetric link failures. However, the constraints on the second largest
eigenvalue should be guaranteed at each step of the algorithm.

In view of the findings in (Section 3.3.2) and (Section 3.4), there are two princi-
pal matters related to the execution of the consensus algorithm under stochastic
communications. First, the impact of stochastic communications on the tran-
sient and asymptotic phases. Second, the manner that the nonlinear consensus
algorithm be employed to benefit from the transient effect, given the fact that
the transient phase bears great importance for the level of precision attained
throughout the entire process. These matters are examined within this section.

3.5.1 Impact of Edge Stochasticity

This discussion focuses on the case of symmetric link failures. We build upon
two facts about the dynamical system in (eq.2.8). First, that the asymptotic
convergence rate is R. Second, that the rate of convergence during the transient
phase is determined by the ensemble of eigenvalues of the weight matrix. The
smaller the modulus of these, the faster the convergence rate during the transient.
This can be verified by inspecting (eq.3.10).

The following claims are made for the stochastic dynamical system case
(Section 2.3.4.1). First, that the expected rate of convergence is smaller than the
corresponding non-stochastic graph with the same weight assignments, in both
the asymptotic and the transient phase. Second, and most importantly that the
transient phase appears to last longer but having smaller contribution in the
reduction of the deviation from consensus. Finally, we claim that this effect is
more pronounced for smaller edge alive probabilities p.
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The stochastic dynamical system evolves in respect to the model

x(t+ 1) =

0∏
k=t

W(k)x(0) (3.18)

where W is a realisation of the stochastic weight matrix under (eq.2.19) at the
kth step of the algorithm’s execution. There we assume of a graph G(V, E) with
self-loops, and suppose that the edges of G are present with some probability
p ∈ (0, 1) at each iteration. The self-loops are assumed to be always present,
i.e. p = 1. Finally, the realisations of the stochastic weight matrix are in fact
subgraphs of G.

One should notice that x(t+ 1) is dependent on the previous state x(t), and
therefore on the sequence of weight matrices as well. In fact, we are interested
on determining the expected rate of convergence at a time t, given some initial
state x(0). However, this is a difficult task, because the numerator and the
denominator are dependent. Nevertheless, our claims can be supported by
postulating on the expected state.

E[x(t+ 1)|x(0)] = (I − pL)t+1x(0) (3.19)

The derivation may be found in (Appendix A). By inspection of (eq.3.19), we are
led to the conclusion that the edge probability’s effect is to scale the Laplacian.

The eigenvalues of the expected weight matrix are λ(E[W]) = 1 − pλ(L).
Therefore, the effect of p onto the eigenvalues of the expected weight matrix

is such that for λi(L) ∈
[
0,

2

p+ 1

)
the eigenvalues increase, i.e. |1− λi(L)| >

|1− pλi(L)|. On the other hand for λi(L) ∈
(

2

p+ 1
, 2
)

, the eigenvalues decrease.

Hence, how the rate of convergence changes depends on p in a complex manner.

|1− λi(L)| < |1− pλi(L)| , if λi(L) ∈
[
0,

2

p+ 1

)
|1− λi(L)| > |1− pλi(L)| , if λi(L) ∈

[
2

p+ 1
, 2
)

|1− λi(L)| = |1− pλi(L)| , if λi(L) =
2

p+ 1

Therefore, when the weight matrix has all its eigenvalues in the region [0, 1],
the behaviour of the stochastic dynamical system is simple. That is the con-
vergence rate is decreased throughout all phases monotonically, irrespective of
the non-stochastic weight matrix assignment. That is because the eigenvalues
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increase. Considering the case where the eigenvalues are spread in [0, 2), the
effect in the transient phase can be rather complex.

In the case where the asymptotic convergence rate is optimal, the asymptotic
rate is reduced or remains the same, as result of edge stochasticity. This due
to the fact that the weights are obtained by minimising the norm ‖W − 11T

n ‖
and are globally optimal, where W is the non-stochastic weight matrix. This
holds because the aforementioned optimisation is convex. Removing an edge is
equivalent to setting the corresponding edge weight to 0. Therefore, having a
larger rate of convergence implies that there is another point on the parameter
space such that the norm ‖W − 11T

n ‖ is smaller. This implies a second global
optimal, which contradicts that the objective function is convex. However, the
asymptotic rate may increase under failing links for other weight assignments.
That is when the weight matrix assignment and p are such that

|1− pλn(L)| < |1− pλ2(L)|

which also implies that |1− λn(L)| < |1− λ2(L)|. However, this is a case that
has to be specifically engineered, but does not occur for the weight assignment
schemes that we have described. In these other cases where |1 − λn(L)| >

|1− λ2(L)| , the asymptotic convergence rate decreases or remains the same.
The effect on the transient phase is largely dependent on the number of

eigenvalues of the Laplacian which reside in each of the regions [0, 2/(p+ 1))

and (2/(p + 1), 2). In order to gain better understanding of this, we have
plotted |1− pλi(L)| − |1− λ(L)| in (fig.12). The eigenvalues that contribute in the
transient phase, i.e. the fast eigenvalues, are found around 1. Whereas, the slow
eigenvalues are near 0 and 2, near the vertical edges of the figure.

We can distinguish two distinct cases. The rest can be conceived as compound
cases of these two. The first being when the edge presence probability p is
small. The second is for p being large. In the first case, the resulting behaviour
is quite intuitive. All the eigenvalues of the expected weight matrix increase in
absolute value, and therefore the stochastic dynamical system is expected to
have a reduced rate of convergence in all phases. Furthermore, the transient
phase is affected more, since in the region around 1 the eigenvalues of E[W]

increase, which holds for larger values of p as well.
The other case is displayed on the top side of (fig.12). There, some eigenvalues

increase while the rest decrease. In most cases, the weighted graph is assumed
to have eigenvalues distributed over the entire region under the weighting
schemes that we consider. Therefore, the system should exhibit slower rate of
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Figure 12: Effect of edge probability. The difference of the magnitute of the eigenvalues of
W and E[W] is shown with respect to the corresponding eigenvalue λi(L) and p is

displayed. There is a hyperbola λi(L) =
2

p+ 1
where there is no change. Eigenvalues

found on left side of the hyperbola will decrease and on the right side will increase
upon effect of failing edges. As a consequence the rate of convergence decreases on
the left side and increases on the right side.

convergence in all phases even when p is moderately large, i.e. about 0.5. The
impact though is larger in the transient phase. This is due to the fact that fast
eigenvalues, i.e. contributing in the transient phase, may be moved to the region
of eigenvalues contributing in the asymptotic phase, due to edge stochasticity.
Thus, the number of fast eigenvalues reduces. Consequently, the convergence
rate during the transient phase reduces.

An interesting remark can be made in the case that one considers designing
a network that is robust under link failure . In the right-most side of (fig.12),
the eigenvalues decrease with p, thus the convergence rate of the expected state
increases. Therefore, having the eigenvalues in the region [2/(p+ 1), 2) allow
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for robustness under link failures. Nevertheless, this holds only for the system
in (eq.3.19). The true system (eq.3.21) has more complex behaviour. Hence, this
should be considered with care and experimentation. We avert from a detailed
discussion, since this evades our purpose.

Summarising, in this section, we have shown that the rate of convergence is
expected to be smaller in both phases. Though, the impact in the transient phase
is greater. Particularly, the contribution to the deviation from consensus and its
duration are both affected as p decreases. This is due to the fact that eigenvalues
can be transfered, as an effect of link failures, from the central spectral region of
the Laplacian to the boundary. Therefore, these contribute less in the transient
phase. Furthermore, in both phases, the convergence rate has been shown to be
more influenced as p reduces.

3.5.1.1 Approximate stochastic dynamical system

In the previous section, we have determined the expected state of a system in
presence of stochastic link failures given the initial state. Moreover, we have
deduced the impact of link failures based on the spectrum of the expected
weight matrix. Our direct interest would be to determine the system’s expected
deviation from consensus, given the initial state x(0).

E[‖x(t) −
11T

n
x(0))‖2|x(0)] = x(0)TE[

t∏
k=0

W(k)T

0∏
k=t

W(k)]x(0) − x(0)T 11T

n
x(0)

(3.20)

Alas, in the right hand side the matrix products are dependent and cannot be
separated.

In fact, that discrepancy is introduced as well when we consider the system’s
expected state (eq.3.19). Instead, we make another approximation and consider
that the state x(0) is given by Averaged

dynamical system
modelx(t+ 1) = E[W]x(t) (3.21)

where E[W] is the expected weight matrix E[W] = (I − pL) .
Hence, the expected variance of the averaged dynamical system is simply

E[‖x(t) −
11T

n
x(0)‖2|x(0)] = x(0)T(I − pL)2(t+1)x(0) − x(0)T 11T

n
x(0) (3.22)

which implies that the products of stochastic matrices in (eq.3.20) are indepen-
dent. This is obviously not true. However, we shall see with a simple numerical
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experiment that in random geometric graphs, this approximation does not affect
the qualitative behaviour of the system.

Our interest now is in determining the expected variance of the averaged
system, given the assumption that x(0) is sampled from a gaussian distribution
N(µ1,σ2I). The expected deviation from consensus of the averaged system
can be retrieved with an identical analysis to (Section 3.3) where (eq.3.10) was
obtained.

E[Φ(t)] =
1

n− 1

n∑
i=2

λi(E[W])2tσ2 (3.23)

Subsequently, an equation for the expected deviation from consensus under
failing links can be retrieved by substituting E[W] in (eq.3.23).

E[Φ(t)] =
1

n− 1

n∑
i=2

(1− pλi(L))2tσ2 (3.24)

Therefore, the deviation from consensus of the stochastic dynamical system,
during the asymptotic and the transient phases, relates to the edge presence
probability and the eigenvalues of the weighted graph Laplacian.

We provide (fig.13) as evidence of our claims. For the purpose of generatingfigure generation
specifics (fig.13) we selected an example geometric graph where the presence of the

transient phase is evident. The latter has a vertex set size of 100 and the average
degree was 4.8. Thereafter, we sampled randomly 1000 initial states x(0) from
a normal distribution N(0, I). Subsequently, we have simulated, for each of
the initial states, the stochastic linear dynamical system and the stochastic
model, (eq.2.21) and (eq.3.21) respectively. The link presence probability was
selected at p = 0.4. We utilised two different weight assignments, for each
model, the Metropolis-Hastings weights and weights obtained by minimisation
of ‖W − 11T

n ‖ . These two weight assignment schemes result in weight matrices
with eigenvalues contained in different regions. These, in the first case, are
found in a smaller region of (-1,1] in comparison to the second case where
the eigenvalues are spread over the entire (-1,1] region. These two weight
assignments and the two cases of the actual stochastic simulated system and the
model, result in four combinations.

We have simulated the stochastic dynamical system for these two different
weight assignments, computed the standard deviation for each sequence, and
afterwards obtained the average over all sequences at each iteration. The results
are presented in (fig.13), denoted as simulation. There, a comparison is made
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with the model in (eq.3.21) which is the deviation of the expected state, denoted
as theoretical. There the evolution of the state’s standard deviation is obtained
by multiplying at each iteration with the true expectation of the weight matrices.
A third comparison is made with the standard deviation of a dynamical system
where the expected weight matrix is approximated by 1

m−1

∑m
k=1W(t)] at each

time sequence. This is denoted as experimental on the plot.
The plots on the right illustrate the accordance of our model with the standard figure explanation

deviation obtained during the actual simulation of the system. The ratios of
the experimental and theoretical versus the simulation precision are plotted,
respectively. Both remain along the diagonal, which signifies that the model
introduced in (eq.3.21) approximates well the actual system. Carefully inspecting
the Theoretical curve in the left-most plots in (fig.13), allows us to arrive at the
conclusion that discrepancies between the average model and the simulations
occur during the transient phase. In comparison with the Simulation the tran-
sient phase seems to be much smaller. However, comparing the Theoretical
curve alone between the upper and lower left most plots, we observe that the
length of the transient phase is qualitatively in accordance with the one in the
Simulation curve.

Inspecting top and bottom rows of (fig.13) allows us to arrive at the fol-
lowing conclusion. On the upper two plots the graph has been assigned the
Metropolis-Hastings weights. The other case is with edge weights obtained by
convex optimisation of ‖W − 11T/n‖. In the latter case, the eigenvalues are well
distributed over the entire [0, 2] range of the spectrum. Whereas in the first
case, Metropolis-Hastings, the eigenvalues are mostly concentrated within the
[0, 2/(p+ 1)) range. In (fig.13) one observes, by inspecting mainly the Simulation
curve in the case of Metrqopolis-Hastings, that the rate of convergence is reduced
uniformly throughout the execution of the algorithm. The transient phase lasts
from 0 to about 200, where the asymptotic phase commences. However, in
the case of the optimised weights the transient phase lasts up to about 100.
Moreover, the deviation in the transient phase, comparing at 100, is smaller in
the case of Metropolis-Hastings. This further justifies that the impact of edge
stochasticity is more pronounced on the transient phase when the eigenvalues
are spread throughout the entire [0, 2) range, as has been described in (Section
3.5.1).
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Figure 13: Averaged System Verification. MH: Metropolis-Hastings weights, Opt.: Convex
Optimized weights. Left-Top: Comparison for the model under MH weights. The-
oretical is the standard deviation of the system in (eq.3.21), where E[W] has been
approximated as the average over all generated matrices. The Experimental curve of
average standard deviation is computed by simulating (eq.3.21) with E[W] determined
for each specific sequence of matrices. Thereafter, the average standard deviation
is computed over all sequences. The Simulation curve corresponds to the average
standard deviation σ̄(x(t)) of the simulated stochastic dynamical system. Right-Top:
Correspondence of the theoretical and the simulation output. Left-Bottom:As Left-
Top plot but using the optimised weights. Right-Bottom: As Right-Top plot but using
the optimised weights.
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case (lines). The extended transient phase in the stochastic case (dots) is prominent
and asymptotic speed is not achieved. Right: A comparison between the adaptive
nonlinear algorithm (lines) and the linear (dots). The latter performs worse in
comparison to the adaptive for both weight assignments.

3.5.2 Adaptive Nonlinear Consensus Algorithm

Drawing from the results presented in section 3.5.1, we claim that it is not
preferable to optimise the weights with respect to the asymptotic convergence
rate, for the case of the stochastic dynamical network defined in (eq.3.21), since
this might result in slower convergence rate during the transient phase. The
latter seems to be more important in the case of unreliable communications,
since the effect of failing links seems to pertubate both the spectrum and the
eigenvectors of the graph. Thus, there is a non-constant set of eigenvalues that
contributes at each iteration to the rate of convergence. This effect reduces as
the state vector approaches slowly 1, as in the non-stochastic case. However,
now the system remains longer in the transient phase.
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In fact, the optimisation of the weights with respect to the asymptotic con-
vergence rate of the non stochastic graph does not aid much, because the edge
fail probability has a larger impact and scales the convergence rate approximate
proportionally. Therefore, a modification of the consensus algorithm such that
it performs better during the transient phase and smoothes the effect of failing
links, would be appropriate. Herein, we present such an algorithm which is a
modification of the nonlinear consensus algorithm presented in (Section 3.4).

We augment the nonlinear dynamical system defined in (eq.3.14) and (eq.3.16)
with a policy to adapt the weights,

θi(t+ 1) = εi

(
1−

1

2+ e−∆2xi(t)∆xi(t)

)
(3.25)

where θi is the value on vertex vi of the parameter θ in (eq.3.16), ∆xi(t) =

xi(t) − xi(t− 1), and ∆2xi(t) = xi(t) − xi(t− 2). Parameter εi defines the speed
of adaptation and finally the maximum of θκ. Selecting appropriately these
parameters allows to satisfy the conditions in (eq.2.12).

Examining the left plot in figure (fig.14) one can make four principal observa-
tions. Firstly, the two different weight assignments result in different durations
of the transient phase in each case. Secondly, the transient phase can be longer in
case of stochastic communications. This is evident by examining the curvature
in the evolution of σ̄(x(t)) for the stochastic system. The delay in achieving
asymptotic rate of convergence is also evident upon careful examination.

At the right plot, within figure (fig.14), it is observable that the adaptive
algorithm results in better convergence rate. This is due to the fact that the
weights are adapted to the state. An interesting property which may be further
investigated.

Concluding, the adaptive algorithm attempts to retain the transient phase
on the stochastic network, and modulates the weights to increase the rate
of convergence in both phases, transient and asymptotic. This according to
our simulations results in improved precision throughout the operation of the
algorithm, in the case of stochastic communications.

3.6 summary

The consensus algorithm has been known to have slow rate of convergence in
large graphs. We have researched towards modifications of the algorithm to
increase the precision of the algorithm in early stages. We have introduced the
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nonlinear consensus algorithm for this purpose. Specifically, we have shown by
simulation that the algorithm enhances the so called transient phase.

Furthermore, we have been concerned with the case of a network with un-
reliable communication under the model in (eq.2.21). A detailed analysis of
the effect in this model is not of our direct interest. However, approximating
with the averaged dynamical system we have been able to describe qualitatively
the impact of the edge presence probability. Based, on our observations, we
have introduced an algorithm that adapts the edge weights in respect to the two
previous states.
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4
D E F I N I T I V E C O N S E N S U S

4.1 introduction

The principal concern in the previous chapter (Chapter 3) has been the speed
of convergence of the consensus algorithm which is arguably slow. We have
provided evidence for this and illustrated how the speed of convergence can
be improved throughout the entire process by modulating the weights on the
graph (Section 3.4). This furthers our attention in the modulation of the weights
throughout the execution of the consensus algorithm. Our main concern in
this chapter is to determine a sequence of edge weights such that the network
arrives at consensus as fast as possible. In fact we show that given any graph,
there is a sequence of weight assignments such that their subsequent application
allows the consensus algorithm to be at precise consensus in a finite number of
iterations. We call this the definitive consensus algorithm.

Most importantly we provide an efficient method for retrieving these weight
assignments for medium sized graphs. The entire set of solutions may be re-
trieved by computing the Groebner base of the associated system of polynomials.
However, the algorithm has exponential time complexity with respect to the
number of variables. These are the edge weights, which increase quadratically
in the number of vertices and linearly with respect to the diameter of the graph.
Instead, we propose to obtain these weight assignments by numerically solving
a system of equations, which is surprisingly easy for medium sized graphs.

Specifically, we show that the machines in any given network of connected
machines can arrive at agreement in exactly k iterations, where k is larger or
equal to the diameter of the graph d(G) and smaller than 2d(G). Furthermore,
we provide an algorithm that allows to obtain these weights. Moreover, from our
experience, we are led to claim that in fact definitive consensus can be attained
in exactly d(G) iterations. Subsequently, two methods for numerically obtaining
a solution, given a graph, are developed. Finally, we provide some results to
cultivate the interest of the reader. Further, results are included in (Chapter 6)
and (Appendix B).
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4.1.1 Motivation

The speed of convergence of the consensus algorithm is related to the asymptotic
rate of convergence. The minimisation of the spectral radius of W − 11T

n allows
to obtain optimal asymptotic rate of convergence. Still, a large number of itera-
tions is required for the algorithm to terminate. The algorithm has practically
terminated when the standard deviation of the state vector x is of order equal to
maximum machine precision. The main advantage of this method of finding
the weights is that the objecetive function ‖W − 11T

n ‖ is convex. Therefore, there
is a unique global minimum, space and time complexity scale linearly and
quadratically with respect to the number of edges on the graph, respectively.
However, this only results in obtaining best rate of convergence at the end of
the consensus process.

Alternatively, consider that the weights are switched at subsequent iterations.
Hence, the weight matrix is applied W1 at odd iterations and W2 at even. Therecursive

consensus natural question that arises is whether there is a selection of weight matrices
W1 and W2 such that the consensus algorithm converges faster that having
just one matrix applied at each recurrence. Surprisingly, the minimisation of
‖W1W2 − 11T

n ‖ leads to impressive improvement of the rate of convergence. We
ponder whether this can be extended to include a larger number of matrices.

min
W1,W2,...,Wr

‖WrWr−1 . . .W1 −
11T

n
‖ (4.1)

s.t. WrWr−1 . . .W11 = 1, Ws = WT
s, ∀s ∈ {1, 2, . . . ,k}

Then the consensus algorithm (Algo.2.1) can be trivially modified to employ the
recursion of these matrices.

The weight matrices in (eq.4.1) can be obtained by nonlinear optimisation,
which is a computationally intense process. Moreover, the value of the minimum
is unknown, termination cannot be guaranteed, and the obtained solution may
not be a global minimum. Hence, the speed of convergence from the solution of
(eq.4.1) cannot be guaranteed to be better than minimising for just one weight
matrix.

Nevertheless, our interest within the context of this section remains ex-
ploratory,thus we need not justify this further. However, as in many nonlinear
optimisation problems, one has to be lucky, and usually obtaining a good solu-
tion takes more than just one attempt. That is, a solution that performs better
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Algorithm 4.1 Recursive Consensus Algorithm, Cr(W1, W2, . . . , Wr, x,q)

1: Execute the while loop for every machine simultaneously
2: s← 0

3: for t = 1 to q do
4: s← s+ 1

5: if s 6 r then
6: xi ←

∑n
j=1[Ws]ijxj

7: else
8: s← 0

9: end if
10: end for
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Figure 15: Definitive Consensus Motivation. In this figure, evidence is given for the im-
provement in terms of speed of convergence that can be obtained by employing
(Algo.4.1). (a) The output of the state for 100 iterations of (Algo.4.1) is shown. (b) The
variance of the state is compared for the two algorithms. The blue line designates the
execution of the consensus algorithm (Algo.2.1). The red line indicates the recursive
(Algo.4.1). (c) The graph is shown, upon which this test has been performed.
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than using just one matrix. Results for recursively applying four weight matrices,
obtained by solving (eq.4.1) are provided in (fig.4.1.1).

Inspection of (fig.4.1.1) allows to make the following two observations. First,
that optimising the weights as in (eq.4.1), results in reduced time to convergence
throughout the entire process. Second, that the reduction of the standard
deviation is not monotonous. The latter is due to the fact that we have not taken
specific care to enforce the norm of each of the matrices Wr, Wr−1, . . .W1 but
only to reduce the norm of their product minus 11T

n . Thus, some of the matrices
may have ‖Wr‖ > 1. Therefore, the state variance may increase at the some
iterations. However, the improvement is evident overall.

Our experience shows that increasing the number of matrices, i.e. increasing
r, drastically improves the rate of convergence. However, the drawback is that
the number of variables in (eq.4.1) increases as well. The impact of the increase
of the size of the network is similar. Having said this, the nonlinearity of the
objective function and the constraints further deteriorate the feasibility of finding
a good solution. However, the findings of this section draw our attention to the
improvements that can be obtained by application of (Algo.4.1).

4.2 definitive consensus

The reduction of time to convergence of the consensus algorithm by recursively
applying matrices raises the following question.

Problem 4.1 (Definitive Consensus Problem). Given a graph G(V, E), does a se-
quence of weight assignments, represented by matrices W1, W2, . . .Wr, exist such
that by application of (Algo.4.1) the dynamical system arrives at definitive average
consensus in r iterations,i.e. x(r) = 11T

n x(0), without having any other sequence
W ′1, W ′2, . . .W ′r ′ such that r > r ′?

In subsequent sections we are going to show that the necessary number of
such matrices is r = d(G), equal to the diameter of the graph, and that the
maximum is 2d(G). Moreover, we are going to provide evidence that justifies
claiming that consensus is always feasible in exactly d(G) iterations. Finally, we
are going to provide a method to determine these weight matrices in small and
medium sized graphs.

Assume that the answer to (problem 4.1) is positive, then algorithm (Algo.4.2)would
allow the system to be in consensus after r iterations. This is in fact a slight
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modification of (Algo.2.1). Hence, solving (problem 4.1) is of major importance,
as well as the problem of finding such matrices.

Algorithm 4.2 Definitive Consensus Algorithm
1: for t = 1 to r do
2: for i = 1 to n do
3: for j = 1 to n do
4: si ←

∑n
j=1[Wr]ijxj

5: end for
6: end for
7: for i = 1 to n do
8: xi ← si

9: end for
10: end for

It is reminded that the loops for i are executed distributively at each machine
separately.

4.2.1 Formulation

Assume that for some r the sequence of weight matrices in (problem 4.1) exists.
Then determining the sequence of these weight matrices is simply the solution
of the following matrix equation.

WrWr−1 . . .W1 =
11T

n
(4.2)

This is not a trivial problem, since the matrices Wr, Wr−1, . . . , W1 have a struc-
ture imposed by G. Furthermore, it would be of interest to determine such
matrices that (problem 4.1) is solved.

The above equation can be expanded to a set of n2 algebraic equations in
r(2m−n) variables

n∑
kr−1=1

n∑
kr−2=1

. . .

n∑
k1=1

[Wr]ikr−1 [Wr−1]kr−1kr−2 . . . [W1]k1j = 1/n (4.3)

where m = |E| is the edge set size, n = |V| is the vertex set size, and [Wk]ij is the
ij-th entry of the kth matrix in the sequence of matrices.
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4.2.2 Existence of Solutions

The solution of (problem 4.1) is conjoined with the solution of (eq.4.2). In order
to solve the latter, two subproblems have to be addressed. The first being the
specification of the required number of matrices in the product such that (eq.4.2)
has a solution. In other words, it is the search for a lower limit for r. Given that
the associated graph is not fully connected, then some matrix elements in the
weight matrices Wt must be zero. Therefore, it is possible that in the product
some elements are zero. In this case, the system of equations will have no
solution since it will include the inconsistent equation 0 = 1

n . This subproblem
is addressed in the next section (Section 4.2.2.1). The second subproblem is to
specify the sufficient number of matrices, i.e. an upper limit for r. We show that
a solution can be obtained for r matrices such that d 6 r 6 2d.

4.2.2.1 Necessary Iterations

The evolution of the dynamical system under the operation of the recursive
consensus algorithm (Algo.4.1) is dictated by the selection of the weight matrices
Wt. However, the freedom in the selection of these matrices is still limited from
the graph imposed by the communications network. The next theorem states
that the minimum number of algorithm iterations for (eq.4.2), necessary for a
solution, is at least equal to the diameter of the simple graph of communications.

Theorem 4.1. Assume a connected simple graph G with diameter d. Then the switch-
ing dynamical system defined on G from the operation of the definitive consensus algo-
rithm in (Algo.4.2) requires at least d state transitions to arrive at definitive consensus.

Proof. If the product of matrices has less matrices than the diameter of the graph
then the matrix M =

∏1
t=dWt − 11T

n has at least one element that is equal to
−1/n.

Let the adjacency matrix of G be A such that [A]ij is zero, unless there is an
edge between the pair of vertices {vi, vj} in which case [A]ij = 1, and consider
I + A. The elements of the pth matrix power of the adjacency matrix [(I + A)p]ij

enumerate the number of paths from vertex i to vertex j of length smaller or
equal to p. Therefore when p is smaller than the diameter d, then there is a pair
{vi, vj} such that [(I + A)p]ij = 0.
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The matrices Wt must have the same structure as A + I. Thus, the product of p
such matrices cannot have non zero elements where (A + I)p has zero elements.
Consider that (eq.4.2) can be rewritten as

[WrWr−1 . . .W1]ij =

[((I + A) ◦Xr)((I + A) ◦Xr−1) . . . ((I + A) ◦X1)]ij =

n∑
kr−1=1

n∑
kr−2=1

. . .

n∑
k1=1

[I + A]ikr−1 [I + A]kr−1kr−2 . . . [I + A]k1j

[Xr]ikr−1 [Xr−1]kr−1kr−2 . . . [X1]k1j

where Xr, Xr−1 . . .X1 are full matrices in Cn×n, and ◦ is the element-wise matrix
product. Consequently, the matrix M will have at least one element equal to
−1/n. Therefore, we arrive at an inconsistent system which trivially has no
solution.

4.2.2.2 No Solution for Constant Matrices

We have to address one matter that naturally arises before we advance further
in the discussion. That is to consider one matrix such that Wd − 11T

n = 0. We
show that this equation does not have a solution for any graph except for the
totally connected graph where W = 11T

n . In these other cases, it follows from

Wd =
11T

n

that Wd has one eigenvalue equal to 1 with eigenvector 1 and n− 1 linearly
independent eigenvectors that are orthogonal to 1 with corresponding eigenval-
ues equal to 0 . Hence, W has the same eigenvectors with the same eigenvalues,
except that instead of the eigenvalue 1, it could also have the eigenvalue −1, for
even d. But this would be incompatible with the requirement that W must have
an eigenvalue 1. Thus

W =
11T

n

Unless the graph is completely connected, this weight matrix W is not compatible
with the graph.

Remark 4.1. There is no symmetric weight matrix W ∈ R compatible with a graph
that satisfies Wd = 11T

n except for the completely connected graph.
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4.2.2.3 Minimum Diameter Spanning Tree solution

Having shown that the recursive consensus algorithm requires at least d iter-
ations, where d is the diameter d(G) of the associated graph G, we focus on
the second subproblem. We are going to prove that the system of equations in
(eq.4.2) has at least one solution for any connected graph G with at most 2d ma-
trices. The construction of the solution needs performing two steps. One has to
first appropriately prune the edges on the simple graph to construct a so called
minimum diameter spanning tree. Then with the appropriate selection of the
edges on the associated time-multi-graph of the minimum diameter spanning
tree, we show that the system can be at definitive consensus.

This solution is just one of the many that one may be able obtain. However,
for the purpose of showing the existence we need not more than one. Apart
from a purely theoretical interest in showing the existence of solutions, knowing
that the system in (eq.4.2) has a solution for at most 2d(G) matrices, justifies
executing a computationally expensive process, such as a numerical solver, for
their retrieval.

Constructing the solution is straightforward. Every graph G has a minimumconstruction of the
solution diameter spanning tree. The latter is a spanning subgraph that is a tree and has

the minimum diameter among such trees of G. The diameter of this graph is at
least d and at most 2d. A rather more detailed approach to the subject is given
in (Hassin and Tamir, 1995) along with a proof based on graph distance.

The retrieval of a minimum diameter spanning tree from G allows to construct
a solution for (problem 4.1). Then a simple policy of gathering at the central
vertex of the minimum diameter spanning tree (MDST) and then distributing
on it, suffices. It is easy to see that if the MDST has an even diameter, then there
is a vertex (the centre) with maximum shortest distance to other vertices equal
to half the diameter. If the diameter is odd, then there are two adjacent vertices
(the centre vertices) such that any other vertex has distance not larger than half
the (diameter - 1) to one of these two vertices.

Not having a single vertex as a central vertex introduces some difficulty in
constructing the solution with a gather-then-distributed policy. Specifically, we
cannot compute the mean at the central vertex. However, this can be overcome by
exchanging values at the two adjacent vertices to the central edge and thereafter
adjusting the weights on the edges, appropriately.

We proceed by assumption that the (MDST), say T, has been retrieved for a
given graph G. The following algorithm when executed on the (MDST) produces
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a sequence of weight matrices that solve (problem 4.1) in d(T) iterations. We
provide (Algo.4.3) in the case that d(T) is even and (Algo.4.4) if d(T) is odd. In
the first case, we denote the central vertex by i∗ and in the second case we
denote the two central vertices by i∗,j∗.

Both algorithms follow a similar strategy, and its operation is simple to
conceive. In the first case, the algorithm is made from two subprocesses, gather algorithm

operationand distribute. The purpose of the gather subprocess is to retrieve the sum of
all the values at the centre of the (MDST). This can be achieved by pushing
towards the centre the partial sum at each vertex. Proceeding iteratively, this
process will cause a transfer of the values at each of the vertices to the central
vertex, in d(T)/2 steps. In the last step of the gather subprocess, step d(T)/2, the
average can be computed by dividing by 1/n, where n is the number of vertices.
Alternatively, one could distribute the sum without computing the mean at the
central vertex and compute this at the last iteration, at each machine separately.

The second subprocess commences at step d(T)/2+ 1 by pushing outwards
from the centre the computed value. Once a machine has received the mean,
the value is retained by setting the weight of the self-loop to 1 whereas in the
first subprocess it was set to 0. This subprocess, when executed until step
d(T), sets all the states to the mean values of the initial states. We provide a
detailed explanation of the algorithm to facilitate reading of the formal program
in (Algo.4.3).

The input to the algorithm is the adjacency matrix H of the (MDST). The
algorithm produces as output a sequence of weight matrices. Each of the
aforementioned subprocesses consists of three “for” loops, operating in two
directions. One that keeps the time index and the other two running through all
the vertices on the tree. At each iteration the distance from the centre, in case of
even diameter, and centres in the other case, of an edge connecting vertices vi
and vj is computed.

The algorithm assigns in the first phase weights for the edges inwards. Specif-
ically, the inwards edges of T from the vertices found on the layer of the tree
having distance from the centre d(T)/2− t+ 1 are assigned value 1 at the tth

iteration. The self loops on the layers having distance from the centre smaller
than or equal to d(T)/2− t+ 1 are assigned value 1. Therefore, the values on the
corresponding vertices are retained until their turn to push the sum towards the
centre of the tree. In this manner, the sum of the values found on the vertices
at each layer propagates towards the centre. The final outcome of the gather
subprocess is that the sum of all the initial values on the vertices are accumulated
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at the centre. There, the mean can be computed. The distribute subprocess does
not present any important differences from the gather subprocess, except that
the outwards edges are selected at each iteration.

Consider the case that the graph has an odd diameter. The previous process
has been slightly modified and includes one more part, in order to treat this
case. Particularly, the values at the adjacent nodes to the central edge, i∗ and j∗,
are exchanged. This is executed at the (d(T) − 1)/2+ 1 iteration. We present the
entire process in in (Algo.4.4) as a formal program.

The output of these two algorithms is a sequence of weight assignments that at
the last step the average of the initial state assignments is found at each vertex of
G. Therefore, these are at average consensus. The weight matrices corresponding
to these weight assignments are a solution of the Definitive Consensus Problem
in d(T) steps. The latter is at most twice the diameter of the original graph.
Particularly, this is the case when cycles are present in the graph. In some cases,
breaking these cycles, in order to form the tree, does not increase the diameter
of the resulting tree. However, consider any circle and form a tree by removing
one edge. Removing any of the edges produces a tree of the same diameter,
being equal to twice the diameter of the original graph.

The weight assignment obtained through (Algo.4.4) and (Algo.4.3) provides a
solution for (problem 4.1) with a factorisation to r matrices , such that d(G) 6

r 6 d(G). This is just one of the many solutions that can be obtained. In fact
the problem has infinitely many solutions. This is trivial to see. Assume one
solution, then one can multiply one matrix by any number and then divide the
next matrix by the same number, which produces another solution. Therefore,
infinitely many solutions can be produced with this process.

4.2.3 Numerical Solutions

Finding an (MDST) of a given graph has O(mn+ n2 log(n)) time complexity,
where m is the number of edges, and n is the number of vertices (Hassin
and Tamir, 1995) . One needs to determine the shortest paths which is O(m+

n log(n)) for all vertices. The time complexity of obtaining the weight matrices
is O(n2d(T)). Thus this method cannot scale to very large graphs. Alternatively,
distributed methods have been proposed (Bui et al., 2004) which have O(n) time
complexity.

However, the main drawback in employing the aforementioned algorithms,
(Algo.4.3) and (Algo.4.4), is that the values are in fact retrieved centrally for
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Algorithm 4.3 Gather and Distribute Weight Assignment, even diameter
1: for t = 1 to d(T)/2 do
2: Wt ← 0
3: for i = 1 to n do
4: if d(i, i∗) 6 d(T)/2− t then
5: wtii ← 1
6: end if
7: for j = 1 to n do
8: if d(j, i∗) = d(T)/2− t+ 1 and d(j, i∗) > d(i, i∗) then
9: wtij ← [H]ij

10: end if
11: end for
12: end for
13: end for
14: t← d(T)/2+ 1

15: Wt ← 0
16: wti∗i∗ ← 1

17: for i = 1 to n do
18: wtii∗ ← [H]ii∗/n

19: end for
20: for t = d(T)/2+ 2 to d(T) do
21: Wt ← 0
22: for i = 1 to n do
23: if d(i, i∗) 6 t− d(T)/2− 1 then
24: wtii ← 1

25: end if
26: for j = 1 to n do
27: if d(j, i∗) = t− d(T)/2− 1 and d(j, i∗) < d(i, i∗) then
28: wtij ← [H]ij

29: end if
30: end for
31: end for
32: end for
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Algorithm 4.4 Gather and Distribute Weight Assignment, odd diameter
1: for t = 1 to (d(T) − 1)/2 do
2: Wt ← 0
3: for i = 1 to n do
4: if d(i, i∗) < d(i, j∗) then
5: k∗ ← i∗

6: else
7: k∗ ← j∗

8: end if
9: if d(i,k∗) 6 (d(T) − 1)/2− t then

10: wtij ← 1

11: end if
12: for j = 1 to n do
13: if d(j,k∗) = (d(T) − 1)/2− t+ 1 and d(j,k∗) > d(i,k∗) then
14: wtij ← [H]ij

15: end if
16: end for
17: end for
18: end for
19: t← (d(T) − 1)/2+ 1, Wt ← 0
20: wti∗i∗ ← 1/n, wtj∗j∗ ← 1/n, wti∗j∗ ← 1/n, wtj∗i∗ ← 1/n

21: for t = (d(T) − 1)/2+ 2 to d(T) do
22: Wt ← 0
23: for i = 1 to n do
24: if d(i, i∗) < d(i, j∗) then
25: k∗ ← i∗

26: else
27: k∗ ← j∗

28: end if
29: if d(i,k∗) 6 t− (d(T) − 1)/2− 1 then
30: wtii ← 1

31: end if
32: for j = 1 to n do
33: if d(j,k∗) = t− (d(T) − 1)/2− 1 and d(j,k∗) < d(i,k∗) then
34: wtij ← [H]ij

35: end if
36: end for
37: end for
38: end for
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computation. This is somehow contradicting to the main reason for employing
the consensus algorithm in the first place. Moreover, the number of iterations
required is expected to be larger than d(G) in most cases. Nevertheless, these
have been given in order to construct a proof for an existence of solutions.
Therefore, these drawbacks are only important in case that we consider the
retrieval of such a solution.

Instead, we are interested in determining solutions of the Definitive Consensus
Problem for exactly d(G) matrices, if they exist. This has not yet been proved.
However, our experience does not show otherwise. In order to obtain the weight
matrices we employ numerical optimisation. Surprisingly, the solutions are
easy to obtain up to medium sized graphs. However, as the size of the network
increases, the parameter space becomes enormous. Consequently, the process
becomes very slow and the precision attained reduces.

The objective function can be obtained directly from (eq.4.3).

J(w) =

n∑
i=1

n∑
j=1

fij(w)2 (4.4)

where we have replaced

fij(w) =

n∑
kd−1=1

n∑
kd−2=1

. . .

n∑
k1=1

[Wd]ikd−1
[Wd−1]kd−1kd−2

. . . [W1]k1j − 1/n

and w ∈ R2md the weights vector, with m being the number of edges on G, and
d its diameter. Then the solution of (eq.4.2),

w∗ = arg min
w

J(w) (4.5)

may be obtained by numerical minimisation of (eq.4.4) for those w∗ that J(w∗) =

0.

4.2.3.1 Incremental Numerical Solutions

Unfortunately, directly solving (eq.4.2) can become computationally demanding
as the size of network increases. However, the computational burden can be
reduced based on the following observation.

Consider the product formed by k matrices with 1 < k < d(G) and form the
system of equations {fij(w) = 0|[Ak]ij = 1}. That is the system obtained by
ignoring the inconsistent equations 0 = 1, occurring due to having k < d(G).
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Then there is a minimum k such that these equations have a solution for a given
graph G. Let this be noted as the nonlinear part of the product.

Interestingly, knowing such a k and the solution for the nonlinear part of the
product, for a given graph, allows to obtain the rest of the solution, up to d(G)

by incrementally solving linear systems. In fact, the principal difficulty is in
obtaining the solution for the nonlinear part.

Formalising what has been discussed in previous paragraphs, we consider the
matrix equation

WkWk−1 . . .W1 = R(Ak) (4.6)

where R : Nn×n → {0, 1}n×n is a matrix function which assigns 0 at ijth element
if and only if the corresponding input element is 0.

[R(X)]ij =

 0 Xij = 0

1 otherwise
(4.7)

Assume having a solution for (eq.4.6) for some k∗ > 1 such that there is no
other k satisfying (eq.4.6), with k∗ 6 k 6 d. Then the solution for k∗ + 1 can be
obtained by just solving

Wk∗+1R(Ak
∗
) = R(Ak

∗+1) (4.8)

The equations formed by multiplying each row of Wk∗+1 with R(Ak
∗
) do

not have common variables. Therefore, these form separate linear systems.
Specifically, assume that uT

i are the row vectors of Wk∗+1 and bT
i are the row

vectors of R(Ak
∗+1). Then the equation above can be separated into n linear

systems.

uT
iR(Ak

∗
) = bT

i (4.9)

Incrementally, the solutions for the matrices from k∗ + 1 to d(G) can be obtained
in this manner.

4.2.4 Groebner Basis Solutions

Numerical methods in such complex systems as in (eq.4.2), can lead to degener-
ate solutions. Theoretically, we can only be assured that a system of multivariate
polynomial equations has a solution by obtaining its Groebner basis. An in-
troduction to the subject has been provided in (Section 2.4). Roughly speaking,
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a Groebner base is a set of polynomials which describe all solutions of a set
of multivariate polynomial equations. Groebner bases can be retrieved with
Buchberger’s algorithm (Adams and Loustaunau, 1994), currently implemented
in many computer algebra programs, e.g. MATLAB. Having a Groebner base
that does not include the unity {1} is the necessary and sufficient condition to
guarantee that the system of multivariate polynomial equations has at least one
solution. Additionally, the Groebner basis gives us the entire set of solutions. In
contrast, the solutions obtained by the numerical solver are only specific approx-
imate solutions. Finally, the solutions obtained by Groebner base computation
are not dependent on machine precision.

Having obtained a Groebner base, one can retrieve a numerical solution by
back-substituting variables. In fact, the polynomials in the Groebner base are in
a triangular form. Meaning that no two polynomials have all variables alike. As
it has been mentioned already, the system of equations (eq.4.2) either has none or
an infinite number of solutions. According to Groebner base theory, this implies
that, at least one polynomial in the base is multivariate. A simple elimination
process produces the desired result. First, select the polynomial with the least
number of variables. Then obtain a solution for any of the variables, in terms
of the others, and substitute this to the rest. Iteratively, proceeding until all the
polynomials have been exhausted, we can obtain one equation in at least one
variable which is guaranteed to have a solution in C.

However, the retrieval of a Groebner basis has exponential time complexity
with respect to the number of parameters in the worst case. Thus, it is practically complexity and

workaroundsimpossible to use this method to find the solutions even for some small graphs.
However, we can obtain solutions for specific graphs if we carefully select a
subset of the variables. That is removing edges or using the same variable
for multiple edges. Taking advantage of symmetries is very important for a
successful reduction of the equations. In this way, the complexity of the system
can be reduced but only a subset of the solutions is preserved. Nevertheless, in
such a case the system has been demonstrated to have a set of solutions, which
has been our principal purpose. Moreover, we achieve the goal of retrieving
an exact subset of the solutions. These can the be employed with maximum
precision.

The simplest case are stars. In fact, a star has diameter 2 and (Algo.4.3) can be
directly applied. However, obtaining the Groebner base includes many other
solutions. Subsequently, in the next section, we present a parametrisation that
allows to obtain a Groebner base for chord-less cycles of arbitrary size.
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4.2.4.1 Cycles

A rather more difficult case than the star is that of cycles. In fact, the product
of matrices cannot be obtained incrementally as described in (Section 4.2.3.1),
i.e. k∗ = d(G). However, we can parametrise the variables on edges such that
solutions are obtainable easily for small cycles, the pentagon, the hexagon, and
the septagon. Additionally, this parametrisation reduces the complexity of
computing the Groebner base for larger cycles. Though, we have not pursued
the solution a cycle larger than n = 10.

Particularly, this edge parametrisation is based on a simple observation that
one can perform circular permutations of the weights on the edges without in
fact affecting the solutions. Hence, it should be possible to retrieve solutions by
assigning a variable to the self-loop and the adjacent edges for each iteration.
Consider the simple example of the pentagon.

The adjacency matrix is

A =



1 1 0 0 1

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

1 0 0 1 1


and assigning variables x1 and y1 for the self-loop and the adjacent edges to all
the nodes gives rise to the first matrix in the product.

W1 =



x1 y1 0 0 y1

y1 x1 y1 0 0

0 y1 x1 y1 0

0 0 y1 x1 y1

y1 0 0 y1 x1


Similarly, the second matrix can be obtained by replacing x1 with x2 and y1
with y2. Performing the necessary algebraic operations we obtain just three
equations.

x2x1 + 2y2y1 = 1/5 (4.10)

x2y1 + y2x1 = 1/5 (4.11)

2y2y1 = 1/5 (4.12)
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A reduced Groebner base for this system is formed by the following set of
polynomials.

{−x21 + 2x1y1 + 20y41 − 2y21 ,

10x2y
2
1 − 2y1 + x1 ,

10y21 + 5x1x2 − 1 ,

5x22 − 10x2y2 + 10y22 − 1 ,

5x1y2 + 5x2y1 − 1 ,

10y1y2 − 1}

It is in fact quite simple to obtain a solution from the original system of equations
by substituting y2 = 1

10y1
. However, obtaining the Groebner base provides

additional information for the original system itself and its solution set. After
inspection of the polynomials in the Groebner base, we notice that all the
polynomials have at least two variables. This implies, according to theory, that
the system has infinitely many solutions. Since the parametrisation introduced
is constrained by the original system, we conclude that the original system with
the full parametrisation has solutions and their number is infinite, as well.

In larger cycles one may consider a similar parametrisation. Then the kth

matrix would be:

Wk =



xk yk 0 0 0 . . . yk

yk xk yk 0 0 . . . 0

0 yk xk yk 0 . . . 0
...

...
...

...
...

...

0 0 0 . . . yk xk yk

yk 0 0 0 . . . yk xk


Therefore, the number of variables is reduced to 2d(G) instead of order 3d(G)2.
Hence, worst case complexity is reduced. Moreover, the resulting equations seem
to be much simpler which arguably may further reduce the actual complexity
of the task. Specifically, a solution for a circle of 10 vertices can be obtained in
about half an hour on a uni-core computing server. In contrast, for the same
graph, computing the Groebner base with 3d(G)2 variables, did not respond
after about 4 months of computation on the same machine.
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4.2.5 Communication Costs

It is of interest to compare the aforementioned solutions (Section 4.2.2.3), (Section
4.2.3.1), and (Section 4.2.3) with simple approaches such as simple routing to
some vertex on G for processing. Consider having selected a machine to gather
all the values distributed over the network. Obviously, one would have to
construct a tree out of the original network G. The (MDST) is arguably an
appropriate choice. Hence, it has to be retrieved in either case, simple routing
or our algorithms (Algo.4.4) and (Algo.4.3). Thus, the time complexity to assign
the routes is computationally identical.

We consider the communication costs for unicast. Its operation on a tree can
be abstractly conceived as a push process. A machine retrieves a message from
an adjacent machine. The message has a destination , the centre in this case.
Each machine has a routing table that in fact states which machine among its
adjacent machines is closer to the centre. If the selected machine is not the
centre, then the message is forwarded to that closest to the centre. This result of
this process is that the central node will obtain finally all the values originally
distributed over the network.

In fact, the number of required communications depends on the tree itself. In
the best case that G is a star graph this requires 2(n− 1) total communications.
Assume that the tree is uniform with a branches at each vertex outwards from
the centre. If unicast is employed to retrieve the values at the centre and
subsequently push them backwards to the nodes of the network, then the cost is
given by the equation below.

Cuni = 2

(
ln(an−n+ 1)

ln(a)(a− 1)
(an−n+ 1) −

an

a− 1

)
(4.13)

One could just employ broadcast for the second phase. This in fact does not
alter our conclusions, because broadcasting requires n− 1 communications over
the network, which is equal to the communications required by our algorithms.
The derivation is included in (Appendix A) at (Section A.1.2).

Our solution requires exactly 2(n− 1) total communications over the entire
network. That is because each machine waits until all the values have been
received, computes locally the summation and pushes the sum to the next vertex
closest to the centre. Therefore, each machine only communicates once to send
its computed sum to the centre. The same process occurs when receiving the
summation. This requires another n− 1 steps, and therefore the network arrives
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at consensus in 2(n− 1) iterations. This is always smaller than (eq.4.13), except
for the case of a star graph. Therefore, our protocol is superior to directly
employing unicast, even in the case that it is naively being employed directly as
a solution to the definitive consensus problem.

4.3 verification

Solutions can be obtained with any numerical solver. We have explored the
efficacy of such a method in a simple computing server by employing the solver
provided in MATLAB. One would probably be able to obtain solutions faster
by dedicating time to optimise the solver for this specific problem. However,
for our purpose, which is to verify that this method is practically feasible and
permits to determine good solutions, it has not been necessary to dedicate effort
to such code optimisations.

We have mainly tested the brute force numerical solver and the incremental
numerical solver, described in (Section 4.2.3). For this purpose we have generated
two random geometric graphs of 20 and 30 vertices. The first graph has been
used to recover the solutions with direct application of the numerical solver and
the second with the incremental solver.

The first graph (fig.16) has diameter equal to 8, and the edges are equal to
23. This amounts for 528 variables. The solution, was obtained in about half
an hour. In (fig.16), two sequences are presented, one for small and the other
for large values. In that manner we can naively verify that the solutions are
not sensitive to numerical perturbations of the state. Furthermore, one should
notice that the standard deviation attains the same value 10−9 in both cases.
The precision attained is directly dependent on the tolerance of the numerical
solver. Therefore, we can in fact select the parameters such that the precision
attained by execution of definitive consensus falls within our specific demands
for the application.

Furthermore, we can deduce by observing the magnitude of the state that
during the execution of the algorithm the state does not converge monotonically.
In fact, the standard deviation increases and decreases inconsistently. This is
largely dependent on each specific solution, acquired by the numerical solver
and the initial state at each execution of the algorithm. In order to address
this issue, one can minimise the sum of max norms and impose (eq.4.2) as a
constraint. However, this remains an even harder optimisation process.
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Figure 16: Convergence of the definitive consensus algorithm using the weights ob-
tained by nonlinear optimisation in a medium sized graph. From left to
right and top to bottom are shown the graph, the states during execution of definitive
consensus for an initial state with large values, another with smaller values, the sorted
solution (i.e. the values of the parameters), the root mean square error at each step
for the first and second execution. Notably, the precision attained in both cases, in
d(G) = 8 iterations, is not sensitive to the initial state.
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Figure 17: Convergence of the definitive consensus algorithm using the weights ob-
tained by incremental nonlinear optimisation in a graph of 30 vertices.
From left to right and top to bottom are shown the graph, the states during execution
of definitive consensus for an initial state with large values, another with smaller
values, the sorted solution of the final matrix (i.e. the values of the edge weights at
the last iteration), the root mean square error at each step for the first and second
execution. Notably, the precision attained in both cases, in d(G) = 12 iterations, is not
sensitive to the initial state.
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In larger graphs, it is of interest to reduce the number of variables present in
the optimisation. There the incremental numerical solver, described in (Section
4.2.3.1), is appropriate. We have tested this method in a graph of 30 vertices
and 55 edges with a diameter equal to 10. The nonlinear part of the product of
matrices consisted of 5matrices. This resulted in an optimisation of 700 variables
in 584 equations for the nonlinear part. Directly employing the numerical solver
on the entire product of these 10 matrices would result in 900 equations and
1400 variables. We have been able to obtain this solution in about 3 hours of
computation on the same machine. In contrast, directly solving required 16
hours on the same system, to obtain the same precision.

4.4 conclusions

In this chapter we have conceived the Definitive Consensus Problem. That is to
achieve maximum precision in agreement over a network of connected machines
in the minimum number of iterations possible for each given graph. We have
determined the necessary conditions, that the graph is connected and that the
sequence of matrices consist of d(G) matrices. Furthermore, we have shown that
a solution can be obtained for k matrices such that d(G) 6 k 6 2d(G). Moreover,
we have conjectured, based on our experience, that a solution exists for any
given graph G in exactly d(G) iterations.

In order to retrieve these solutions, we have suggested three methods, the
first being the retrieval of the Groebner base of the system of multi-linear
polynomials. We have also provided a parametrisation for cycles that allows
to efficiently compute the base up to medium sized chord-less cycles. This we
believe to be significant for further theoretical work on affirming the conjecture.

The other two methods are based on numerically solving the system of
equations by numerical optimisation. The brute force method has limitations
that cannot be easily exceeded. Therefore, an incremental method has been
introduced, which allows to obtain solutions for larger graphs faster. The
so-called nonlinear part of the matrix product dictates the limitations of this
method. This results in arguably smaller parameter spaces. Thus, reducing the
complexity of the numerical solver.

The problem of affirming the existence of solutions for the definitive consensus
in exactly d(G) iterations remains open. Nevertheless, its theoretical importance
is not directly related with the efficiency of retrieving solution. Hence, it is of
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greatest interest to conceive algorithms that solve this specific problem for large
graphs. Both of these issues indicate areas of auspicious scientific work.
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5
D I S T R I B U T E D D ATA I N F E R E N C E

Having shown the efficacy of the consensus algorithms in determining the
mean of some quantity over a field of communicating machines, we move onto
demonstrating how this can aid in performing machine learning over fields of
such machines. Our motivation draws mainly from the case of wireless sensor
networks. However, this work may arguably be extended to other cases as well.
These include but are not limited to agent computing, distributed computation
of large data sets, distributed computation when data is private. However, these
have not been extensively studied and the validity of this claim remains to be
verified as a future study.

Within this chapter we make the following contributions. Firstly, we propose
an abstract framework for supervised machine learning in a distributed manner
by employing any of the consensus algorithms presented in this thesis, (Chapter
2), (Chapter 3) and (Chapter 4). This framework is a combination of the consensus
algorithm and some iterative machine learning algorithm. The latter shall
be referred to, within this text, as the centralised or non-distributed learning
algorithm. The framework may also be referred to as the distributed learning
algorithm. Secondly, we show that within this framework and given some
mild assumptions, the distributed version has three properties. First, that the
distributed learning algorithm converges, given that the non-distributed does.
Second, that the distributed learning algorithm converges in the same way as
the non-distributed counterpart. That is that the learned model of the data will
be the same under the same initialisation and given that the learning algorithm
is deterministic. Third, that the distributed learning algorithm surpasses the
performance of the non-distributed, when the latter is trained only with local
data. These are further detailed in subsequent sections.

The rest of the chapter is organised as follows. In (Section 5.1) we abstractly
introduce the notions discussed, give further motivation, and introduce possible
applications where such a framework for distributed inference can be utilised.
Afterwards, we discuss our view of a common learning framework (Section
5.2.1), thereafter we introduce the modification for distributed learning by
consensus. Particularly, we are interested in the application of the definitive
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consensus algorithm, which is presented in (Section 5.3). The application of this
framework in view of the multilayer feedforward neural networks is considered
thereafter in (Section 5.4.1). This provides a proper baseline comparison for the
framework within the scope of an elementary and well known machine learning
algorithm. Simulations and conclusions are found in (Section 5.5) and (Section
5.6), respectively.

5.1 introduction

We are concerned with the application of the consensus algorithms in the wider
field of distributed computing; particularly the case of distributed machine
learning. Specifically, we address the problem of learning from distributed data
over a number of connected machines without exchange of this data between the
networked machines. Our purpose is to train a neural network at each machine
as if the entire dataset was locally available. This is accomplished by employing
the consensus algorithms. We introduce an abstract framework for a so called
consensus learning, and derive a distributed version for the multilayer feed
forward neural network with back-propagation and early stopping. Specifically,
the linear consensus algorithm and the definitive consensus algorithm are
tested. We discuss the matters that should be given attention in both cases.
A careful selection of the parameters allows our method to perform like the
non-distributed case. The principal drawback of the framework is that the total
computational effort over all machines is larger, but less at each distinct machine.
Since, each machine has only to compute the local dataset.

5.1.1 Problem Layout and Applicability

The problem at hand can be presented in a few sentences, but its applications
are numerous. Suppose a dataset that is distributed over a set of machines with
the capabilities of computation and communication. Furthermore, assume that
we, for some reason, are not able, or unwilling to communicate the data between
machines, or gather it centrally for computation. Instead of just using the local
data at each machine, we would like to learn from the entire dataset. In order
to illustrate our method and show its feasibility, we have specified our analysis
to the case of supervised learning for binary classification of data with feed
forward neural networks. However, this study is not limited to this class of
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algorithms, since it is founded on a principal operation of many known machine
learning algorithms. Evidently, enumerating all these algorithms to demonstrate
the applicability of this framework goes way beyond our specific purpose. We
present an abstract framework that demonstrates the generality of our approach.
(Section 5.2.1). The convergence of this method is carefully being considered,
which we show, under mild assumptions, in the case that the non-distributed
learning algorithm converges.

There are numerous occasions where the entire dataset may not be available.
However, we may consider them as combination the following four basic cases. characteristics of

data for consensus
learning

First, the dataset is too large to be handled by a single machine due to either
hardware, software implementation, and or algorithmic limitations. Second,
data is intrinsically distributed. The latter can be generated by a set of machines
that acquires data by observation or examination (e.g. a set of sensors for envi-
ronmental monitoring). Third, when data has to remain private but decisions
are better performed globally (e.g. when working with clinical patient data).
Finally, when data cannot be collected. Hence, it is inaccessible or its access is
practically infeasible. This might be due to many reasons, among those just a
few are communication costs and failures, energy consumption, and machine
downtime. A few of the possible applications where the problem arises are
WSN, data mining in large datasets, distributed databases, social networks, and
confidential biological data.

For the rest of this chapter we assume a dataset, partitioned and distributed
over different machines in an arbitrary manner. Our purpose is to learn from
the dataset such that any of the machines when presented with an example from
the same generating process can successfully classify it. Moreover, we wish that
the classification performed by any machine is identical and the performance
equivalent to a centralised case. Also, this has to be achieved without exchanging
any datapoints between the machines. Moreover, any machine can communicate
with other machines but not necessarily with every other machine. However, we
require that the connection graph has no disconnected components. Obviously,
the disconnected components cannot be brought to agreement by means of
communication algorithms.

In our algorithm, the elementary learning process, risk computation and model a two phase
learning processupdate, is modified, and becomes a two phase process. The first phase consists

of learning with the dataset available locally. This is performed simultaneously
at every machine. Therefore, identical learning machines are trained locally but
with different data drawn from the distribution of the same generating process.
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Actually, this process may even be masked due to the partitioning process. We
address this throughout the text. In the second phase, the parameters of the
model are communicated to initiate the consensus algorithm and estimate the
mean of the learned parameters. We shall demonstrate that this is equivalent
under mild conditions to having learned these parameters from the entire
dataset. This iterated two phase process, has roughly the same effect as if a
single network was trained on the entire dataset.

The process outlined until now is based on the following three assumptions.
First, that the iterated two phase process converges, if the non-distributed coun-
terpart does. Second, that consensus on the learned parameters is equivalent
to minimisation of the empirical risk of the entire dataset. Third, that the data
need not be identically distributed along different machines. We prove the first
two based on mild assumptions on how the data is partitioned (Section 5.2.1.1).
Thereafter, we verify the proof by numerical simulations.

5.1.2 Related Work

Related work might be found in the field of distributed optimisation (Rabbat
and Nowak, 2004). However, the interest of the researchers there is different.
Specifically, the problem of optimisation is not equivalent to a learning problem.
In the case of optimisation, the objective function is known a priori. This allows
for the computation of the Jacobian, the Hessian, and the retrieval of KKT
conditions that designate the proper execution of the algorithm.; especially of
the sub-gradient computed with the consensus algorithm, which is equivalent
within bounds with the non-distributed case of evaluating the gradient. In
contrast, in a machine learning process such facilities are not available since the
objective function is unknown.

Other notable attempts are found in the field of distributed support vector ma-
chines (Navia-Vazquez et al., 2006), (Lu et al., 2008), (Ang et al., 2008). A notable
study has been targeted in modifying the EM-algorithm for distributed compu-
tation (Kowalczyk and Vlassis, 2005). An interesting study in the field, which
bares specific interest for many applications, is (Kokiopoulou and Frossard, 2010)
who has initially brought in our attention this field of research. Nevertheless,
most of these studies differentiate from ours since they are specific to each of the
learning algorithms in perspective. In contrast, this work introduces an abstract
framework that can be applied to a large class of algorithms, since our proof is
based on the contraction principle, which is central to many learning algorithms.
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Moreover, unlike other studies, we do not exchange any of the data, and do not
make explicit assumptions about the manner that the data is partitioned.

5.2 distributed data inference by consensus

Figure 18: Abstract operation of a Distributed Inference Framework. This two step
iterative process converges such that all the participating machines achieve the same
level of performance. However, the two phases are also iterative. This introduces an
interplay between the number of iterations performed at each phase.

Assume a network of machines, connected in an arbitrary manner, such that
these are able to communicate with each other but not necessarily directly
with every other machine. The communication network can be described by
a graph, and each machine by vertex. An edge connects two vertices when
the represented machines are able to communicate directly, that is without the
intermediation of another. The graph is denoted as G(V, E), where V and E are
the set of vertices and edges respectively.

The algorithm for distributed learning has two main phases, as shown in
(fig.18). Each machine hosts an identical learning algorithm. The first phase
consists of the local training, executed at each machine. The second phase is
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the execution of the consensus algorithm. There, the learned quantities are
exchanged between machines while data is retained locally. Our purpose is to
obtain the model as if the entire dataset was available locally at each machine.

5.2.1 Abstract Framework

Suppose the dataset D is segregated in n non-overlapping subsets such that
D = ∪nk=1

kD. Each subset is kD = {kX, kY}, where kX = {kx1, kx2, . . . , kxmk
}

is the subset of examples, and kxi ∈ Rs is the ith example in the kth subset
with s ∈ N. Similarly for the subset of class labels kY = {ky1, ky2, . . . , kymk

},
kyi ∈ {0, 1} is likewise the label associated with the ith example in the kth subset.
Hence the entire dataset is D = {kxi, kyi},k ∈ {1, 2, . . . ,n}, i ∈ {1, 2, . . . ,mk}, and
mk is such that m =

∑n
k=1mk is the number of examples in D.

Furthermore, suppose that these datasets are distributed over a network of n
machines, described by a graph G(V, E) such that each subset kD is related to
one vertex. The problem at hand is presented below (problem 5.1).

Problem 5.1 (Distributed Learning). Given graph G(V, E) and a segregated dataset
D such that kD is related with the kth vertex on the graph, with k ∈ {1, 2, . . . ,n}, how
can each machine learn a mapping f of examples to class labels D without communi-
cating any datapoint {kxi, kyi}?

Assume some non-distributed iterated learning algorithm L that learns on
the dataset by minimising the empirical risk (eq.5.1). The empirical risk for the
entire dataset D is

Remp(D, f) =
1

m

n∑
k=1

mk∑
i=1

Q(kxi, kyi, f) (5.1)

where Q(x,y, f), Q : Rs × {0, 1}× F → R is a loss function, f ∈ F is a classifier
f : X→ Y that maps examples to class labels, and F is a set of functions, the set
of admissible classifiers.

In general, many non-distributed learning algorithms, let L denote one, can be
conceived as a simple iterative two step process. At the first step the empirical
risk is computed. Subsequently, at the second step, an update of the mapping
f is determined by some deterministic process A. The latter can be conceived
as function A(D, f), A : D× F → F, such that a new mapping f∗ is given. The
iterations proceed until a stopping criterion C(T, e, f, f∗),C : T ×N× F × F →
{0, 1} becomes true ( i.e. 1 ). Let T be another set like D, the validation set, and
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e is a positive integer, the iteration index. We conceive the learning algorithm
L(D, T) as a function L : D× T → F which takes as input some dataset from
the same generating process and returns the learned model f. This process is
summarised in (Algo.5.1) where f∗ is the model update.

Algorithm 5.1 Non-Distributed Learning Algorithm L(D, T)

1: Initialise with some f∗, t← 0

2: repeat
3: t← t+ 1

4: Assign f← f∗

5: f∗ ← A(D, f)
6: until C(T, t, f, f∗)

However, in the distributed case the dataset is segregated over different
machines, and the main problem lies in computing the update in step 5 of
(Algo.5.1) such that the empirical risk is reduced. The non-distributed learning
process with consensus solves the aforementioned problem by determining, at
each iteration of L, the update ∆f of the classifier f by consensus (Algo.2.1).
Given a partition kD, the empirical risk is

R( kD, f) =
1

mk

mk∑
i=1

Q(kxi, kyi, f) (5.2)

and the empirical risk on D is just the weighted mean over the empirical risk at
each machine.

R(D, f) =
1

n

n∑
k=1

mk R( kD, f) (5.3)

In the process of empirical risk minimisation, the updated classifier should
satisfy

R(D, f∗) − R(D, f) 6 0 (5.4)

but in the distributed setting this becomes

R( kD, f∗k) − R( kD, fk) 6 0 (5.5)

where f∗k are the updates determined for each subset kD. However, this does
not imply (eq.5.4), since an update that reduces the empirical risk on one subset
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might increase it on another. Therefore, updating such that for some functions f∗k
the local empirical risk is reduced cannot guarantee a reduction of the empirical
risk for the entire dataset. Instead the updates f∗k have to be coordinated such
that the empirical risk over the entire dataset is reduced. This is in fact the
principal difficulty for distributed learning.

We propose to employ consensus for the coordination of the update functions
f∗k. Therefore, the update step in the distributed setting is

f∗ =
1

n

n∑
k=1

f∗k (5.6)

We are going to treat its convergence in (Section 5.2.1.1); here we concentrate on
describing the framework. We define the consensus learning process CL(D, T,q)

(Algo.5.2) as a modification of the learning process L (Algo.5.1) by executing all
the steps locally and adding one more step for the computation of the update
by consensus. Thereotically, the latter should be identical for all machines
as a result of step 6. Then in step 5 of (Algo.5.2), the update of f at each
machine is computed as if the entire dataset was locally available. Therefore,
step 5 is equivalent to the update step in L but not identical. The process is
presented in (Algo.5.2), where f∗k is the model update of the kth machine, and
f = (f1, f2, . . . , fn) is the vector of functions f1, f2, . . . , fn found at each vertex of
the graph.

Algorithm 5.2 Consensus Learning Algorithm CL(D, T,q)

1: Initialize the local learning machines to f∗k, ∀k ∈ {1, 2, . . . ,n} and e← 0

2: repeat
3: e← e+ 1

4: fk ← f∗k, ∀k ∈ {1, 2, . . . ,n}

5: f∗k ← A( kD, fk)
6: (Consensus algorithm) f∗ ← S(f∗,q).
7: until C(T, e, fk, f∗k), ∀k ∈ {1, 2, . . . ,n}

However, there are a few matters that demand careful consideration. First,
the algorithm for consensus has only asymptotic convergence to the arithmetic
mean value and the agreement among machines. Second, the consensus process
is slow in comparison to local computations. Third, the termination function
might cause machines to stop asynchronously. These might hinder the success
of the framework and are discussed below.
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Due to the asymptotic convergence of the consensus algorithm, the estimation
of the overall function f∗k at step 6 may be both inaccurate and different among
machines. Subsequently, these are propagated in the update step 5. Therefore,
the update f∗k can diverge between machines. Mainly, this depends on two
factors, the update function A and the precision attained at the consensus step
6. This effect might be even more evident in case that the distribution of the
datapoints in the partitions of the dataset is not uniform. Then the empirical
risk computed at each machine might be largely diverging among machines.
Subsequently, the variance of the empirical risk could be larger and consensus,
step 6, may produce larger differences in the determined classifiers fk. Alas, the
algorithm would not necessarily converge as expected.

A workaround in this case is to execute the consensus algorithm for a larger
amount of iterations. The convergence up to precision of (Algo.2.1) is dependent
on a number of parameters. Among them are the algebraic connectivity of
the graph G, the cardinality of V, and the variance of the determined quantity
(Xiao et al., 2007), in this case the values of the parametrisation of the locally
determined function updates f∗k at each machine. Thus, given a specific graph
and the initial variance, we are able only to guess the number of iterations
required to achieve some precision and a level of agreement. However, given
that the variance of the values cannot be known a priori, the result may still be
uncertain.

The second aforementioned problem is that the consensus process is arguably
slow. Specifically, it is exponentially fast but dependent on the exponent (Chap-
ter 3). The exponent may not be sufficiently large for a number applications.
Moreover, due to the fact that a learning process might require a large number
of iterations to converge, the entire process could become practically infeasible.
However, if we execute the local learning process differentially from the consen-
sus process, then we are able to overcome this. With the term differentially we
imply that each phase is executed for a different number of iterations.

However, this modification raises introduces some issues that require consid-
eration. We are going to show in (Section 5.2.1.1) that convergence is guaranteed
for any combination of learning and consensus iterations. However, the perfor-
mance of the algorithm is dependent on their combination among other matters,
e.g. initialisation, learning step, etc. Though, the performance of any machine
learning algorithm is in general sensitive to such parameters. Therefore, this
interplay of consensus and learning iterations should be considered in a similar
scope as parameters to tune per application. In conclusion, the combination of
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local learning steps and iterations for consensus should be carefully designed
case by case. However, utilisation of the definitive consensus algorithm allows
to overcome this problem. Nevertheless, other matters should be considered in
that case. We consider these in (Section 5.3).

The final matter having to be examined is the termination function C, which
stops the algorithm. Even though in the non-distributed case this would be
trivial, here this has some complications. As mentioned before, the updated
functions f∗k may be possibly different. Therefore, the criteria at some machines
may be valid for termination but on other machines may have not reached
the same decision. Put simply, C( kT, e, fk, f∗k) = C( lT, e, fl, f∗l ) cannot be
guaranteed for all l 6= k . In turn, this implies that not all machines terminate
simultaneously.

Algorithm 5.3 Extended Consensus Learning Algorithm ECL(D, T, l,q)

1: Initialise f∗k, ∀k ∈ {1, 2, . . . ,n}

2: repeat
3: e← e+ 1

4: fk ← f∗k, ∀k ∈ {1, 2, . . . ,n}

5: for t = 1 to l do
6: f∗k ← A( kD, fk)
7: end for
8: Run the consensus algorithm f∗ ← S(f∗,q). ∀k ∈ {1, 2, . . . ,n}

9: ck ← C( kT, e, fk, f∗k), ∀k ∈ {1, 2, . . . ,n}

10: c← S̃(c)
11: until ck, ∀k ∈ {1, 2, . . . ,n}

A solution is to run consensus on boolean decisions instead of scalar values.
However, (Algo.2.1) is not fit for this purpose. Either majority voting or unani-
mous decision can be employed. The choice of the method depends on many
factors but most importantly the application at hand. Recent advancements in
the field solve this problem for the case of majority voting when the number of
machines is finite, see (Benezit et al., 2009) and (Benezit, 2009). However, the
discussion of this algorithm is beyond the purpose of this study, thus the inter-
ested reader is directed to the aforementioned literature. Herein, it is assumed
that it just works and that it can be employed directly to aid in the termination
phase. Let us denote the consensus algorithm on boolean decisions as S̃(x).
These modifications have been included in (Algo.5.3).
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We refer to each iteration of (Algo.5.3) as an epoch e. At each epoch we
distinguish three phases, local learning phase, global learning phase, and the
criterion phase. In the first phase the empirical risk is computed and the
classifiers are updated locally for l iterations. In global learning phase, the risk
over the entire dataset is estimated by running consensus for q iterations. The
final phase consists of computing the stopping criteria locally. Then termination
can be decided by consensus on the decision value. The last step allows to
terminate all machines simultaneously.

5.2.1.1 Convergence

Two mild assumptions are made. First that the learning algorithm L has local
convergence in the sense of (Theorem 5.1). Second, that the local learning algo-
rithm makes an update step such that some quantity dependent on the update
and associated with the data is subsequently reduced. This is an assumption
that holds for a large number of machine learning algorithms.

The following well known theorem, see (Agarwal et al., 2001), is useful for the
proof of convergence of the distributed learning framework.

Theorem 5.1 (Banach’s Contraction Principle). Let (K,d) be a complete metric
space where K is a set and d is a metric. Assume H : K 7→ K is a contraction. That
is d(H(x), H(y)) 6 κd(x,y) for all x,y ∈ K with 0 < κ < 1. Then H has a unique
fixed point x∗ ∈ K that it converges at ∀x ∈ K according to

lim
n→∞Hn(x) = x∗

where Hn+1 = H(Hn) with H0(x) = x and n ∈ {1, 2, . . .}.

A learning algorithm optimises some cost function that depends on the train-
ing data. Typically, the cost function is the empirical risk or a regularised
version of it. It is quite common that this cost function has various local minima.
Therefore, an optimisation may get trapped in any of them.

In this paragraph, we want to show that in a very general setting the dis-
tributed learning algorithm converges to a classifier that is close to the classifier
that would be obtained by the centralised learning algorithm, given that the
learning data and the initial classifier are the same. Because of the problem
of local minimum, we cannot expect to get such a result for any choice of
initial classifier, but we have to restrict it to one that is well within the basin of
attraction of a minima (local or global) of every local objective function.
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Hypothesis 5.1. Assume F the Banach space of all admitted classifiers (“the learn-
ing machine”). Let C ⊂ F be a closed bounded convex subset that has the following
properties with respect to the learning set D, its partition D = ∪nk=1 k

D and the local
learning step A(kD, f):

(a) A( kD, f) leaves C invariant for all k = 1, 2, . . . ,n

(b) For any k ∈ {1, ..,n} there exists a constant 0 < µk < 1 such that for any
f,g ∈ C

‖A( kD, f) − A( kD,g)‖ 6 µk‖f− g‖

Remark 5.1. (Hypothesis 5.1) may seem to be too restrictive to be realistic. However,
in a neighbourhood of a minimum of a smooth objective function, it is likely that one
can find such a set C. At least when the partition of the data is uniform and there is
sufficient data locally.

To make this case, suppose that the set F of classifiers is parameterised by
a vector a = (a1,a2, . . . ,ap)T ∈ Rp. Suppose that the cost function R(D, a) is
smooth in a. Let a∗ be a local minimum of R. Then in a ball

B(a∗, r) = {a|‖a − a∗‖ 6 r} (5.7)

we have

R(D, a) ≈ (a − a∗)TM(a − a∗) (5.8)

where M is a positive definite matrix. Assume that the learning update step of
the learning algorithm is gradient descent. In terms of parameter vectors a a
learning step becomes

ã = A(D, a) ≈ a − γM(a − a∗) (5.9)

where γ is a small positive number. Then for sufficiently small γ, A is a
contraction on B(a∗, r). Indeed for a, b ∈ B(a∗, r) it holds that

‖ã − b̃‖ ≈ ‖(a − γM(a − a∗)) − (b − γM(b − a∗))‖
= ‖(I− γM)(a − b)‖
6 ‖I− γM‖‖a − b‖
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Let 0 < λmin < λmax be the minimum and maximum eigenvalues of M. Then
choosing γ = 2

λmin+λmax
we obtain

‖I− γM‖ =
λmax − λmin
λmax + λmin

= µ < 1 (5.10)

and therefore

‖ã − b̃‖ 6 µ‖a − b‖ (5.11)

Actually, this inequality holds only approximately. However, by increasing µ
somewhat, without surpassing 1, the inequality becomes tight (if the ball B(a∗, r)
is not too large ).

Note that since a∗ is a fixed point of A, we deduce also

‖ã − a∗‖ 6 µ‖a − a∗‖ (5.12)

which means that A maps B(a∗, r) into B(a∗,µr).
Suppose that the data is partitioned. For simplicity we suppose that there are

only two parts

D = 1D∪ 2D (5.13)

Apply for each part the aforementioned reasoning. There are the local minima
1a∗ and 2a∗ of the cost functions R( 1D, a) and R( 2D, a), respectively. The
functions are then well approximated in the balls B( 1a∗, 1r) and B( 2a∗, 2r)
by (a − 1a∗)TM1(a − 1a∗) and (a − 2a∗)TM2(a − 2a∗) . The gradient descent
learning step functions

ã = A( 1D, a) (5.14)
˜̃a = A( 2D, a) (5.15)

are contractions on the respective balls

‖ã − b̃‖ 6 1µ‖a − b‖ (5.16)

‖ ˜̃a − ˜̃b‖ 6 2µ‖a − b‖ (5.17)

Define the intersection of the balls to be

C = B( 1a∗, 1r)∩B( 2a∗, 2r) (5.18)
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which is indeed a closed bounded convex set. It remains to be determined under
what condition it is invariant. This is the case when

B( 1a∗, 1µ 1r) ⊆ B( 2a∗, 2r) (5.19)

B( 2a∗, 2µ 2r) ⊆ B( 1a∗, 1r) (5.20)

The first inclusion holds if

‖ 1a∗ − 2a∗‖+ 1µ1r 6 2r (5.21)

1µ 6
2r
1r

−
‖1a∗ −2 a∗‖

1r
(5.22)

Similarly for the second inclusion it has to hold that

2µ 6
1r
2r

−
‖1a∗ −2 a∗‖

2r

Given that the learning data is uniformly partitioned and that both 1D and
2D are large enough, then 1a∗ and 2a∗ are close to each other and 1µ, 2µ as well
as 1r and 2r are of almost the same value. In that sense, we can expect the two
inequalities to hold and therefore C to satisfy (Hypothesis 5.1).

Theorem 5.2. Suppose that a distributed learning algorithm makes in one epoch l
learning steps and q consensus iterations. Assume that (Hypothesis 5.1) holds for local
learning. Furthermore, suppose that a consensus step is of the form

f̃k =

n∑
j=1

wkjfj

with wkj > 0 for all k, j and
∑n
j=1wkj = 1 for all k. Then for any l,q > 1

the aforementioned distributed learning algorithm converges, if it is initialised with
classifiers fk ∈ C and k = 1, . . . ,n.

Proof. We prove that the transformation (f1, . . . , fn) 7→ (f̃1, . . . , ˜fn) correspond-
ing to one epoch of the distributed learning algorithm is a contraction in Cn.
This implies convergence of the distributed learning algorithm to the unique
fixed point (f∞1 , . . . , f∞n ) ∈ Cn of the transformation.

Let us define the norm in Cn by

‖(f1, . . . , fn)‖ = max
k
‖fk‖ (5.23)

Starting from fk ∈ Cn the classifier f̃k, obtained by l iterations of the local
learning steps A( kD, fk), remains in Cn. This is due to the fact that (Hypothesis

126



5.1) is satisfied by fk. Furthermore, the mapping fk 7→ f̃k is a contraction in C

with the factor 2µk.
A consensus step maps (f1, .., fk) to (f̃1, . . . , ˜fn) where

f̃i =

n∑
j=1

wijfj (5.24)

Since C is convex, fj ∈ C ∀j implies f̃i ∈ C ∀i . Furthermore,

‖f̃i − q̃i‖ = ‖
n∑
j=1

wijfj −

n∑
j=1

wijgj‖

= ‖
n∑
j=1

wij(fj − gj)‖

6
n∑
j=1

wij‖fj − gj‖

6
n∑
j=1

wijmax
j
‖fj − gj‖

= max
j
‖fj − gj‖

Thus

‖f̃i − q̃i‖ 6 max
j
‖fj − gj‖ (5.25)

The combination of local learning and consensus iterations defines a transfor-
mation in Cn

f l−→ f̃ q−→ ˜̃f (5.26)

where f = (f1, . . . , fn), f̃ = (f̃1, . . . , f̃n) and ˜̃f = ( ˜̃f1, . . . , ˜̃fn), which is a contrac-
tion. Observe that

max
i
‖ ˜̃fi − ˜̃gi‖ 6 max

i
‖f̃i − g̃i‖ (5.27)

6 max
i
µli‖fi − gi‖ (5.28)

6 (max
i
µi)

lmax
i
‖fi − gi‖ (5.29)
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The question remains, what classifiers f∞1 , . . . , f∞n does the distributed con-
verges to? First of all, q should be large enough such that the classifiers
f∞1 , . . . , f∞n are very close to each other. Subsequently, we consider the idealised
case where in each epoch consensus has been reached such that in the limit it
holds that f∞j = f∞k = f∞.

Consider the case that l = 1. If the learning step satisfies:

A(D∪ D̃) =
1

|D| + |D̃|
(|D|A(D, f) + |D̃|A(D̃, f)) (5.30)

for all f ∈ F, e.g. in the case of gradient descent on the empirical risk, and if we
choose the matrix W for the consensus algorithm such that the left eigenvector
for the eigenvalue 1 is

(
| 1D|
|D| , . . . , |nD|

|D|

)
, then the distributed learning algorithm

converges to the same classifier as the non-distributed.
This can be seen as follows. The centralised algorithm transforms a classifier f

in one learning step into f with

fk = A( kD, f) (5.31)

Then the consensus algorithm transforms (f1, . . . , fn) into (f̃, . . . , f̃) with

f̃ =
| 1D|

|D|
f1 + . . .+

|nD|

|D|
fn

=
1

|D|

n∑
k=1

| kD|A( kD, f)

= A(D, f)

Therefore, one step of the centralised learning performs exactly the same trans-
formation as one epoch of the distributed learning.

We consider the case l =∞, which is an idealised case as well. Let the weight
matrix W have left eigenvector

(
| 1D|
|D| , . . . , |nD|

|D|

)
for eigenvalues 1. Then the

distributed algorithm converges to

f∞ =
1

|D|

n∑
k=1

| kD|f∞k (5.32)

where f∞k is the classifier that local learning converges to with input the subset
kD of the entire dataset D.
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5.3 extension to definitive consensus

The definitive consensus algorithm can be applied in a straightforward manner.
We need only replace the step for consensus with the definitive consensus
algorithm. The result would be equivalent to the first extreme case in the
distributed algorithm’s proof for convergence, where it has been assumed that
the consensus algorithm is executed for infinitely many steps. However, this is
only the case when the local learning iterations are equal to one. We are going to
see later on by numerical simulations (Section 5.5) how the number of learning
iterations affect the performance of the learned model. Nonetheless, in the case
that local learning iterations are set to be equal to one, the definitive consensus
algorithm allows to perform learning in a distributed manner exactly as if an
identical learning machine had been trained on the entire dataset.

Therefore, we can control the learning parameters with standard methods.
Notably, employing the definitive consensus algorithm allows to perform regu-
larisation directly, just like in the case of the non-distributed counterpart. The
latter provides better control over the final outcome of the algorithm.

Algorithm 5.4 Definitive Consensus Learning Algorithm DCL(D, T, l, ζ)
1: Initialize the local learning machines to some f∗k, ∀k ∈ {1, 2, . . . ,n}

2: repeat
3: e← e+ 1

4: fk ← f∗k, ∀k ∈ {1, 2, . . . ,n}

5: for t = 1 to m do
6: f∗k ← A( kD, fk, ζ), ∀k ∈ {1, 2, . . . ,n}

7: end for
8: f∗ ← DS(f∗). (Definitive Consensus)
9: ck ← C( kT, e, fk, f∗k), ∀k ∈ {1, 2, . . . ,n}

10: c← S̃(c)
11: until ck, ∀k ∈ {1, 2, . . . ,n}

The definitive consensus algorithm is presented in (Algo.5.4). The process
is identical to (Algo.5.3). However, the update now is computed by definitive
consensus, denoted DS(f), instead of consensus. Each epoch of the algorithm
is one iteration of the outer loop; the epoch count is denoted by e. The update
function has been modified to include a regularisation term ζ, which reflects
the usage of regularisation in the empirical risk function. However, we do not
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extend to the treatment of selecting the regularisation function, since this matter
is specific to the learning algorithm and the generative function of the dataset.
Nevertheless, the effect of regularisation is important, thus we examine it by
numerical simulation in (Section 5.5).

The internal loop depicts the operation of learning at each machine in the
network. This can be executed in a serial or parallel manner. However, the main
requirement is that the machines terminate at this phase within some given
time-frame, but not necessarily together. Once this phase has been completed,
then the updates are communicated by consensus to determine the new update.
Subsequently, this is used to evaluate the termination criteria ck, which may
be different when the test sets kT at each machine are different. Thereafter,
termination on the network can be decided with boolean consensus algorithm in
the next step, e.g. majority voting, denoted ˜S(c); already discussed for (Algo.5.3).
In the case that a common test set is used, then these two steps are obsolete.

We have completed the purely theoretical side of this work with the pre-
sentation of the definitive consensus algorithm. Having founded the abstract
framework, it is of interest to verify the theory by numerical simulations of
distributed learning on abstract network. Therefore, the rest of this chapter is
devoted to the applied side of this research.

5.4 application of the abstract framework

We are concerned with the practical application of the framework for distributed
learning by consensus. Therefore, we have selected one of the elementary but
well adopted algorithms in the field to test its practicality. Below, we introduce
the necessary modifications and thereafter we verify by simulations the validity
of our claims.

5.4.1 Feed Forward Multilayer Neural Networks with Back-propagation

A description of this type of neural networks is given in a number of books
with the most prevalent being (Bishop, 1996). Though, we remind that the inner
product of the parameters alj and the input vector ulj of the jth neuron at the lth

layer is endowed with a non-linear activation function g. Each neuron on the
network realizes a function h(xlj, alj,b) = g((ulj)

Talj) + b. The learning process
of the neural network is governed by the following set of equations, referred
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as the backpropagation rule. The update of the synaptic coefficients ajl upon
presentation of a learning sample (xi,yi) is given by

δj = g ′(uTaj)
∂Q(xi,yi,h)

∂h
(5.33)

δl−1j = g ′((ul−1j )Tal−1j )
∑
q

al−1kj δ
l
ql

(5.34)

∆aljq = −ηδlju
l
jq (5.35)

where δlq is the error contribution of the qth neuron at the lth layer, g ′ is the
derivative of the activation function, ∆aljh is the parameter adjustment, and
η is a small constant, the learning rate. The first equation defines the error
contribution of the last layer’s output, before the output neuron. The second
equation defines the error contribution of the jth neuron of the layer indexed
l− 1 by backpropagating the error contributions of neurons at the lth layer. The
summations are done over the parameters of the input connections al−1qj of the
jth neuron on the layer indexed (l− 1). Then (eq.5.35) allows the parameter
updates of every connection on the network. The reader is directed to(Bishop,
1996) for a concise presentation of the algorithm.

In the setting of distributed consensus, it is better to consider batch updates.

δ = g ′(uTa)

m∑
i=1

∂Q(xi,yi,h)

∂h
(5.36)

In view of the partitioned dataset and batch updates, the error of the last layer
before the output neuron is modified as follows.

δ = g ′(uTa)

n∑
k=1

mk∑
i=1

∂Q(xi,yi,h)

∂h
(5.37)

However, at each kth machine the error that is evidently

[δ]k = g ′(uTa)

mk∑
i=1

∂Q(xi,yi,h)

∂h
(5.38)

and δ =
∑n
k=1[δ]k. Therefore the parameter update is just the sum of the partial

weight updates determined at each machine. The computation of the parameter
update rule (eq.5.39) is straightforward in a distributed fashion by consensus as
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in (Algo.2.1). The consensus update equation is given in (eq.5.40), where, [∆aljh]k

is the parameter update at the kth machine.

∆aljh = −η

n∑
k=1

[∆aljh]k (5.39)

[∆aljh]i ←
n∑
k=1

wik[∆a
l
jh]k (5.40)

The consensus learning framework has been specified, and consensus is executed
on the update parameters. The level of agreement on the parameters is what
determines the convergence of the algorithm.

5.4.1.1 Early stopping

Early stopping is used to terminate the algorithm. This is mainly due to the
difficulty in communicating a decreasing learning rate throughout the network.
Additionally, early stopping provides a simple method to avoid over-fitting. In
the framework, presented in (Algo.5.3), we can directly implement this as the
termination criterion.

We can employ early stopping, with the termination criterion in (eq.5.41), in
a distributed fashion by validating the learned network after each epoch on
another dataset (validation set) locally.

C(T, e, ak, a∗k) =

 0 if R(T, f(a∗k)) − R(T, f(ak)) 6 0

1 if R(T, f(a∗k)) − R(T, f(ak)) > 0
(5.41)

As described in (Section 5.2.1) due to discrepancies in the computation of con-
sensus the decisions may be different. To overcome this we run consensus on
the local decisions {0, 1} taken at each machine, as in (Algo.5.3).

In (eq.5.41) it has been implied that the validation set is the same for every
machine. However, it is likely that the validation set is also partitioned, T =

∪nk=1
kT. Then (eq.5.41) can no longer be applied as is. Instead, we compute the

differences locally

∆ kR = kR( kT, f(a∗k)) − kR( kT, f(ak)) (5.42)

and augment the aforementioned process by running one more consensus step to
determine the difference over the entire validation set. Alternatively, consensus
should be executed in order to agree on local decisions.Otherwise, the machines
might not terminate simultaneously.
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5.5 numerical validation

in order to validate the distributed data inference framework, we evaluate the
multilayer feedforward neural network with the modified equations presented in
the previous section (Section 5.4.1). Extensive experimental results are presented
for the given dataset in case of uniform and non-uniform data partitioning in
a relatively small communication network. Additional results can be found in
(Chapter 6).

5.5.1 Consensus Learning Results Preamble

Testing of the algorithm has been performed on a variant of the so called two-
moons dataset (Zhou et al., 2004). The generation is performed by uniformly
sampling points along a circle of radius 1. The points from the upper half of
the circle are displaced vertically and horizontally, then Gaussian noise has
been added in the vertical direction. These were 0.9, 0.5 and 0.1 for the vertical,
horizontal, and standard deviation, respectively. The upper half has been
labelled as class 0 and the lower half 1. The main advantage of this dataset
is that it presents a problem where the researcher can adjust the difficulty
of the problem with just a few parameters. Particularly, bringing the two
semicircles closer and increasing the variance of the noise on the vertical axis,
increases the overlap of the classes. The uncertainty on the vertical axis follows
a normal distribution, thus in principle the dataset presents a non-separable
problem. However, we can move from having empirically separable classes
to non-separable by transposing the two semi-circles from further to closer,
respectively.

5.5.1.1 Example of Classification

We have selected a neural network of 7 neurons placed in two hidden layers [5
2]. The sigmoid function was implemented as activation function of the neurons
in these two layers. The input and output layers had linear functions. For the
purpose of the experiment, we have generated 50 datasets, with 80 examples per
class. We consider both non-uniform and uniform data partitioning. In the later
case, each dataset has been divided into 10 parts. The points have been sampled
uniformly such that each partition contains examples from both classes. Then
these partitions have been allocated on the vertices of the communication graph
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Figure 19: Example of the Two Moons Dataset. For left to right, in (a) an example of the
two moons dataset is shown. This has two classes, top red is class 0 and bottom
blue is class 1. In (b), the partitions occurring with uniform sampling are presented.
Different, shape, size and colour of the points, indicate different partitions. The given
example consists of 10 partitions. Cautious examination of the figure leads to the
observation that all partitions have examples from both classes. In contrast, in (c),
this does not hold, e.g. blue points occur only on the top circle.

and the algorithm (Algo.5.3) has been executed. An example of the results is
given in (fig.20). The connection graph G of 10 vertices is also shown.

The dataset has been locally partitioned into training and validation for the
purpose of locally training the neural networks.Thereafter, the partitions were
allocated to the vertices for each of the 50 datasets. Additionally, one dataset,
T was generated for the purpose of measuring performance, given by (eq.5.1).
For the purpose of comparing performance, a neural network for each of the 50
datasets has been trained on the entire training set.

We have also considered the case of non-uniform data partitioning. Again 10
parts have been allocated randomly on the vertices. Non-uniform segregation
has been performed by uniformly sampling points from only one class for each
given partition until datapoints have been exhausted in the given class. In
such a case, partitions for the other class are created in the same manner. Any
remaining datapoints are placed in one partition. Therefore, there can be only
one partition with datapoints from both classes. The rest of the partitions contain
examples from only one class. This increases the difficulty of the distributed
problem.

An example is given in (fig.21) for the case of non-uniform data partitioning.
There the output classification on the test set is presented for three cases, the
output of a network having been trained with the consensus framework, an
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(a) Network output, train with consensus,
cutoff=0.5, datasetid:9
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(c) Network output, train with local dataset,
cutoff=0.5, datasetid:9
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Figure 20: Dataset and Classification output - Uniform case (a) The output of the dis-
tributively trained network on the Test set. (b) The output of the non-distributively
trained network. (c) The output by training with just the local dataset. (d) The true
Test set. (e) The segregation of the training dataset. Each combination of colour and
figure designates a different partition. The datapoints for the selected dataset are
specified with a blue star. (f) The communication graph. The red circle designates the
selected node for which the results are shown

identical network trained against the entire dataset, and an identical neural
network trained only with the corresponding dataset. The latter totally fails
because there are examples only from one class. Surprisingly, in this example,
the distributed version demonstrates better classification in comparison with
the centralised, which was trained on the entire set. This is a complex effect
of the differential execution of the local learning algorithm and the consensus
algorithm.

Overall results for the case of non-uniform data partitioning are summarised
in (fig.22). There the mean performance at each epoch over all 50 datasets,
measured on T, is presented for different configurations of the algorithm. All
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Figure 21: Dataset and Classification output - Non-Uniform case. (a)Training set
segregation. Different colours and shapes designate points belonging to different
machines. The red triangles designate the datapoints available at the selected machine.
(b) The output of the neural network (NN) for a selected machine, trained with
(Algo.5.3). (c)The output of the NN trained non-distributively on the entire dataset.
(d)The true output. (e)The output of the NN using only the data available locally.
(f)The connection graph. The red triangle designates the selected machine for which
the network output is shown in (b).

the neural networks, local, global, and distributed had been initialised identically
for each distinct dataset.

In this preliminary presentation of results, we observe that the distributed
consensus learning algorithm with careful selection of the parameters can
perform just as well as in the case that the entire dataset has been locally
available. In specific cases, it might even outperform the centralised on the test
set. Consider a neural network trained with the consensus learning framework
on a uniformly partitioned dataset and an identical neural network trained over
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the entire dataset. The second is expected to learn the dataset better. That is,
to retrieve solutions such that performance on a test set is better. This in fact
depends on the number of samples at each partition and the selection of the
parameters of consensus learning. However, with an appropriate selection of
learning parameters, the distributed case can surpass local learning, when the
number of local samples is small.

We have selected an exemplary case, under uniform data partitioning, where
consensus learning surpasses the classification on the test set of both local learn-
ing and centralised learning (fig.20). The different machines on the displayed
communication graph had been allocated partitions of the dataset with examples
from both classes. However, in the absence of regularisation, centralised learning
does not manage to predict the classes of the test better than consensus learning.
We point out that for the sake of comparison training has been performed with
the same initialisation and training parameters in all networks and in all three
cases of, consensus, non-distributed and local learning.

Under the non-uniform partitioning the results further designate the power
of the proposed framework. An example is given in (fig.21) of the classification
output on the test from the aforementioned neural network. In the case of
non-uniform segregation, the partitions are not guaranteed to include examples
from both classes. Instead, we have enforced that there are more than half of the
partitions that contain examples from only one class. The latter further hardens
the problem for both local learning and consensus learning.

However, from the given example we observe that local learning utterly fails.
Something that is well expected. In contrast, consensus learning not only
achieves to classify the examples of the test, but also attains better generalisation
than the non-distributed case. However, we have to admit this is not always case.
Nevertheless, this result demonstrates the potential of this method. As we have
already illustrated theoretically, the algorithm’s performance, and consequently
its generalisation performance, depends on both the learning l and the consensus
q iterations. We are going to further examine this interplay in (Section 5.5). There
overall results are provided in order to give a better view of the average overall
performance of the distributed algorithm.

A preamble of the results is presented subsequently, (fig.22). There the overall
performance throughout the epochs of the consensus learning algorithm is
displayed. Specifically, the average of the mean square error over all 50 datasets
with random initialisation is computed at each epoch on the test set. The mini-
mum empirical error is also presented along with the average base performance.
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Figure 22: Overall Classification Performance with Non-uniform Partitioning. The
average over all the neural networks mean squared error (MSE) on the test set, at each
epoch, trained over all 50 datasets, is compared with the non-qdistributed counterpart.
Left: Iterations for consensus was q = 10, Right: Iterations for consensus was q = 100.
(MSE) was measured over the same unique test set. Different colour curves, red, blue,
green, correspond to different number of local learning iterations, l = 5, l = 2, l = 1,
respectively. BASE denotes the performance obtained by training an identical neural
network with the entire dataset. MINEMP is the minimum empirical risk.

That is the average of the mean square error attained by the same neural network,
which had been trained with the entire dataset and same initialisation as in
the distributed version. We provide two plots, each for a different number of
consensus iterations per epoch. At each of the two plots, there are three curves
designating the overall performance for three different choices of the number of
local learning iterations. One can observe the complicated nature of selecting
the parameters. Observing the green lines on the left plot one may conclude that
more local iterations are better. However, that is not the case when the iterations
for consensus are increased, demonstrated in the right plot in (fig.22). These are
further investigated in (Section 5.5).

Summarising, we draw the two following conclusions based on (fig.22). First,
that neural networks trained with the proposed algorithm can perform distribu-
tively just as well as an identical neural network trained over the entire dataset.
Second, that there is a tradeoff between number of iterations for learning locally
and the iterations for consensus. However, on average it is favourable to have a
large number of local learning iterations.
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5.5.2 Comprehensive Results Consensus Learning
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Figure 23: Classification Error Rate - Uniform data partitioning. The surface shown is a
two dimensional cubic smoothing spline of the weighted averages of the datapoints
at each configuration site. There is a region of local iterations between 100 and 150

and consensus iterations 120 to 200 where the algorithm performs best.

We have further performed experiments to determine the interplay of consen-
sus iterations with learning iterations. The experiments have been performed in
the following manner. We have fixed a communication graph, and have realized
at each vertex the given neural network with 2 hidden layers, having 5 and 2
neurons at the first and second layer respectively, as in (Section 5.5.1.1). The
reason for selecting this type of network was that it separates well the classes in
the given dataset. We have selected 112 configurations {maximum local learning
iterations, consensus iterations} in the range {1 -200,1-300}. Slightly different
parameters have been employed to reduce computational effort. The param-
eters were 0.9 for the vertical displacement of the two semicircles, 0.3 for the
horizontal, and white noise added on the y-axis was 0.07 .

Subsequently, for each configuration 50 different datasets had been gener-
ated, upon which the aforementioned neural network has been trained, both

139



0.2

0
.2

5
0
.2

5

0.25

0.25

0
.2

5

0
.3

0
.3

0.3

0
.3

0.3

0.3

0
.3

0.3

0.3

0.35

0
.3

5

0
.3

5

0.35

0.35

0.35

0.3
5

0.35

0
.3

5
0
.3

5

0
.3

5

0.35

0.35 0.35

0.4

0
.4

0
.4

0
.4

0
.4

0.4

0.4

0.4 0.4

0.4

0.4

0.4

0.4

0
.4

0
.4

0
.4

0.45

0.45

0
.4

5

0
.4

5

0
.4

5
0.45

0
.4

5

0
.4

5

0
.4

5

0
.4

5

0.45

0.5

0
.5

0
.5

0.5

0.5

0.5

0
.5

0.5

0
.5

0
.5

0.55

0.55

0
.5

5
consensus iterations

lo
c
a

l 
it
e

ra
ti
o

n
s

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Figure 24: Classification Error Rate - Uniform data partitioning - Contour plot. As in
(fig.23) one can observe in the contour plot the a region where the algorithm performs
best.

distributively and non-distributively. Each of the 50 resulting networks has been
tested on a unique predefined test set, generated in the same manner as the
training set. Thus, for each configuration we have obtained 50 datapoints, each
corresponding to the final classification error rate, totalling a dataset of 112 by
50.

For each configuration we have selected the datapoints where the non-distributed
version of the algorithm had a classification error rate below 0.2. This is justified
since initialisation has an important effect on the learned model, thus we cannot
know the proper initialisation a priori. Hence, it is appropriate to select those
models that fit the data to compare the performance of the two cases. Inclusion
of the cases that even the non-distributed algorithm has not performed is point-
less. On the resulting datapoints, a weighted average cubic smoothing spline
was fitted appropriately for all the tested configurations, in order facilitate visual
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Figure 25: Classification Error Rate - Comparison with non-distributed - Uniform
data partitioning. As in (fig.23), the same surface is plotted versus a two dimen-
sional cubic smoothing spline fitted on the weighted average classification error rate
when training non-distributively (bottom surface). The minimum difference is about
0.05 .

representation of the results. Detailed results are presented in (Section 5.5.2.2)
and (Section 5.5.2.1).

One should notice in all figures that there is a region on the plane, correspond-
ing to a group of configurations where the distributed version attains on average
results near the non-distributed counterpart. Let us emphasise that these results
are on average. This implies that there are cases where the distributed algorithm
is better than the non-distributed and vice versa. Therefore, no safe conclusions
can be made about the performance of the distributed algorithm being better
or worse in comparison to having the entire dataset on just one site. However,
what is illustrated from these results is that the distributed learning algorithm
by consensus performs nearly as good on average with the non-distributed
counterpart. Nevertheless, the main comparison, is not to be made with the
non-distributed having the entire dataset, but with the local having only one
partition of the dataset. In that case the distributed algorithm performs much
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Figure 26: Classification Error Rate - Non-uniform data partitioning. The surface
shown is a two dimensional cubic smoothing spline of the weighted averages of
the datapoints at each configuration site. There are two a regions where the algorithm
performs best. These are {80-100,50-100} and {80-100, 40-80}, local and consensus
iterations respectively.

better. Nonetheless, the distributed performs sufficiently close even when com-
pared with the non-distributed counterpart, which bears significance for many
applications.

5.5.2.1 Classification Error Rate - Uniform

In the case of uniform data partitioning, we observe that the classification is
equivalent to random assignment for the greater region of the plane. However,
there are two minima where the error rate is about 0.2 . That is when consensus
iterations are in the neighbourhood of 130 and the local iterations are in the re-
gion of 120. We further observe the formation of two valleys on the classification
error rate surface. These occur when either of the local or consensus iterations
are held constant while the other quantity is increased. There, the classification
error rate is in the region of 0.3 .
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Figure 27: Classification Error Rate - Non-uniform data partitioning - Contour plot.
As in (fig.26) the regions where the algorithm performs best, {80-100,50-100} and
{80-100, 40-80} can be adduced.

That further verifies our claim about the interplay of the two parameters.
Originally, we had found theoretically that selecting q > Q is not sufficient to
model the data successfully. The latter is only sufficient for the local convergence
of the algorithm. This is verified here as well, due to the presence of the
valley which forms when increasing the iterations for consensus. There, the
classification error rate is much better than random selection, between 0.2 and
0.3, but still large. These are also observable in more detail in the contour map
(fig.24).

The comparison with the classification error rate of the local learning algo-
rithm is given in (fig.25). There only learning iterations and the initialisation is
important. These have been identical with the case of the non-distributed coun-
terpart . The latter’s performance is depicted in the bottom surface. Particularly,
different initialisation has been used at each experiment. Hence, each pair of
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Figure 28: Classification Error Rate - Comparison with non-distributed - Non-
uniform data partitioning. As in (fig.23), the same surface is plotted versus
the classification error rate achieved on average when training non-distributively
bottom surface. The minimum difference is about 0.1 .

distributed and non-distributed has been using the same initialisation at each
experiment but different between experiments. This causes a slight fluctuation
on the surface at the bottom, corresponding to the non-distributed, when the
consensus iterations vary.

That is somehow counter intuitive but does not alter the validity of these
numerical experiments. This was treated by running experiments at each
configuration on multiple datasets. Retrieving the average of the performance,
(RMSE) or (CER), provides a concise view at each configuration point. Hence, it
allows to draw safe conclusions about the interplay of the parameters and the
comparison with the centralised counterpart.

The centralised algorithm performs better overall, given that the entire dataset
is available locally. In contrast when the latter cannot be, the distributed learning
algorithm, presents an interesting alternative. Appropriate selection of the
parameters allows to obtain results that are adequately close to having the entire
dataset available on a single machine.
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5.5.2.2 Classification Error Rate - Non-Uniform

We have built the figures as presented in (Section 5.5.2.1) for the case that the
data is not uniformly allocated over the machines. The classification error
rate surface is positioned near higher values in comparison to the uniform
case. Furthermore, the valleys, that we had observed in the case of uniform
partitioning, have vanished. Instead, there are only two steep regions where
the value is about 0.25. The most prominent of the two is found in the region
around 60 local and 60 consensus iterations. There the distributed algorithm
has its best classification error rate on average. However, in the larger region,
the convergence of the algorithm is such that the learned model of the data
completely fails to classify properly the examples of the test set. Furthermore,
the classification error is verified to be more sensitive with respect to the selection
of the parameters than in the case of uniform segregation. Details are better
depicted on the contour plot (fig.27).

Additionally, a comparison with the non-distributed data learning algorithm
is given in (fig.28). There, one should notice that there is a region that the
classification error rate which is near the one associated to the non-distributed
counterpart. Obviously, partitioning of the dataset in any manner does not affect
the training that is performed with the entire dataset. Hence, the blue surface
below is in fact an idealised comparison. The fluctuation when varying the
consensus iterations is both, an effect of the different initialisation at each config-
uration site, and an artifact of fitting with a two dimensional cubic smoothing
spline. The conclusion from (fig.28) is that even if data partitioning has not been
performed in a favourable manner, then the consensus learning framework may
still attain good performance near the non-distributed. However, this case is
more difficult than the case of uniform partitioning.

5.5.3 Definitive Consensus Machine Learning with Regularisation

The study in the case of the definitive consensus algorithm is simpler. We
employ regularisation on the risk function of the neural network directly. We
use the same dataset and setup as has already been described in (Section 5.5.1.1).
However, we have selected to change the communication graph. The graph that
we use has a somehow irregular form. This would pose some difficulties for
the original consensus algorithm. The less connected vertices should present
differences from the value of agreement. However, employing the definitive
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(a) Network output, train with consensus,
cutoff=0.5, datasetid:1
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cutoff=0.5, datasetid:1

 

 
0

(c) Network output, train with local dataset,
cutoff=0.5, datasetid:1

 

 
0

(d) True Classes, Test Set datasetid:1

 

 
0

1

(e) TrainDataSet segregation, datasetid:1 (f) Graph

Figure 29: Classification with little regularisation ζ = 0.9 - Uniform partitioning.
Classification on the test set is shown, for the distributed and non-distributed
case, trained on the 9

th of the 50 datasets. Little regularisation may result in mis-
classification in all cases. Details: (a) trained with DCL, (b) trained on the entire
dataset L, (c) trained with the subset, (d) the true classes, (e) the partitioning of the
training set. Blue stars indicate the subset. (g) The graph, a circle designates the
specific machine.

consensus algorithm should alleviate such problems. Furthermore, we present
the results on different random graphs to demonstrate that the outcome is
independent of the network topology.

As has already been mentioned, the definitive consensus algorithm enables
the utilisation of a regularisation function on the empirical risk function. We
have used the same regularisation function for both distributed and the non-
distributed for the training of the same neural network. We are going to present
the results for both uniform and non-uniform partitioning for the given dataset.
Surprisingly, we shall observe that in contrast to what we would expect the
distributed and the non-distributed do not always perform similarly. This is due
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(a) Network output, train with consensus,
cutoff=0.5, datasetid:1

 

 
0

1
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cutoff=0.5, datasetid:1
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Figure 30: Classification with regularisation ζ = 0.5 - Uniform partitioning. Classifica-
tion on the test set is shown, for the distributed and non-distributed case, trained on
the 9

th of the 50 datasets. Surprisingly the distributed has better generalisation than
the rest. Details: (a) trained with DCL, (b) trained on the entire dataset L, (c) trained
with the subset, (d) the true classes, (e) the partitioning of the training set. Blue stars
indicate the subset. (g) The graph, a circle designates the specific machine.

to the effect of the local learning algorithm being executed for more than one
iteration.

As a regularisation function in this sequence of experiments, we have used the
mean of the square of the learning parameters, i.e. the neural network weights.
The empirical risk is modified to include this as follows

rk = R(kD, fk) + (1− ζ)
1

ma

ma∑
j=1

[aj]
2
k (5.43)

where ma is the number weights on the entire neural network, and j is some in-
dexing of the weights throughout the entire neural network. This representation
is simpler than having to include an index for layers and neuron to neuron just
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Figure 31: Acceptable performance on the Test set during training - Uniform parti-
tioning. The effect of regularisation diminishes from top ζ = 0.5 to bottom ζ = 0.9.
On the given dataset and initialisation, only the first case is behaving in a satisfactory
manner. Details: (a), (d) and (g) display (CER) after consensus has been executed at
each iteration. (b), (e) and (h) exhibit (CER) before consensus has been executed. (c),
(f) and (i) display the (MSE) after consensus.

to describe this simple summation over the squares of all learning parameters.
The outer index k indicates the machine.

5.5.3.1 Uniform

In our sequence of experiments, we range ζ from 0.5 to 0.9 in order to determine
the significance of regularisation in the distributed learning under the definitive
consensus algorithm. Results for the same dataset are given in (fig.30) and (fig.29)
for ζ = 0.5 and ζ = 0.9, respectively.

There the classification output on the test set is given for three cases. The first
sub-figure (a), in (fig.30) and (fig.29), exhibits the output for a specific machine
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Figure 32: Not acceptable performance on the Test set during training - Uniform
partitioning. The effect of regularisation diminishes from top row ζ = 0.5 to
bottom ζ = 0.9. Here, the classification error rate is not acceptable even though the
(MSE) diminishes throughout training. Details: (a), (d) and (g) display (CER) after
consensus has been executed at each iteration. (b), (e) and (h) exhibit (CER) before
consensus has been executed. (c), (f) and (i) display the (MSE) after consensus.

in the communication graph after having trained with the consensus machine
learning algorithm. The specific machine is designated on the communication
graph (f) with a red circle. Second, the output of an identical neural network
that has been trained with the entire dataset is displayed in (b). Third, the
output of the same network which was trained only on the local subset of the
designated machine is displayed in (c). A similar layout is followed in (fig.36)
and (fig.37), as well.

Specifically, in (fig.30) and (fig.29) is demonstrated that without regularisation,
then generalisation, i.e. classification on the test set, may fail in all three
learning settings. This cannot be overcome with early stopping, because we
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Figure 33: Classification Error Rate of a network with 2 hidden layers - Non-uniform
data segregation - Contour plot. The effect of regularisation diminishes from top
row ζ = 0.5 to bottom ζ = 0.9. Here, very good classification error rate on the test set
is attained only for the first case ζ = 0.5. Details: (a), (d) and (g) display (CER) after
consensus has been executed at each iteration. (b), (e) and (h) exhibit (CER) before
consensus has been executed. (c), (f) and (i) display the (MSE) after consensus.

track the mean squared error instead of the classification error rate on the test set.
Unfortunately, the classification error rate is not a smooth function, rendering
it unusable throughout the training phase of the neural network. This can be
better examined in (fig.32).

In (fig.30) with ζ = 0.5, the definitive consensus appears to generalise better
than the rest. However, this is not always the case. In most cases, definitive
consensus learning performs just as the centralised learning and always better
than learning with the local partition. The results of (fig.30) are controversial.
One would not expect to observe better generalisation under the operation of the
definitive consensus learning algorithm than in the case of the non-distributed
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Figure 34: Good performance on the Test set during training - Uniform partitioning.
The effect of regularisation diminishes from top row ζ = 0.5 to bottom ζ = 0.9. Here,
very good classification error rate on the test set is attained for the first two cases.
Details: (a), (d) and (g) display (CER) after consensus has been executed at each
iteration. (b), (e) and (h) exhibit (CER) before consensus has been executed. (c), (f)
and (i) display the (MSE) after consensus.

counterpart. Examination of the update equations for the neural network
shows that the learning parameter updates are identical to those obtained by
performing the updates centrally. However, that holds in the case that the
local learning phase is not executed differentially from consensus; hence in
one learning iteration is executed locally. Therefore, the path followed on the
parameter space is different for each of the two cases of definitive consensus
learning; that is with one or multiple local learning iterations before consensus.
The first case, according to the proof of (Theorem 5.2) is identical with learning
centrally with the entire dataset. However, the other case, for which we have
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(a) Network output, train with consensus,
cutoff=0.5, datasetid:4
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(b) Network output, train with entire dataset,
cutoff=0.5, datasetid:4
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cutoff=0.5, datasetid:4
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(e) TrainDataSet segregation, datasetid:4 (f) Graph

Figure 35: Classification without differential learning and regularisation ζ = 0.8 -
Uniform partitioning. Exactly the same results are obtained for both the cen-
tralised and distributed, when we the local learning phase consists of only one
iteration of the learning algorithm. The number of epochs has been increased to 200.
Details: (a) trained with DCL, (b) trained on the entire dataset L, (c) trained with the
subset, (d) the true classes, (e) the partitioning of the training set. Blue stars indicate
the subset. (g) The graph, a circle designates the specific machine.

noticed the controversy, is not identical, which in turn justifies the difference in
the generalisation ability.

Specifically, in these experiments the local neural networks have been allowed
to execute up to 100 iterations per epoch of the distributed algorithm. Thus, it
becomes evident that the local parameter updates are not identical in practice
with those of the centralised. The local learning algorithm being executed
differentially permits the local neural networks to perform some kind of local
over-fitting of the data. Thus the global learning process does not follow the
same path on the parameter space as if it had been executed centrally with the
entire dataset. Moreover, executing the consensus algorithm for a finite number
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of iterations can have a complex effect, which has already been examined in
(Section 5.5.2). These conclusions can be verified by examining (fig.35), where
the local learning phase was executed for only one iteration.

We also present here some results that relate to training the neural networks.
In (fig.31), (fig.32), (fig.33), and (fig.34), examples of acceptable, bad, good, and
best cases of training are demonstrated, respectively. Let us remind that these
results are always evaluations on the test set at each epoch of the algorithm.

In the first case (fig.31) the classification error rate is given for three different
configurations of ζ. In the second column, the local classification error rate
is presented throughout the epochs of the algorithm. In the last column, the
mean squared error on the validation set has been included. The mean squared
error is not always in accordance with the classification error rate. Moreover,
we see that the local updates after the learning and before the consensus phase
provide different classification error rates on the test set. This can be observed
in the central column of (fig.31) but also in the rest of the figures as well. This is
another effect of the differential execution of the local learning phase. There, the
local neural networks overfit the local partition of the data but are brought into
agreement afterwards by consensus.

The latter can be verified by observing (fig.35). There we have imposed only
one iteration for the local learning phase. Then the update of the algorithm is
exactly as described in (eq.5.39). It is evident that the results are near identical.
Minor discrepancies can be justified from the fact that the precision of updates
determined with the definitive consensus algorithm are obtained with less
precision than those obtained through direct updates. The precision for the
updates of the definitive consensus and the direct updates is 10−12 and 10−16

respectively, in the given sequence of experiments.

5.5.3.2 Non-Uniform

We include two exemplary results for DCL in the case of non-uniform data
partitioning. These illustrate the potential of the distributed learning algorithm
with definitive consensus. Regularisation, is still a matter of concern. Too
little regularisation may cause the system to over-fit the data (fig.36), whereas
if selected appropriately the result can be as good as having learned from the
entire dataset (fig.37). In contrast to consensus learning ECL, the definitive
consensus DCL, allows direct control over the regularisation of the data.

153
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Figure 36: Classification with little regularisation ζ = 0.9 - Non-uniform partitioning.
Classification on the test set is shown, for the distributed and non-distributed case,
trained on the 2

nd out of 50 datasets. Too much regularisation obstructs learning.
Details: (a) trained with DCL, (b) trained on the entire dataset L, (c) trained with the
subset, (d) the true classes, (e) the partitioning of the training set. Blue stars indicate
the subset. (g) The graph, a circle designates the specific machine.
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(a) Network output, train with consensus,
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Figure 37: Classification with regularisation ζ = 0.5 - Non-uniform partitioning.
Classification on the test set is shown, for the distributed and non-distributed case,
trained on the 2

nd of the 50 datasets. Local learning (c) recognises only class 0 which
does not generalise well. The distributed (a) performs as well as the centralised (b).
Details: (a) trained with DCL, (b) trained on the entire dataset L, (c) trained with the
subset, (d) the true classes, (e) the partitioning of the training set. Blue stars indicate
the subset. (g) The graph, a circle designates the specific machine.
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5.6 resume

We have presented a theoretical framework for training a learning machine
distributively by incorporation of the consensus algorithms. We have proven its
convergence under mild assumptions; these are realistic in many applications.
Furthermore, this framework has been specified for a well understood learning
algorithm, the multi-layer feed-forward neural network with back-propagation.
Hence, the framework for distributed inference has been well founded and
initially verified.

Furthermore, we have performed extensive numerical tests; additional results
are included in (Chapter 6). Herein, the algorithm was tested with a well-
known, simple, but not separable dataset under uniform and non-uniform data
partitioning.

Importantly, during the distributed process there is no exchange of data, only
the learned quantities are shared between neighbouring machines. Moreover,
the effort required at each machine is reduced in comparison to having to
process the entire dataset. These are favourable in many applications due to
communication, energy, other costs, communication, and privacy considerations.
Consequently, this designates that this method may be appropriate for a large
number of applications.
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Part III

D I S C U S S I O N





6
N U M E R I C A L VA L I D AT I O N

Our purpose in this chapter is to provide further evidence of the work pre-
sented in (Chapter 3), (Chapter 4), and (Chapter 5). In subsequent sections, the
methodology of the numerical experiments is detailed for each of these three
cases. Moreover, exemplary results are provided. Further figures of the results
are found in (Appendix B).

6.1 dynamic consensus performance

Herein we attempt further verification of the analysis performed on the algo-
rithms in (Chapter 3) by additional numerical simulations. In contrast to the
results already presented, we attempt to compare the overall performance for
the consensus algorithm, the nonlinear and the adaptive under the schemes of
non-failing and failing links. Various link fail probabilities have also been used.
However, it is understandable that this work can only be indicative. Since, we
can perform experiments up to some scale whereas the field of application is
much larger. In fact it is infinitely countable, since one has to consider all graphs.
Therefore, the outcome of this comparison may be challenged with experiments
in a larger domain.

We have performed a series of experiments on the following combinations of
consensus algorithms and weighting schemes. These are

1. Convex: The consensus algorithm (Algo.2.1) with weights assigned by
convex optimisation, as in (Section 2.3.5.4).

2. MaxDegree: The consensus algorithm with the Maximum Degree weights,
(Section 2.3.5.1).

3. Metropolis: The consensus algorithm with the Metropolis-Hastings weights,
(Section 2.3.5.2).

4. The nonlinear consensus algorithm (Section 3.4) with weights assigned by
convex optimisation and parameters k = θ = 1
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Figure 38: Small graphs overall performance. The performance measure E3 is given in the
intervals [0 78], [0 232], [0 463], [0 700]. Each colour designates one of the algorithm-
weight scheme configurations. The labels Convex, metropolis, maxdegree, and scaled
designate the performance of the consensus algorithm under the corresponding
weighting schemes. The labels adaptive and nonlinear designate the corresponding
consensus algorithms with convex weighting schemes.

5. The adaptive nonlinear consensus algorithm (Section 3.5) on an un-weighted
graph with parameters k = θ = 1.

6. The scaled weight matrix is W = I − εL and ε can be retrieved by one
parameter minimisation of ε = arg minε ‖W − 11T/n‖ subject to W1 = 1
and W = WT as in the convex optimisation scheme.

For each experiment an identical process has been followed. A random graph
is created by randomly placing points on a plane, sized [−1, 1] on both axes,
until we obtain a connected graph, for a radius of interaction determined by the
number of vertices and edges according to a predefined threshold; in our case

we have used
|E|

8|V|1/2(|V| + 2)
. The vertices are considered connected when they

are found on the grid to be closer than that. Subsequently, a number of initial
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states is sampled from a normal distribution with predefined standard deviation
and mean. For each of the initial states each of the algorithms has been executed
and their performance measured at specific intervals and at specific iterations.

The same type of experiments is executed for stochastic link failures. The
model for communication has been described in (Section 2.3.4). In that case we
have generated sequences of link failures and each algorithm is tested on the
same multiple of sequences. Thus, each algorithm is executed multiple times for
each of the generated initial states.

We have generated 20 different random graphs for each of two different vertex
sizes. The first had 20 vertices and a number of edges ranges from 40 to 50. generated graph

detailsThe second had 100 vertices and the number of edges ranged from 250 to 400.
Then 10 initial states for each vertex were sampled from a normal distribution.
Particularly, the sampling distribution had standard deviation 0.2 , 0.5, 1, and
a mean of 10. For the stochastic link failures experiments, we generated 10
sequences of link failures with edge alive probabilities 0.2, 0.7 and 0.95 . The
algorithms have been allowed to execute for a limited number of iterations
which was set at 700.

The reason for selecting the aforementioned combinations of algorithms and
weighting schemes is that the latter affects the performance of the algorithm.
Notably, the adaptive algorithm has been executed without edge weighting. This
due to according to our experience weighting has little effect on the performance
of the aforementioned algorithm.

We introduce three different error measures to compare against. Each error the error measures

measure allows to designate the utility of the algorithms, in view of different
possible applications. These are the average initial arithmetic mean deviation
(IAMD ε1 )

ε1 =
1

nk

nk∑
k=1

(
1

n
‖xk(t)‖2 − µk(0)

2

)1/2
(6.1)

the true mean average deviation (TMAD or ε2)

ε2 =
1

nk

nk∑
k=1

(
1

n
‖xk(t)‖2 − ‖E[x(0)]‖2

)1/2
(6.2)

and the average standard deviation (ASTD or ε3)

ε3 =
1

nk

nk∑
k=1

(
1

n
‖xk(t)‖2 − µk(t)

2

)1/2
(6.3)
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where x(t) ∈ Rn is the state, µk(t) = 1
n1Tx(t) is the arithmetic mean of the

network at the tth iteration, and k is the index of the realisation in the given
batch of experiments with nk being the number of experiments.

These error measures accommodate the comprehension of each of the algo-
rithms performance in different circumstances, which may be related to possible
applications. Specifically, the error measure ε1 determines the accuracy of the
algorithm with respect to determining the arithmetic mean of the initial values
found on the network. This is important for the distributed machine learning
(Chapter 5). The second error measure ε2 is more appropriate in cases where
we address the problem of the determination of the data’s expectation, e.g. in
the case of environmental monitoring. In contrast, error measure ε3 provides
information about the agreement over the network at each iteration. This would
be of importance in coordination tasks. The network may be in agreement but
not at the desired value, which herein we assume to be the arithmetic mean.

In order to evaluate the expected performance in various intervals of execu-
tion, we have introduced interval versions for each of these measures. Thesemeasures for

interval evaluation modifications are simply obtained by dividing the measure with the interval’s
duration, which are simply

E1 =
ε1

∆t
, E2 =

ε2

∆t
, E3 =

ε3

∆t
(6.4)

where ∆t = t− t0 is the interval duration, with t0 marking the start of the
interval and t its end.

Overall results for the case of the small graphs are exhibited in (fig.38). Hence,figures’
explanation the error average of the measure in each sequence, inclusive of all the executions

of the algorithms for both non-failing and failing links, is shown. The layout of
(fig.38) is as follows. The vertical axis is the error measure E3. The horizontal
axis is separated in 4 segments. Each segment corresponds to a time interval
from 0 to the designated time point. In each segment the bar plots designate
the performance of a distinct configuration up to the separating point, e.g. the
overall performance for the entire execution is given in the last segment. The
rest of the figures follow a similar layout. Extensive examination of (fig.38) is not
needed to conclude that the nonlinear algorithm outperforms on average the
rest in these relatively small random graphs. This is further justified by detailed
results presented in (Appendix B) in (fig.51) to (fig.61).

Summarising the results of these experiments, the main conclusion is that the
nonlinear algorithm using weights obtained by convex optimisation, performs
better on average. Specifically, in small sized graphs the nonlinear algorithm
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Overall Errors wrt to different standard deviation

Figure 39: Overall errors wrt different initial standard deviation in small graph. The
errors E1, E2, E3 computed over 10 random graphs of 20 vertices, are given. The
initial standard deviation was 1, 0.5 and 0.2 with mean equal to 10.
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outperforms the rest with respect E1 and E2 in almost all segments. This
implies that it is better fitted for the determination of the arithmetic mean and
the expectation, given normality of the data. In most of the cases the linear
consensus algorithm exhibits better performance with respect to E3. This implies
that the nonlinear algorithm facilitates agreement between the participating
machines. The adaptive algorithm performs better than the linear in some cases,
but its performance is superseded in most of the cases by the nonlinear. Further
examination of the figures with respect to edge and vertex failure designate that
the nonlinear algorithm exhibits better performance than the rest overall.

The main conclusion from this sequence of experiments is that the nonlin-
ear consensus algorithm exhibits superior performance in comparison to the
linear. The adaptive algorithm even though in our experience has exhibited
superior performance to the nonlinear in specific graphs, see results in (Section
3.5.2), exhibits inferior performance on average. However, its performance is
comparable with the other algorithms. Even though the adaptive consensus
algorithm has been executed on un-weighted graphs, it has performed near the
best in each case. Specifically, these conclusions indicate the application domain
for each algorithm. The nonlinear algorithm is an “all-around” algorithm that
has superior performance than the original consensus algorithm in weighted
graphs. This is due to the enhancement of the convergence rate during the
transient phase. The adaptive algorithm is appropriate for cases of uncertain
communication links and in graphs that weighting is difficult, e.g. huge graphs.

6.2 definitive consensus

We provide exemplary results of the weights obtained by nonlinear optimisation
for definitive consensus. We have generated for this purpose a couple of random
geometric graphs, with vertex sizes 10 and 25 and edge set size 13 and 42,
respectively. We have executed an optimisation to obtain the numerical solution
with an error tolerance of 10−8. For the first graph the results could be obtained
in a regular 8-core server in less than a minute. The second graph required less
than half an hour on the same machine.

In these figures, the graph, the solution, and two executions of the definitive
consensus algorithm are given, along with their root mean square error (RMSE).figures’

explanation The two executions of the definitive consensus algorithm are for small and large
initial state. With the terms small and large we imply that the initial state values
have been small or large numbers. Specifically, in the large state sequence the
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Figure 40: Definitive consensus example in a graph of 10 vertices with asymmetric
weight matrices. From left to right and top to bottom are shown the graph,
the states during execution of definitive consensus for an initial state with ‘s,
another with smaller values, the sorted solution, the root mean square error
at each step for the first and second execution.

mean and variance has been about 100 times larger that in the small case. These
had mean and variance sampled from normal distribution centred at 0 and
variance 1. The purpose of this comparison is to demonstrate that the accuracy
obtained is not sensitive to the initial state. This can be verified in all figures by
observing the small and large state root mean square error (RMSE). The latter, in
all four figures, is large throughout the process. However, after the last iteration
it attains near machine precision, 10−14 specifically.

Both cases of symmetric and non symmetric weight matrices are presented.
These are in (fig.41) and (fig.40) for a graph of vertex size 10, and (fig.43) and
(fig.42) display results for a graph of vertex size equal to 25. In most cases,
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Figure 41: Definitive consensus example in a graph of 10 vertices with symmetric
weight matrices. From left to right and top to bottom are shown the graph,
the states during execution of definitive consensus for an initial state with
large values, another with smaller values, the sorted solution, the root mean
square error at each step for the first and second execution.

solutions obtained for symmetric matrices are better behaved. That is in the sense
that the states show less variation, which can be better noticed by inspecting
the case of the small graph, i.e. (fig.40) and (fig.41). In the first case, values are
spread over [−2, 2] even up to before the last iteration. However, in the second
case (fig.41), the values are constrained from early in the region [−1, 1]. Similar
behaviour is observed for the large state sequence, as well.

The sorted values of the edge weights for each given solution are also shown in
these figures. It is interesting to observe how the number of parameters increases
with the vertex size even for these small graphs. The first graph has vertex
size 10 and about 160 edge weights to be determined. The second has vertex
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Figure 42: Definitive consensus example in a graph of 25 vertices with asymmetric
weight matrices. From left to right and top to bottom are shown the graph,
the states during execution of definitive consensus for an initial state with
large values, another with smaller values, the sorted solution, the root mean
square error at each step for the first and second execution.

size 25 and 800 edges to solve for. This hardens the problem of determining
the solutions for larger graphs, since the number of parameters does not scale
linearly with respect to the diameter. Specifically for the asymmetric case, the
parameters scale with (2|E(G)|)d, where d is the graph diameter. The latter,
scales at most linearly with the vertex size |V(G)|.

The difficulty in finding the edge weights is becoming evident on normal
computing servers from vertex size 40 and upwards for random geometric
graphs. Specifically, we have solved for a random geometric graph of vertex
size 40. The process required about 4 hours to complete. Obtaining the weights
for a random geometric graph of 45 vertices required about a day on the same
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Figure 43: Definitive consensus example in a graph of 25 vertices with symmetric
weight matrices. From left to right and top to bottom are shown the graph,
the states during execution of definitive consensus for an initial state with
large values, another with smaller values, the sorted solution, the root mean
square error at each step for the first and second execution.

machine. The results for the second graph are found in (Appendix B), in (fig.49)
and (fig.50), for the symmetric and non symmetric case. As the graph size
increases, apart from the effort needed to determine a solution, the difficulty
in recovering the parameters that attain maximum precision is also larger. This
can be verified in (fig.49) where maximum precision is at 10−7. The difficulty
in attaining better precision in larger graphs can be overcome by using floating
point arithmetic at the expense of increased computational effort.

The computational effort needed to obtain the solutions may be discouraging.
However, this is something that is needed only once for any given network.
Once the coefficients have been retrieved, then there is no need for additional
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computation. Particularly, once the network has been setup with these coeffi-
cients, then the reduction in operating costs shall be enormous in comparison to
executing simple consensus (Section 4.1). Therefore, the effort for the computa-
tion of the coefficients should not be regarded a drawback; once the operating,
communication, energy, and other costs on the network have been taken into
consideration. However, the computational effort is of concern, since it imposes
a limit to size of the networks where this method can be applied to.

6.3 distributed machine learning

In (Chapter 5) we have mainly used as an example a toy-dataset to evaluate the
distributed data inference framework. However, real world problems usually
lead to the production of large datasets. Our main purpose is to evaluate
the convergence of the consensus machine learning framework in large real
world data. For that purpose we have tested a few neural networks on the
2007 TREC Public Spam Corpus (Cormack and Lynam, 2005), also known as
the NIST spam/ham dataset. The performance attained in these tests is not
intended for comparison with any of the algorithms having been tested on this
dataset, because our interest has been to verify the convergence property of the
distributed machine learning framework.

6.3.1 The 2007 TREC Public Spam Corpus

The TREC spam dataset consists of 75419 emails and an index file that designates
if the email is spam or ham. A description of the process to retrieve the spam
corpus is given in (Cormack and Lynam, 2005). The dataset can be obtained
directly from http://plg.uwaterloo.ca/ gvcormac/treccorpus07/ .

Significant pre-processing is needed before the dataset can be used and a dataset
pre-processingmachine learning algorithm can be applied. We have chosen to treat each email

with a bag-of-words approach; the process is intuitive. One first determines the
tokens that are found at each e-mail; a token is a string between two delimiters.
Then the number of occurrences of each token is counted for each different
email. Thus, each email can be represented as a very big vector that has as
elements the number of occurrences of all the tokens in all e-mails in the specific
email. In fact, frequencies have to be computed from the number of occurrences
as a subsequent step. However, the number of different tokens in the entire
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dataset is huge. We have determined 155579 different tokens. However, this is
dependent on the tokeniser itself, i.e. the program the extracts the tokens from
the e-mails. Other implementations might produce a different number of tokens.
Finally, after this pre-processing step the dataset would require 87GB memory
space; this needs to be reduced in order to be usable.

Instead of using the entire dataset, we chose to perform a reduction of the
dimension of the token vector by performing random sampling in three parts of
the vector. We have sorted the tokens depending on their number of occurrences
on the corpus. Then three regions have been determined for this sort, the
head, the middle, and the tail. The head and the tail have been specified to
be the first and last 10000 tokens, respectively. The middle section has been
specified as the region 5000 tokens before and after the token in the middle of
the sorting. Subsequently, we have randomly sampled 1000 tokens from each
section, totalling 3000 tokens. Finally, these tokens formed the vector of tokens
that represents each email by accounting the frequencies of tokens at each email.

However, this would still produce a dataset of about 2GB. Our purpose had
been to use this dataset for consensus learning by simulating a network of 10
connected machines. In order to further reduce the computational effort and
overcome some memory issues with Matlab, we used only half of the dataset.
Specifically, 30000 e-mails out of the total 75419 had been used, resulting in
a dataset of 1GB. Nevertheless, these pre-processing steps do not alter its
appropriateness for our purpose. Particularly, such pre-processing steps are
quite common, and depending on the machine learning algorithm these may
even be advantageous.

6.3.2 Definitive Consensus Data Inference

The generated dataset of 30000 vectors has been separated into 2/3 training set
and 1/3 test set. The training set has been partitioned into 10 subsets. Then each
of these 10 subsets has been partitioned into train and validation, (2/3 training
set). These 10 subsets have been used for the simulation of the consensus
machine learning process in Matlab.

Arguably, it might have been more appropriate to implement this in a com-
pletely distributed setting. That would require to implement a separate process
on different computing servers and distribute the data on these servers. The
process could run in multi-threaded mode to exploit the full potential of each
server. Also, communications would be of concern, but simple implementations
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Figure 44: Convergence on the reduced TREC Spam Corpus on a simple neural net-
work. The convergence of the consensus machine learning framework on the
reduced TREC Spam Corpus can be evaluated by examination of the loss function
during training. Results are shown on the test set for a neural network of [10 50 10]
neurons. Early stopping with 6 validation checks has been used. The regularisation
parameter was set at 0.80. The (MSE) and (CER) of the non-distributed was 0.18 and
0.31, respectively. The sub-figures demonstrate the convergence of the distributed
algorithm. Particularly, (a) The mean squared error (MSE). (b) The classification error
rate (CER). (c) The communication graph

such as TCP/IP or IPC or even simple file-sharing should be sufficient. This
would require a realisation of the aforementioned framework which had not
been in our intentions. Then speed, memory and communication utilisation
benchmarks would allow us to draw safe conclusions. However, it has not been
our main concern to verify the supremacy of the solution, but its equivalence in
convergence with respect to the non-distributed.

Nevertheless, a few obvious conclusions can be drawn from inspection of
these simulations with respect to the required computation time. Consider the
fact that the distributed has been in fact executed in sequence for each neural
network at each iteration, and it did not fully utilise all 8-cores of the system.
In contrast, the centralised had been running with fully optimised code base,
i.e. the Matlab implementation of feed-forward neural network, and had been
utilising the entire processing power of the system. In our experience, the time
consumed from a distributed process was comparable to that of training just one
neural network on the entire dataset when divided by the number of machines
on the simulated communication network.

We have employed the definitive consensus algorithm during the execution.
Therefore, the only options having to be selected for these experiments are the
number of local learning iterations for the neural network, the regularisation
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Figure 45: Convergence on the reduced TREC Spam Corpus on a larger neural net-
work. The convergence of the consensus machine learning framework on the
reduced TREC Spam Corpus can be evaluated by examination of the loss function
during training. Results are shown on the test set for a neural network of [12 20 30 10]
neurons. Early stopping with 6 validation checks has been used. The regularisation
parameter was set at 0.90. The (MSE) and (CER) of the non-distributed was 0.19 and
0.30, respectively. The sub-figures demonstrate the convergence of the distributed
algorithm. Particularly, (a) The mean squared error (MSE). (b) The classification error
rate (CER). (c) The communication graph

amount, the number of validation checks for termination. The experiments are
also affected by initialisation. We have slightly modified the default Matlab ini-
tialisation method. The latter calculates the weight and bias values for each layer
using the Nguyen-Widrow initialisation method (Nguyen and Widrow, 1990).
This was slightly modified. At each initialisation we have sampled randomly
from the entire training set a random number of datapoints. Thus using only a
part of the entire training set for the initialisation of the neural networks with
the aforementioned method. Then, these parameters were communicated by
consensus for the initialisation of all 10 neural networks.

Furthermore, we have used a variety of communication networks. However,
this did not seem to affect the convergence or the results. Specifically, during the
process of training, issues common to training feedforward neural networks with
back-propagation have been of concern. Nonetheless, the distributed algorithm
converged in each case.

We exhibit three cases of interest on differently sized neural network. The first
case in (fig.44) is a simple three layer neural network with one hidden layers,
having 10 neurons on the first, 50 on the second and 10 in the third. We denote
such an architecture as [10 50 10]. Subsequently, we present a neural network
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Figure 46: Convergence on the reduced TREC Spam Corpus on an even larger neural
network. The convergence of the consensus machine learning framework on the
reduced TREC Spam Corpus can be evaluated by examination of the loss function
during training. Results are shown on the test set for a neural network of [12 20

30 40 10] neurons. Early stopping with 20 validation checks has been used. The
regularisation parameter was set at 0.91. The (MSE) and (CER) of the non-distributed
was 0.19 and 0.30, respectively. The sub-figures demonstrate the convergence of
the distributed algorithm. Particularly, (a) The mean squared error (MSE). (b) The
classification error rate (CER). (c) The communication graph

with architecture [12 20 30 10] and another one with [12 20 30 40 10] in (fig.45)
and (fig.46), respectively.

In all three examples the distributed data inference converges just as the non-
distributed. The classification error rate is not sufficiently low, but comparison
with the non-distributed reveals that the non-distributed performs similarly.
Nevertheless, in all figures the reduction of the classification error rate and
the mean square error is evident. However, it can be better verified in (fig.44).
There the initial error rate was at 0.7 and with subsequent iterations it had been
reduced to about 0.3.

6.3.3 Summary

In this chapter our main purpose has been to exhibit additional results for the
notions presented in (Chapter 3), (Chapter 4) and (Chapter 5). These additional
results verify our claims throughout this thesis.

Specifically, the improvement provided by incorporating the nonlinear con-
sensus and adaptive algorithm has been validated in (Section 6.1). There we
compared the three consensus algorithms, linear, nonlinear, and adaptive, and
various cases of reliable and unreliable communications have been tested. More-
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over, their performance has been compared under different weight assignments
schemes. Therefore, a large number of the possible cases has been simulated,
thus taken into account. The result has been that the nonlinear consensus al-
gorithm presents a better solution overall. The adaptive algorithm should be
employed in un-weighted communication networks with unreliable communica-
tion links.

Thereafter, in (Section 6.2) additional results have been presented for the
definitive consensus algorithm. Our purpose has been to present solutions
for random geometric graphs that verify convergence up to machine precision.
Moreover, we have shown that employing symmetric matrices may allow for
a somewhat smoother convergence. Specifically, the weight matrices are not
restrained with respect to their norm. This can lead to large values of the
states during the execution of the algorithm, which might be unwanted in
some applications. Let us report here that in our experience, it is possible to
restrain the norm of the matrices in the sequence. This enables a better behaved
state sequence during execution of the algorithm. However, this would require
imposing md(G) additional nonlinear constraints on the numerical solver, and
therefore increase the computational burden.

We have exhibited solutions with near machine precision 10−15 for graphs
with vertex set size equal to 25. Additional results for larger graphs and lower
precision have been included in (Appendix B).

Finally, we have included results that demonstrate the convergence property
of the definitive consensus machine learning algorithm in (Section 6.3.2). The
algorithm has been tested on the TREC Spam Corpus, which is a large dataset
for binary classification. Our results verify that the distributed neural networks,
presented in (Section 5.4.1) converge just as an identical non-distributed neu-
ral network on the global dataset. Arguably, performance in both cases of
distributed and non-distributed is not adequate for comparison with current
approaches. However, this is mainly due to the trivial architecture employed
on the neural network, and not due the distributed learning process. This
is evident due to the fact that comparison of the two cases, distributed and
non-distributed, does not indicate significant differences in the performance.
Significantly more complex solutions have been proposed for this given dataset.
Therefore, a comparison with our simplistic approach would not be appropriate.
However, our purpose has been to verify convergence of the distributed learning
algorithm in real world datasets, which has been achieved.
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Concluding, in this chapter, additional numerical results have been provided
for the algorithms presented in previous chapters. The results demonstrate
the truthfulness of our claims and the theoretical derivations. These have
been the following three. First, that the nonlinear and adaptive consensus
algorithms reduce the number of iterations for convergence to machine precision.
Second, that solutions can be obtained for the definitive consensus algorithm
relatively easy for medium sized graphs. Third, that the distributed data
inference framework converges just as the non-distributed counterpart. All three
have been shown to be valid.
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7
D I S C U S S I O N

In previous chapters a number of problems, located in the intersection of
communication and computer sciences, have been presented and dealt with.
Within this chapter we approach the issue from an applied perspective. Our
main concerns are to specify the application domain of the algorithms, the
advantages and disadvantages of the algorithms, and finally provide directions
for extending and improving this work.

7.1 summary

The first part of this document (Part i) has mainly been concerned with introduc-
ing the reader to the notions and tools related to this research. Most importantly,
the main issues found in the thesis have been introduced.

In (Part ii), the main theme has been the distributed inference problem. The
latter, in its simplest form, can been conceived as a consensus problem. In that
case, we consider having one dimensional data and making the assumption
of normality, then our interest is in determining the expectation of the data.
Thus, inferring in a very simple manner the expectation for the data. This has
been solved in the past (Tsitsiklis, 1984) with the so called average consensus
algorithm. However, the latter has some important drawbacks with the most
important being the large number of operations required on the network until
convergence. Moreover, the number of iterations needed to attain some preci-
sion depends on the initial state vector norm. Hence, we argue that in many
applications of interest the algorithm is not appropriate. The task of inference in
a distributed manner is such a case.

In order to apply such a solution to more complex and larger datasets, it
is of great importance to ameliorate the aforementioned predicaments. This
has been addressed with the definitive consensus algorithm. The latter is a
switching dynamical system that converges to consensus in number of itera-
tions equal to the diameter of the communication graph. Comparing with the
asymptotic convergence of the consensus algorithm our solution provides a
major improvement.
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However, there is a tradeoff to consider. In order to determine the weights
on the edges one has to resort to numerically solving a large set of multi-linear
polynomial equations with a large number of unknowns. We have shown in
(Section 4.2.2.3) that this system of equations has a solution when the number
of matrices is between d(G) and 2d(G). Moreover, we have specified one of the
many solutions that may be obtained in quadratic time complexity with respect
to the number of edges with centralised algorithms and in linear time when
considering distributed algorithms. Moreover, based on our experience it has
been conjectured that this system of equations has infinitely many solutions
given any graph for d(G) matrices. Therefore, definitive consensus can be
reached in a number of iterations equal to the diameter of the graph that the
algorithm is executed at.

These theoretical considerations are important because their affirmation en-
courages the extensive numerical calculations needed for the retrieval of a
solution. However, it is of even greater importance to know if these solutions
can be obtained. Surprisingly, the solutions are easy to retrieve, up to medium
sized graphs. Particularly, we have obtained solutions for graphs having up
to 60 vertices without significant programming effort. Admittedly, one can ob-
tain better results with specific code optimisation and floating point arithmetic.
However, this has not been our main research interest.

Though, we recognise that the definitive consensus algorithm cannot be
applied in every possible situation. Therefore, we have been concerned with im-
proving the speed of convergence in cases of partially known topology, stochastic
communications, and for larger graphs. The nonlinear consensus algorithm and
the adaptive consensus algorithm, presented respectively in (Section 3.4) and
(Section 3.5), are improvements of the linear consensus algorithm (Section 2.3.2)
for the aforementioned cases. Moreover, the nonlinear consensus algorithm
improves the overall speed of convergence when the sampling distribution of
the initial state is presumably Gaussian. In conclusion, these algorithms improve
finite time behaviour of the network.

In (Chapter 5), we have presented an abstract framework that enables dis-
tributed data inference in supervised machine learning problems. The conver-
gence of consensus machine learning relates to that of the specific machine
learning algorithm. Hence, with appropriate selection of the parameters, the
number of local learning iterations and consensus iterations, the distributed
learning process converges if the non-distributed learning algorithm does for
the specified initialisation and learning parameters. The introduction of the
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definitive consensus algorithm in this network alleviates partially the problem
of specifying both the consensus and learning iterations, since is is equivalent to
running consensus until convergence, up to machine precision. This allows us
to have better control over the process. In this case, the number of local learning
iterations affects the learning step of the entire network.

Furthermore, the learning equations have been specified in the case of multi-
layer feedforward neural network with back-propagation. The update equations
for batch training have been duly modified and included in (Section 5.4.1). This
has enabled us to perform numerical experiments to verify the theory in (Section
5.2.1). We have presented numerous numerical results for the distributed infer-
ence framework for a toy example, the two moons dataset; these are presented
in (Section 5.5) and (Appendix B). In that manner, the convergence property of
the framework has been verified.

Furthermore, the applicability of the framework to large datasets has been
verified by training a simulated distributed learning framework on the 2007

TREC Spam Corpus. The results for those experiments permit two conclusions.
First, that the convergence property is verified. Second, that the results are as
good as the non-distributed counterpart. Specifically, given the fact that we
have tested simple network architectures, there was no expectation of training
a neural network that will have notable performance on such a difficult task.
Nevertheless, our purpose, to verify the convergence of the distributed learning
algorithm in a large dataset has been duly verified.

Another significant observation deduced from these experiments is that
the time to convergence is comparable between the distributed and the non-
distributed. Something that supports the applicability of this method in real
world cases.

7.2 application domains

The main contributions of this thesis are the definitive consensus algorithm
and the consensus machine learning framework. We consider the different
application domains for each.
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7.2.1 Definitive Consensus

We have arrived at the following conclusions in numerous parts of this document
when considering the definitive consensus algorithm. First, the definitive con-
sensus algorithm allows consensus in a small finite number of iterations. It has
been possible to obtain the network weights up to medium sized random graphs.
Second, the algorithm switches weights at each iteration. This makes it prone to
errors in case of unreliable or asynchronous communications. These designate
the domain of application to be that of the consensus algorithm when communi-
cations are guaranteed and the network is synchronous. Specifically, in small
to medium ad-hoc communication networks where machines are arbitrarily
connected. As usual we assume that the entire network is connected.

The application to larger networks may be enabled by building a hierarchical
network. There, a consensus algorithm runs at each different level of the
hierarchy. Particularly, the machines at one layer wait for those at the subsequent
layer to converge before commencing their execution of the definitive consensus
algorithm. Such architectures are in fact being employed in real world ad-hoc
networks instead of a flat-out architecture.

Other domains of application associated to this work are related to the alge-
braic equation (eq.4.2). Such issues arise in distribution, transportation, powernetwork

applications and computer networks. The general theme of the problem is how can one
evenly distribute a quantity over a network by timely regulating the connection
parameters. For example in a transportation network, one could consider as
connection parameters the rate of vehicles between road segments, which are
regulated by the wait states at the traffic lights at the edge of the segments. The
purpose would then be to regulate these such that the same amount of vehicles
is found at each traffic light.

Particularly, consider the following abstraction. Assume the graph emerging
from the road network where each segment {i, j} between traffic lights i and j is
an edge and each traffic light is a vertex. Assume that the automobiles spent
negligible time between traffic lights, i.e. at the road segments, but spent most of
their time waiting for the traffic light to turn on. Thus, the amount of time that
a traffic light is on, in each direction, determines the rate wij of vehicles passing
though each segment {i, j}. The amount of vehicles found at a traffic light at any
given iteration is given by the state. The rate of vehicles following a path from
k1 to kd, i.e. p{k1,k2, . . . ,kd}, through such segments, in the considered time
frame, is just the product of the rates on the segments wk1k2wk2k1 . . . wkd−1kd .
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Then the rate of the vehicles from any traffic light k to any other kd is the sum
of the rates through all the paths connecting k to kd on the graph. These are the
products found in (eq.4.2). Therefore, regulating the road network such that the
rate of vehicles is the same between any two points can be obtained by solving
(eq.4.2).

Similarly, in a computer network, one would want to regulate the bandwidth
between points , e.g. routers, such that the same amount of packets arrives from
any one machine on the network to any other in a given time-frame. It is quite
important to notice here that (eq.4.2) does not necessarily have a solution for any
target matrix, which in the case of consensus is 11T

n . This implies that network
topology limits the options in regulating the network.

7.2.2 Consensus Machine Learning

We distinguish the following about the consensus machine learning framework.
The algorithm converges as the non-distributed does. It allows the distributed
processing of large datasets by partitioning these into smaller sets and distribut-
ing these to networked machines. Thus, both the memory demands and the
computational demands at each machine are significantly reduced in compari-
son to processing the entire dataset centrally. However, the total computational
effort is increased.

Presumably, a fully distributed implementation would demonstrate that com-
putation time is less than having the entire dataset on a single machine. This
is justified because then the computation of the update step at each machine is
performed in parallel. In contrast, central computation would require that all
the datapoints in the dataset are evaluated sequentially.

Our experience, mainly from training on the 2007 TREC Spam Corpus, shows
that the computational effort is of the same order of magnitude as for the
centralised. In fact, the distributed simulation and the executions have been
executed on the same machine. Specifically, the distributed algorithm neural
networks have been executed sequentially, since we had made a parallelised
implementation. Therefore, the execution time in a parallelised implementation
should be divided by the number of simulated neural networks in order to
compare with the centralised. The latter, in fact had been executed with multi-
threaded computation enabled. Therefore, all the 8-cores had been utilised
which resulted in increasingly better execution times.
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Considering the communication side of the problem, we have to note that
the network can be arbitrarily connected without a central computation node.
Finally, the exchanged quantities between the nodes in the network are the
classifiers’ parametrisation.

The properties of the data designate the domain of application. Specifically,
it is advantageous in numerous applications that data is not exchanged due to
privacy considerations. Such data is usually medical data, banking data and
personal data. In many such cases, one would like to be able to learn from the
entire dataset. Therefore, one can imagine that a computer program is created
and distributed to the participants that have the data. This would learn on
the local data and then perform exchanges on the communication network, as
described. Thus, allowing to all the participants to infer as if the entire dataset
was available locally.

Another case would be when the data is too large. Our purpose would be to
distribute this data into a number of machines when we cannot compute it on a
single one. Employing the consensus learning framework frees us from the need
of specifying the communication network and a computing or a coordination
centre. Furthermore, the distributed computation can be inherently performed
in a peer to peer manner. Many such applications have been widespread in
the past with SETI@HOME (Anderson et al., 2002) being the pioneer. Other
notable efforts are BOINC (Anderson, 2004), EGEE (Gagliardi et al., 2005),
GLOBuS, IBM-WCMG, OurGrid, and OpenScienceGrid. In cases of such large
and dynamic networks, the size of the communication network would be of
concern. However, one can overcome this by forming a hierarchy of network
and solving the definitive consensus problem for each network in the hierarchy.

In the case of SETI@HOME, someone would connect to a group of central
servers to upload and retrieve information. Moreover, the program would
not perform any learning locally, but search for predefined signal patterns
in the local dataset. In most of the other cases, GRID computing is applied,
which is a conceptually different approach to the problem. In fact, it is more
general, in the sense that in a GRID processes are distributed on a number of
participating computers. Thus, it is a computer systems approach, whereas
we have attempted to abstract the problem of machine learning such that the
process can be executed distributively. Therefore, such approaches are different
in principle with the work developed in this thesis.

Another domain of applications can be defined when considering that the data
is in fact generated locally at each machine. We assume that this data is labelled
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somehow. Such a case, includes wireless sensor networks for fire detection and
or environmental monitoring, swarm robotics and other collaboration schemes.

The WSN for forest fire detection and localisation case is of great interest
to us. There, one would assume that each sensor gathers the data locally.
Among the many sensors that can be employed the most prevalent are humidity,
temperature, infra-red imaging and CO2 concentration. Based on these quantities
and the current models for fire outburst, one would have hard coded the alarms
in each of these wireless sensor nodes. When a sensed quantity would be within
the alarm zone, then the system would broadcast some kind of an alarm.

However, this approach cannot be easily adapted to many different situations.
Specifically, forests tend to differentiate largely from one region to another. Thus,
what may cause an ignition in one case, might not in another.

Assume that there is a local process found at each wireless sensor node that
assigns automatically a label to each measurement. This has to be carefully
designed. Then one would have to define a decision module. The latter would
broadcast an alarm by inferring on current and past measurements along with
any predefined fire detection models. However, we can augment the information
obtained form all sensor nodes by employing the proposed learning framework.

In the contrast, sending all the data to all nodes would be expensive in terms
of communications. Moreover, processing all the information at every node
to obtain the same result would result in larger computational cost overall the
network. One would have to consider the computation effort to determine the
update at each machine on the entire dataset. This is much more expensive
than doing it on an n times smaller subset. However, the distributed data
inference framework allows to reduces the computational effort at each machine.
Moreover, it may also decrease the communications. That is when comparing
with the case that the data is transferred for centralised computation.

7.3 future work

Given the number of applications being acknowledged in the previous section,
it is of interest to mention possible research extensions. There are such related
to the main contributions of this thesis, in both the theoretical and the applied
side.

Considering the definitive consensus algorithm, the conjecture that it can be
attained in a number of iterations equal to the graph diameter, has yet to be
proved. However, this is principally of pure theoretical interest. In fact it has no
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impact to the assignment of the edge weights. Admittedly, this assignment is a
computationally intensive process. An efficient algorithm for this task would be
of much greater interest, both theoretically and applied, thus making possible
the retrieval of the edge weights for large graphs.

In respect to the distributed data inference framework there are numerous
extensions of this work. Specifically, there are numerous machine learning
algorithms that might be more appropriate to be executed in a distributed
manner. The un-supervised and semi-supervised machine learning algorithms
can be of great utility in many of the aforementioned application domains.
The modification of the learning equations would be of interest in such cases.
Furthermore, the case of stochastic gradient descent would be an interesting
research directions.

The implementation of such methods would be of interest as well. This is
something that we have not performed since our principal interest has been in
providing a sound foundation for the framework. Admittedly, efficient imple-
mentation for distributed and parallel processing for an appropriate machine
learning algorithm would be an important contribution, as well.

7.4 conclusion

Herein, the established thesis has been that distributed inference from data
can be made possible in a collaborative manner by utilisation of the consensus
algorithm. In order to achieve this in an efficient manner the rate of convergence
of the consensus algorithm had to be greatly improved. The definitive consensus
algorithm converges in a finite number of iterations by timely switching the
appropriate communication parameters. The number of iterations for conver-
gence is equal to the diameter of the graph, which enables the execution of the
consensus machine learning framework in medium sized arbitrarily connected
ad-hoc networks.
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Part IV

A P P E N D I C E S





A
D E R I VAT I O N S

a.1 related to (chapter 3)

a.1.1 Derivation of expected state

We derive (eq.3.19), included below.

E[x(t+ 1)] = (I − pL)t+1x(0)

Proof. Notice that:

for i 6= j E[[L]ij] = p[L]ij

for i = j E[[L]ii] = E[

n∑
j=1

[L]ij]

=

n∑
j=1

E[[L]ij]

=

n∑
j=1

p[L]ij

= p[L]ii

Thus E[L] = pL. Then it follows for the state that:

E[x(t+ 1)] = E[

t∏
k=0

(I − L(t))x(0)] = E[

t∏
k=0

(I − L(t))]x(0)

=

t∏
k=0

E[(I − L(t))]x(0) =

t∏
k=0

(I − E[L(t)])x(0)

=

t∏
k=0

(I − pL)x(0) = (I − pL)t+1x(0)

187



a.1.2 Communication Cost of Unicast on a Uniform Tree

Consider a tree with nk vertices at each level and radius equal to the half of the
diameter r = d/2. From each vertex to the root the number of communications
required is (r− 1) − k. Hence the total communications towards the root, on a
tree, for unicast are

uin =

r∑
k=0

lk(r− k) − 1

where at we assume lk nodes at each level of the tree. Let these be uniformly
distributed according to lk = ak.

uin =

r∑
k=0

kak

=
(ar− r− 1)ar+1 + a

(1− a)2

We can obtain the radius is closed form since

n =

r∑
k=0

ak

n =
ar+1 − 1

a− 1

r =
ln(1+n(a− 1))

ln(a)
− 1

Therefore we the communication cost for unicast is:

uin =
ln(an−n+ 1)

ln(a)(a− 1)
(an−n+ 1) −

an

a− 1
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B
A D D I T I O N A L N U M E R I C A L R E S U LT S

In order to avoid cluttering the text, we have chosen to place some the results in
this separate appendix.

b.1 definitive consensus example solutions

Exemplary solutions for two random geometric graphs of 20 and 45 vertices are
included here.
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Figure 47: Definitive consensus example in a graph of 20 vertices with asymmetric
weight matrices. From left to right and top to bottom are shown the graph,
the states during execution of definitive consensus for an initial state with
large values, another with smaller values, the sorted solution, the root mean
square error at each step for the first and second execution.
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Figure 48: Definitive consensus example in a graph of 20 vertices with symmetric
weight matrices. From left to right and top to bottom are shown the graph,
the states during execution of definitive consensus for an initial state with
large values, another with smaller values, the sorted solution, the root mean
square error at each step for the first and second execution.
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Figure 49: Definitive consensus example in a graph of 45 vertices with asymmetric
weight matrices. From left to right and top to bottom are shown the graph,
the states during execution of definitive consensus for an initial state with
large values, another with smaller values, the sorted solution, the root mean
square error at each step for the first and second execution.
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Figure 50: Definitive consensus example in a graph of 45 vertices with symmetric
weight matrices. From left to right and top to bottom are shown the graph,
the states during execution of definitive consensus for an initial state with
large values, another with smaller values, the sorted solution, the root mean
square error at each step for the first and second execution.
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b.2 nonlinear consensus algorithms comparison results
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Figure 51: Instantaneous errors wrt different initial standard deviation in small
graphs.The errors ε1, ε2, ε3 computed over 10 random graphs of 20 vertices, are
given. The initial standard deviation was 1, 0.5 and 0.2 with mean equal to 10.
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Figure 52: Overall errors wrt different alive probabilities in small graphs. The errors
E1, E2, E3 computed over 10 random graphs of 20 vertices, are given in three segments,
[0 78], [0 309], [0 700]. We have tested against different vertex alive probabilities, 1,
0.95, 0.7, 0.5, 0.2 .
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Figure 53: Instantaneous errors wrt vertex alive probability in small graphs. The
errors ε1, ε2, ε3 computed over 10 random graphs of 20 vertices, are given in
three segments, [0 78], [0 309], [0 700]. We have tested against different vertex alive
probabilities, 1, 0.95, 0.7, 0.5, 0.2 .

198



78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E1
Edge Alive Probability=1

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points
E

v
a

lu
a

te
d

 E
rr

o
r

Performance E2
Edge Alive Probability=1

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E3
Edge Alive Probability=1

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E1
Edge Alive Probability=0.95

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E2
Edge Alive Probability=0.95

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E3
Edge Alive Probability=0.95

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E1
Edge Alive Probability=0.7

78 309
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E2
Edge Alive Probability=0.7

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E3
Edge Alive Probability=0.7

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E1
Edge Alive Probability=0.5

78 309
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E2
Edge Alive Probability=0.5

78 309
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluation Points

E
v
a

lu
a

te
d

 E
rr

o
r

Performance E3
Edge Alive Probability=0.5

Convex

Nonlinear

Adaptive

Metropolis

MaxDegree

Scaled

Legend

Overall Errors wrt to different edge alive probabilities

Figure 54: Overall errors wrt to edge alive probability in small graphs. The errors E1,
E2, E3 computed over 10 random graphs of 20 vertices, are given in three segments,
[0 78], [0 309], [0 700]. We have tested against different vertex alive probabilities, 1,
0.95, 0.7, 0.5, 0.2 .
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Instantaneous Errors wrt to different edge alive probabilities

Figure 55: Instantaneous errors wrt to edge alive probability in small graphs. The
errors ε1, ε2, ε3 computed over 10 random graphs of 20 vertices, are given in
three segments, [0 78], [0 309], [0 700]. We have tested against different vertex alive
probabilities, 1, 0.95, 0.7, 0.5, 0.2 .
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Overall Errors wrt to different standard deviation

Figure 56: Overall errors wrt different initial standard deviation in medium graph.
The errors E1, E2, E3 computed over 10 random graphs of 20 vertices, are given. The
initial standard deviation was 1, 0.5 and 0.2 with mean equal to 10.
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Figure 57: Instantaneous errors wrt different initial standard deviation in medium
graphs.The errors ε1, ε2, ε3 computed over 10 random graphs of 20 vertices, are
given. The initial standard deviation was 1, 0.5 and 0.2 with mean equal to 10.
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Overall Errors wrt to different vertex alive arobabilities

Figure 58: Overall errors wrt different alive probabilities in medium graphs. The
errors E1, E2, E3 computed over 10 random graphs of 20 vertices, are given in
three segments, [0 78], [0 309], [0 700]. We have tested against different vertex alive
probabilities, 1, 0.95, 0.7, 0.5, 0.2 .
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Figure 59: Instantaneous errors wrt vertex alive probability in medium graphs. The
errors ε1, ε2, ε3 computed over 10 random graphs of 20 vertices, are given in
three segments, [0 78], [0 309], [0 700]. We have tested against different vertex alive
probabilities, 1, 0.95, 0.7, 0.5, 0.2 .
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Overall Errors wrt to different edge alive probabilities

Figure 60: Overall errors wrt to edge alive probability in medium graphs. The errors
E1, E2, E3 computed over 10 random graphs of 20 vertices, are given in three segments,
[0 78], [0 309], [0 700]. We have tested against different vertex alive probabilities, 1,
0.95, 0.7, 0.5, 0.2 .
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Figure 61: Instantaneous errors wrt to edge alive probability in medium graphs. The
errors ε1, ε2, ε3 computed over 10 random graphs of 20 vertices, are given in three
segments, [0 78], [0 309], [0 700]. We have tested against different vertex alive
probabilities, 1, 0.95, 0.7, 0.5, 0.2 .
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C
D E F I N I T I V E C O N S E N S U S S O L U T I O N S

The solutions herein are for equation
∏n
k=dWk = 11T instead of 11T

n , in order to
simplify the matrices. The solutions 11T

n can be obtained by dividing any of the
matrices with 1

n .

c.1 star graphs

Any star graph can be at absolute consensus by application of the following two
matrices.

W1 =


1 1 1 . . . 1

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 0 0



W2 =


1 0 0 . . . 0

1 0 0 . . . 0
...

...
...

. . .
...

1 0 0 0 0



c.2 cycles

c.2.1 The Pentagon

An exact solution can be obtained for the pentagon as described in (Section
4.2.4.1)
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W1 =



1
2(1−

√
5) 1 0 0 1

1 1
2(1−

√
5) 1 0 0

0 1 1
2(1−

√
5) 1 0

0 0 1 1
2(1−

√
5) 1

1 0 0 1 1
2(1−

√
5)



W2 =



1
2(1+

√
5) 1 0 0 1

1 1
2(1+

√
5) 1 0 0

0 1 1
2(1+

√
5) 1 0

0 0 1 1
2(1+

√
5) 1

1 0 0 1 1
2(1+

√
5)



c.2.2 The Hexagon

W1 =



1 1 0 0 0 1

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

1 0 0 0 1 1



W2 =



−1 1 0 0 0 1

1 −1 1 0 0 0

0 1 −1 1 0 0

0 0 1 −1 1 0

0 0 0 1 −1 1

1 0 0 0 1 −1


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W3 =



1 1
2 0 0 0 1

2

1
2 1 1

2 0 0 0

0 1
2 1 1

2 0 0

0 0 1
2 1 1

2 0

0 0 0 1
2 1 1

2

1
2 0 0 0 1

2 1


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N O M E N C L AT U R E

[x] integer part of x

π{vi, vj} denotes the shortest path p{vi, . . . , vj}

πij denotes the shortest path p{i, . . . , j}

A adjacency matrix

iff if and only if

← left side of← is assigned the value on the right side

c{vi, . . . , vj} a cycle from vi to vj

·∗ A designated object or a complex conjugate number

m the cardinality of the edge set, if not otherwise noted

E denotes an edge set

◦ element-wise matrix product, know also as Hadamard product

γ denotes a graph incidence function

G(E∗) edge induced subgraph of G

G(V∗) vertex induced subgraph of G

G∗ induced subgraph of G

G denotes a graph

Q the incidence matrix

lc(f) leading coefficient of a polynomial f

lp(f) leading power product of a polynomial f

→ left side of← is mapped to the value on the right side

[x]ij denotes the ith row and jth column of some matrix x
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xa a monomial term of degree a

1 the all one vector (1, 1, . . . , 1)T

p{vi, . . . , vj} a path from vi to vj

ρ(·) spectral norm

t{vi, . . . , vj} a trail from vi to vj

x > y element-wise vector comparison, xi > yi

n the cardinality of the vertex set, if not otherwise noted

V denotes a vertex set

w{vi, . . . , vj} a walk from vi to vj

0 all zeros vector (0, 0, . . . , 0)T
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G L O S S A RY

ad-hoc (network) a network without routing of packets, 6

ASTD average standard deviation, 161

cardinality the number of elements in a group, 16

CER classification error rate, 144

CGS Connection Graph Stability, 47

connected digraph the associated undirected graph is connected, 25

connected graph a graph where for any two vertices exists a path, 20

cycle a closed path, 20

degree vertex degree, 33

digraph directed graph, 24

edge coefficients edge weights, 38

edge weight a coefficients associated with an edge, 32

hop is the distance connecting two machines able to
communicate in an ad-hoc network, 6

IAMD initial arithmetic mean deviation, 161

incidence function a function that maps an edge to the vertices it re-
lates, 17

information consensus a distributed process that leads to the participating
nodes in agreement on a given scalar value, 3

Laplacian the Laplacian matrix, 32

loop the edge {vi, vi}, 24
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MDST minimum diameter spanning tree, 96

MH-weights Metropolis-Hastings weights, 46

modulus the absolute value of a real number, or the square
root of a complex’s product with its conjugate, 39

neighbour of a machine is a machine that is one-hop away, 6

path a walk without duplicate vertices, 20

process consensus a set of independent distributed processes that ter-
minates simultaneously, 3

RMSE root mean square error, 144

self-edge the edge {vi, vi}, 17

spanning tree a spanning subgraph that is a tree, 27

spectral gap the modulus of the smallest non-zero eigenvalue of
the laplacian, 64

strongly connected any two vertices are connected with a directed path,
25

TMAD true mean average deviation, 161

trail a walk without duplicate edges, 20

tree a graph without cycles, 27

UIDP Class of problems where data is: Unobtainable,
Incomputable, Distributed, Private, 4

unicyclic graph a graph with exactly one cycle, 27

vertex degree number of adjacent edges, 33
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walk an interlacing sequence adjacent vertices and edges,
20

weight a coefficient associated with an edge, 31

WSN Wireless Sensor Network, 3
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