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Abstract—We introduce an extended family of continuous-do-
main stochastic models for sparse, piecewise-smooth signals. These
are specified as solutions of stochastic differential equations, or,
equivalently, in terms of a suitable innovation model; the latter is
analogous conceptually to the classical interpretation of a Gaussian
stationary process as filtered white noise. The two specific features
of our approach are 1) signal generation is driven by a random
stream of Dirac impulses (Poisson noise) instead of Gaussian white
noise, and 2) the class of admissible whitening operators is con-
siderably larger than what is allowed in the conventional theory
of stationary processes. We provide a complete characterization of
these finite-rate-of-innovation signals within Gelfand’s framework
of generalized stochastic processes. We then focus on the class of
scale-invariant whitening operators which correspond to unstable
systems. We show that these can be solved by introducing proper
boundary conditions, which leads to the specification of random,
spline-type signals that are piecewise-smooth. These processes are
the Poisson counterpart of fractional Brownian motion; they are
nonstationary and have the same -type spectral signature. We
prove that the generalized Poisson processes have a sparse repre-
sentation in a wavelet-like basis subject to some mild matching con-
dition. We also present a limit example of sparse process that yields
a MAP signal estimator that is equivalent to the popular TV-de-
noising algorithm.

Index Terms—Fractals, innovation models, Poisson processes,
sparsity, splines, stochastic differential equations, stochastic pro-
cesses, non-Gaussian statistics, wavelet transform.

I. INTRODUCTION

T HE hypotheses of Gaussianity and stationarity play a cen-
tral role in the standard, textbook formulation of signal

processing [1], [2]. They fully justify the use of the Fourier
transform—as the optimal signal representation—and naturally
lead to the derivation of optimal linear filtering algorithms for a
large variety of statistical estimation tasks. The Gaussian world
of signal processing and its related linear textbook material is
elegant and reassuring, but it has reached its limits—it is not at
the forefront of research anymore.

Starting with the discovery of the wavelet transform in
the late 1980s [3], [4], researchers in signal processing have
progressively moved away from the Fourier transform and have
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uncovered powerful alternatives. Two examples of success are
the wavelet-based JPEG-2000 standard for image compres-
sion [5], which outperforms the widely used DCT-based JPEG
method, and wavelet-domain image denoising which provides
a good alternative to more traditional linear filtering [6]–[8].
The key property that makes these techniques work is that
many naturally occurring signals and images—in particular,
the ones that are piecewise-smooth—have a sparse represen-
tation in the wavelet domain [9]. The concept of sparsity has
been systematized and extended to other transforms, including
redundant representations (a.k.a. frames); it is at the heart of
recent developments in signal processing. Sparse signals are
easy to compress; likewise, they can be denoised effectively by
simple pointwise processing in the transform domain (the ra-
tional being to discard small coefficients which are more likely
to be noise). Sparsity provides an equally powerful framework
for dealing with more difficult, ill-posed signal reconstruction
problems [10], [11]. The strategy there is as follows: among
the multitude of solutions that are consistent with the measure-
ments, one should favor the “sparsest” one; that is, the one for
which the -norm of the expansion coefficients of the signal
is minimum. In practice, one replaces the underlying -norm
minimization problem, which is NP hard, by a convex -norm
minimization which is computationally much more tractable.
Remarkably, researchers have shown that the latter simplifi-
cation of the problem does yield the correct solution to the
problem under suitable conditions (e.g., restricted isometry or
incoherent measurements) [12], [13]. This turns out to be one of
the leading ideas behind the theory of compressed sensing that
deals with the problem of the reconstruction of a signal from a
minimal, but suitably chosen, set of measurements [10], [11],
[14]. Another approach for breaking the traditional Nyquist’s
sampling barrier is to take advantage of specific knowledge
of the form of the signal and to approach the signal recon-
struction task as a parametric estimation problem. Vetterli and
co-workers introduced the concept of signals with a finite rate
of innovation (FRI) (the prototypical example being a stream
of Dirac impulses with unknown locations and amplitudes) and
demonstrated the possibility of recovering such signals from
a set a uniform measurements at twice the “innovation rate,”
rather than twice the bandwidth [15]–[17].

The current formulations of compressed sensing and sparse
signal recovery are based on solid variational principles, but
they are fundamentally deterministic. By drawing on the
analogy with the classical theory of signal processing, there are
chances that further progress may be achieved via the investi-
gation of stochastic processes that are the “sparse” counterparts
of the stationary Gaussian ones. Ideally, the availability of such
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models would allow for: 1) the derivation of (near)-optimal
signal representations for certain classes of signals, 2) the spec-
ification of signal-recovery procedures that are well-founded
statistically, and 3) (near)-optimal sampling strategies and/or
feature-extraction methods. Our goal in this paper is to set the
theoretical foundation for such an approach by specifying an
extended family of stochastic models that fulfills the following
requirements:

Continuous-domain formulation. The proper interpreta-
tion of qualifying terms such as “piecewise-smooth” and
“scale-invariance,” which is central to wavelet theory, calls
for continuous-domain models of signals that are compat-
ible with the notion of sparsity.

Beyond Gaussian statistics. The statistical justification
of nonlinear algorithms requires non-Gaussian models.
However, moving in this direction is not trivial because 1)
decorrelation is no longer synonymous with independence,
and 2) non-Gaussian distribution laws are generally not
preserved under linear transformation.

Backward compatibility. The formulation should be com-
patible with the classical theory of Gaussian stationary
processes. In particular, the generation mechanism should
provide a full control of the second-order statistics (auto-
correlation/power spectrum) of the sparse signals so that
the classical MMSE filtering, estimation and identification
techniques remain applicable.

Our approach builds upon Vetterli et al.’s concept of signals
with finite rate of innovation and provides a complete charac-
terization of stochastic processes with the desired properties.
While the rigorous specification of these processes requires an
appropriate mathematical formalism1, the payoff is a generative
model that is simple conceptually and parallel to the classical
white-noise filtering model for Gaussian stationary processes.
The primary contributions of this work are as follows:

An extended innovation model where the usual Gaussian
white noise is substituted by impulsive Poisson noise with
any prescribed amplitude distribution. The key descriptor
of a process is its whitening operator L which is shift-in-
variant.

A complete distributional characterization of such gen-
eralized Poisson processes by means of the characteristic
form which condenses all statistical information [18]. The
relevant theoretical framework, which is not standard in the
field, is summarized in Appendix I.

The extension of the traditional spectral shaping filters
to a larger class of inverse operators, including im-

portant ones that are unstable2 in the classical sense. The
prototypical example is the integrator which allows the
generation of Brownian motion as well as piecewise-con-
stant signals.

1Impulse Poisson noise (random stream of Dirac impulses) can only be
properly defined within the context of distribution theory. The other point is
that many of the processes that we will be considering here are nonstationary,
meaning that they don’t have a well-defined power spectrum; they also involve
fractional derivative operators which are difficult to handle using conventional
stochastic calculus.

2A convolution operator is BIBO-stable (bounded-input bounded-output) iff.
its impulse response is in . The integrator is not BIBO-stable, but it is
sometimes said to be marginally stable because its impulse response is bounded.

The link with spline theory through a common operator
formalism.

The characterization of the sparsifying effect of the
wavelet transform for a wide class of generalized Poisson
processes.

The paper is organized as follows. In Section II, we show
the relevance of the proposed class of random processes by
contrasting the performance of the classical Wiener filter and
sparsity-promoting restoration methods (total variation and
wavelet denoising) in a denoising experiment that involves a
matched pair of Gaussian versus sparse processes. We then
proceed in Section III with the definition of impulsive Poisson
noise and the derivation of its characteristic form within the
framework of Gelfand and Vilenkin’s theory of generalized
stochastic processes. In Section IV, we specify our generalized
Poisson processes as the solutions of a stochastic differential
equation driven by white impulsive noise, which is equivalent
to the innovation model in Fig. 3 with whitening operator L. We
then focus on the class of scale-invariant whitening operators
and show how these can specify spline-type processes in one
or several dimensions. In Section V, we consider the wavelet
analysis of generalized Poisson processes, including those of
mixed type, and prove that it generally yields a sparse signal
decomposition. Finally, we illustrate the use of the proposed
statistical formalism with the derivation of the likelihood
function of a sparse, piecewise-constant process.

II. MOTIVATION: BEYOND WIENER FILTERING

To motivate the stochastic models proposed in this paper, we
consider the problem of the reconstruction of a continuously de-
fined signal given its noisy samples at the integers:

where is a discrete Gaussian white noise
with zero mean and variance . When is a realization of
a Gaussian stationary process, the minimum-mean-square-error
(MMSE) solution to this problem is the well-known Wiener
filter. The Wiener filter remains the best linear reconstruction al-
gorithm when is non-Gaussian, but it is generally not glob-
ally optimal anymore. In particular, it has been observed that
linear filtering is suboptimal for handling piecewise-smooth sig-
nals because it oversmoothes sharp transitions. For such signals,
linear algorithms are typically outperformed by simple wavelet
thresholding [8], [19], which is a nonlinear type of processing.

To demonstrate this behavior, we selected two contin-
uous-time test signals which are part of the class of stochastic
processes considered in this paper. The first [Fig. 1(a)] is a
Brownian motion (also known as the Wiener process), which is
a classical example of Gaussian process. The second [Fig. 1(b)],
which is piecewise-constant, is a compound Poisson process;
the location of the singularities follow a spatial Poisson distri-
bution with parameter , while the heights of the transitions are
random and uniformly distributed. The important conceptual
aspect is that these two signals share a common innovation
model, as we shall prove in Section III. They are both whitened
by the derivative operator , the distinction being
that the innovation process is white Gaussian noise in the
first case, and (sparse) impulsive Poisson noise in the second.
Consequently, the two processes have identical second-order
statistics and they admit the same Wiener filter as the best linear
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Fig. 1. Original test signals (solid lines) and their discrete noisy measurements.
(a) Brownian motion. (b) Compound Poisson process (piecewise-constant
signal).

signal estimator. In our earlier work, we have shown that the
MMSE reconstruction of a Brownian motion signal corrupted
by white Gaussian noise is provided by a piecewise-linear
smoothing spline estimator [20]. Remarkably, this smoothing
spline estimator can also be defined as the solution of the
variational problem

(1)

with with . Note that the above
cost criterion includes a discrete data term (squared -norm)
and a continuous regularization functional (squared -norm)
that penalizes nonsmooth solutions. In contrast to conventional
digital signal processing, the solution of the minimization
problem is continuously defined: it corresponds to a hybrid
form of Wiener filter (discrete input and continuous output).

A more satisfactory handling of the second piecewise-con-
stant signal is based on the observation that it has a sparse de-
composition in the Haar basis which is piecewise-constant as
well. It therefore makes sense to seek a reconstruction that has
few significant wavelet coefficients. This is achieved by intro-
ducing an -norm penalty on the wavelet coefficients of :

where is the scale index and
where is the Haar wavelet. This leads to the wavelet-based
signal estimator

(2)

where is an appropriate sequence of scale-dependant
weights (typically, to implement the Besov norm
associated with the first derivative of the function [21]). By
applying Parseval’s identity to the data term and formulating
the problem in the wavelet domain, one finds that the solution
is obtained by applying a suitable pointwise nonlinearity to
the wavelet coefficients of the noisy signal [22]. For ,
the nonlinearity corresponds to a standard soft-thresholding.
Formally, we can also consider the case , which yields a

sparse solution implemented by discarding all wavelet coeffi-
cients below a certain threshold.

Another popular reconstruction/denoising method is to pe-
nalize the total variation of the signal [23], which results in the
TV estimator

(3)

where is the total variation of . Note that when
is differentiable, so that criterion (3)
is essentially the -regularized counterpart of (1). A remark-
able property of (3) is that the global optimum is achieved by
a piecewise-constant function [24], which suggests that the TV
criterion is ideally matched to our second class of signals.

We implemented the three proposed estimators and applied
them to the reconstruction of our two test signals corrupted with
various amounts of noise. In each case, we optimized the regu-
larization parameter for maximum signal-to-noise ratio,
taking the noise-free signal (oracle) as our reference. The results
are summarized in Fig. 2. In agreement with theoretical predic-
tions, the smoothing spline estimator (Wiener filter) performs
best in the Gaussian case. In the case of a piecewise-constant
signal, the best linear estimator is outperformed by the TV esti-
mator over the entire range of signal-to-noise ratios (SNRs), and
also by wavelet denoising at lower noise levels. The wavelet-
based method performs adequately, but is suboptimal—in fact,
the results presented here were obtained by using cycle spinning
which is a simple, effective way of boosting the performance of
the basic threshold-based wavelet denoising algorithm [25].

This series of experiments confirms the well-documented ob-
servation that a change of regularization exponent (i.e.,
versus ) can have a significant effect on the restoration
quality, especially for the second type of signal which is intrinsi-
cally sparse. Other than that, the regularization functionals used
in the three estimators are qualitatively similar and perfectly
matched to the spectral characteristics of the signals under con-
siderations: the whitening operator D appears explicitly in (1)
and (3), while it is also present implicitly in (2). The latter is seen
by expressing the Haar wavelet as where the
smoothing kernel is a rescaled causal triangle
function (or B-spline of degree 1). This implies that the wavelet
coefficients, which can now be interpreted as smoothed deriva-
tives, are statistically independent at any given scale —indeed,
by duality, we have that where

is a continuously varying white noise process and where the
integer-shifted versions of are nonoverlapping.

While the Gaussian part of the story is well understood, it
is much less so for the second class of non-Gaussian signals
which are more difficult to formalize statistically. Such Poisson
processes, however, could be important conceptually because
they yield prototypical signals for which some of the current
popular signal processing methods (wavelets, compressed
sensing, -minimization, etc.) perform best. In the sequel,
we will present a generalized distributional framework for the
complete stochastic characterization of such processes and their
extensions. We will come back to the above denoising problem
at the end of the paper and show that the TV denoising solution
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Fig. 2. Comparative evaluation (input SNR vs output SNR) of smoothing
spline, wavelet and total variation (TV) reconstruction algorithms for a signal
corrupted by white Gaussian noise. (a) Brownian motion. (b) Compound
Poisson process.

(3) is compatible with the MAP signal estimator that can be
derived for the second process.

III. GENERALIZED POISSON NOISE

A. Classical Poisson Processes

A Poisson process is a continuous-time process that is in di-
rect correspondence with a series of independent point events
randomly scattered over the real line according to a Poisson dis-
tribution with a rate parameter . Specifically, the probability of
having a number of events in the time interval

with is

with a mean value and variance given by . The time locations
of these events are ordered and denoted by with . With
this notation, the classical homogeneous Poisson process can be
represented as

where

is the unit step function. The statistical term “homogeneous”
refers to the fact that the rate parameter is constant over time;
the term will be dropped in the sequel. The realizations of such
a Poisson process are piecewise-constant and monotonously in-
creasing with unit increments; the parameter represents the
expected number of discontinuities per unit interval.

An extended version of this process that is better suited
for modeling FRI signals is the so-called compound Poisson
process

(4)

where the are i.i.d. random variables associated with the
probability measure . This signal is piecewise-constant in
each time interval and may be thought of as the sto-
chastic version of a nonuniform spline of degree 0 where both
the knots and heights of the piecewise-constant segments
are random [cf. Fig. 1(b)]. It is also the primary example of a
concrete signal with a finite rate of innovation [15]; in average,

has two degrees of freedom per time interval of
length . While the compound Poisson process is clearly
non-Gaussian, it has the interesting property of being indis-
tinguishable from Brownian motion based on its second-order
statistics alone (covariances). It is part of the same class of
“ ”-type processes, keeping in mind that the power spec-
trum of such signals is not defined in the conventional sense
because of their nonstationary character. In the sequel, we will
strengthen the connection between these two classes of pro-
cesses by linking them to a common innovation model involving
a spectral shaping operator and a specific white noise excitation
which may or may not be Gaussian.

B. White Poisson Noise

By taking the distributional derivative of , we obtain a
weighted stream of Dirac impulses whose
positions and amplitudes are random and independent of each
other. In this paper, we will consider a more general multidimen-
sional setting with signals and stochastic processes that are func-
tions of the continuous-domain variable

. We introduce the compound Poisson noise

(5)

where the ’s are random point locations in , and where the
are i.i.d. random variables with cumulative probability distri-

bution . The random events are indexed by (using some
arbitrary ordering); they are mutually independent and follow
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a spatial Poisson distribution. Specifically, let be any com-
pact subset of , then the probability of observing
events in is

where is the measure (or spatial volume) of . This is to
say that the Poisson parameter represents the average number
of random impulses per unit hyper-volume.

While the specification (5) of our compound Poisson noise is
explicit and constructive, it is not directly suitable for deriving
its stochastic properties. The presence of Dirac impulses makes
it difficult to handle such entities using conventional stochastic
calculus. Instead of trying to consider the point values of
which are either zero or infinite, it makes more sense to investi-
gate the (joint) statistical distribution of the scalar products (or
linear functionals3) between our Poisson noise
and a collection of suitable test functions . The adequate math-
ematical formalism is provided by Gelfand’s theory of gener-
alized stochastic processes, whose main results are briefly re-
viewed in Appendix I. The conceptual foundation of this pow-
erful framework is that a generalized stochastic process is “in-
dexed” by rather than by the spatial variable . It is thereby
possible to fully characterize a real-valued process by speci-
fying its characteristic form

(6)

where denotes the expectation operator and where
with fixed should be treated as a classical scalar random

variable. is a functional of the generic test function
whose role is analogous to that of the index variable(s) used
in the conventional definition of the characteristic function of a
probability distribution. The powerful aspect of this generaliza-
tion, which can be traced back to Kolmogoroff [26], is that
has the ability to capture all the possible joint dependencies of
the process. For instance, if we substitute

in (6), then we obtain
with and the ’s taking the role of frequency-do-
main variables; this is precisely the characteristic function of the

-vector random variable , meaning that the joint
probability distribution can be obtained, at least
conceptually, by -D inverse Fourier transformation. The cor-
responding distributional extension of the correlation function

is the so-called correlation form

(7)

which can also be deduced from . Clearly, (7) reverts to
the classical correlation function if we formally substitute

and .
In order to take advantage of this formalism, we need to ob-

tain the characteristic form of the Poisson noise defined above.
Before presenting these results, we introduce some notations
and conventions:

3The linear functional is formally specified by the scalar-product inte-
gral . It is a well-defined linear, continuous map-
ping that associates a scalar to each within a suitable set of test functions.

— The integration element over is denoted by with

— The amplitude statistics of the Poisson process are ex-
pressed in terms of the cumulative probability distribution

where is the underlying prob-
ability measure. The -order moment of the amplitude dis-
tribution is denoted by with .

— The Fourier transform of a “test” function is
with . A fundamental prop-
erty is that the Fourier transform is a self-reversible map-
ping from (Schwartz’s class of smooth and rapidly
decreasing functions) into itself.

— with stands for the -norm of
; it is bounded for all test functions.

Theorem 1: The characteristic form of the impulsive Poisson
noise specified by (5) is

(8)

with

(9)

where is the Poisson density parameter, and where is
the cumulative amplitude probability distribution subject to the
constraint .

The proof is given in Appendix II. Note that the above charac-
teristic form is part of a more general family of functionals that
is derived by Gelfand and Vilenkin starting from first principles
(processes with independent values at every point, infinite divis-
ibility) [18]. Here, we make the link between the abstract char-
acterization of such processes and (5), which provides a con-
crete generation mechanism. A direct consequence of Theorem
1 is that the impulsive Poisson process is a bona fide white noise,
albeit a not a Gaussian one.

Corollary 1: The correlation form of the generalized Poisson
process defined by (8) is

Hence, is a (non-Gaussian) white noise process with variance
provided that the random variable has zero-

mean.
Proof: We rely on (22) in Appendix I and partially differ-

entiate (8) by applying the chain rule twice:

(10)

The required first derivative with respect to is given
by
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which, when evaluated at the origin, simplifies to

Similarly, we get

The result then follows from (22) and the substitution of these
expressions in (10).

When the density distribution is symmetrical with re-
spect to the origin, the Poisson functional takes the sim-
plified form

(11)

due to the cancellation4 of imaginary terms. We will refer to this
case as symmetric Poisson noise.

We conclude this section by presenting an expression for the
characteristic form of symmetric Poisson noise that brings out
the differences with the standard form of a Gaussian white noise
and also gives us a better insight into the influence of the ampli-
tude variable . To this end, we write the Taylor series of (11)
and manipulate it as follows:

where we are assuming that the moments of are bounded
in order to switch the order of summation. The final ex-
pression is enlightening since the first term, which is purely
quadratic, precisely matches the standard Gaussian form

[cf. (20)]. This is consistent with
the fact that the second-order properties of the process are
indistinguishable from those of a Gaussian noise (cf. Corollary
1). The interesting aspect is that the Poisson functional also
includes higher-order terms involving the -norms of for
even with the th moments of the amplitude distribution acting
as weighting factors. This last formula also shows that we have
some freedom in shaping the Poisson noise via the control of
the higher-order moments of .

IV. GENERALIZED POISSON PROCESSES

Our quest in this paper is to specify stochastic models for
the class of piecewise-smooth signals that are well represented
by wavelets and that also conform to the notion of finite-rate
of innovation. To maintain the backward compatibility with the

4This requires the interchange of the order of integration, which
is justified by Fubini’s theorem; specifically, we invoke the bounds

and together with
the fact the test function decays rapidly at infinity.

classical Gaussian formulation, we are proposing the common
innovation model in Fig. 3 driven by white noise , which may
be either Gaussian or impulsive Poisson. The remarkable fea-
ture is that the Poisson version of the model is capable of gen-
erating piecewise-smooth signals, in direct analogy with the
method of constructing splines that is reviewed in Section IV-A.
This naturally leads to the definition of generalized Poisson pro-
cesses given in Section IV-B, with the catch that the under-
lying stochastic differential equations are typically unstable. In
Section IV.C, we show how to bypass this difficulty via the
specification of appropriate scale-invariant inverse operators.
We then illustrate the approach by presenting concrete exam-
ples of sparse processes (Sections IV-D-E).

A. The Spline Connection

Splines provide a convenient framework for modeling 1-D
piecewise-smooth functions. They can be made quite general by
allowing for nonuniform knots and different types of building
blocks (e.g., piecewise polynomials or exponentials) [27]. An
elegant, unifying formulation associates each brand of splines
with a particular linear differential operator L. Here, we will
assume that L is shift-invariant and that its null space is finite-
dimensional and nontrivial. Its Green function (not unique) will
be denoted by with the defining property that .

Definition 1: A function is a nonuniform L-spline with
knot sequence iff.

The knot points correspond to the spline singularities. In-
terestingly, the Dirac impulse sequence on the right-hand side
(RHS) of this equation is essentially the same as the one used
to define the Poisson noise in (5), with the important difference
that it is now a deterministic entity.

We can formally integrate the above equation and obtain an
explicit representation of the nonuniform spline as a linear com-
bination of shifted Green functions plus a component that
is in the null space of L:

For the spline to be uniquely defined, one also needs to specify
some boundary conditions to fix the null-space component

(typically, linear constraints for a differential operator
of order ). The standard choice of a differential operator is

which corresponds to the family of
polynomial splines of degree . The generic form of such
splines is

where the one-sided power function is the
causal Green function of , or, equivalently, the impulse re-
sponse of the -fold integrator . One can verify that
coincides with a polynomial of degree in each interval

and that it is differentiable up to order at
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Fig. 3. Innovation model of a generalized stochastic process. The delicate
mathematical issue is to make sure that the operator L and its inverse
(resp., their duals and ) are well-defined over the space of tempered
distributions (resp., Schwartz’s class of infinitely differentiable and rapidly
decreasing test functions).

the knot locations, implying that the polynomial segments are
smoothly joined together.

An equivalent higher-level description of the above inversion
process is to view our spline as the solution of the differential
equation with driving term

and to express the solution as where
is an appropriate inverse operator that incorporates the desired
boundary conditions. The mathematical difficulty in this formu-
lation is that it requires a precise, unambiguous specification of

. This is the approach that we will take here to define our
generalized Poisson processes. Intuitively, these correspond to
stochastic splines where both the weights and knot locations are
random.

B. Generalized Processes With Whitening Operator L

Let us now return to the innovation model in Fig. 3. The idea
is to define the generalized process with whitening operator
L as the solution of the stochastic partial differential equation
(PDE)

(12)

where the driving term is a white noise process that is ei-
ther Gaussian or Poisson (or possibly a combination of both).
This definition is obviously only usable if we can specify a cor-
responding inverse operator ; in the case where the
inverse is not unique, we will need to select one preferential op-
erator, which is equivalent to imposing specific boundary condi-
tions. Assuming that such an operator exists and that its adjoint

is mathematically well-defined on the chosen family of
test functions, we are then able to formally solve the equation
as

Moreover, based on the defining property
, we can transfer the action of

the operator onto the test function inside the characteristic form
(cf. Appendix I.B) and obtain a complete statistical characteri-
zation of the so-defined generalized stochastic process

where is specified by (20) or Theorem 1, depending on
the type of driving noise. This simple manipulation yields the

following explicit formulas for the characteristic forms of our
two kinds of processes:

1) Generalized Gaussian

(13)

2) Generalized Poisson

(14)

The correlation form, which is the same in both cases, is

subject to the normalization constraint .
The latter implies that the Gaussian and sparse processes de-

fined by (13) and (14) have identical second-order statistics,
which is the matching condition emphasized in our introduc-
tory denoising experiment.

The above characterization is not only remarkably concise,
but also quite general for it can handle a much larger class of
linear operators than conventional stochastic calculus. This will
prove to be very helpful for our investigation of spline-type pro-
cesses in Section IV-D.

In the special case where is Gaussian and
is a shift-invariant operator such that where

is a suitable, square-integrable convolution kernel,
one recovers the classical family of Gaussian stationary pro-
cesses with spectral power density where

is the frequency response of the shaping filter (cf.
Appendix I-C). The corresponding autocorrelation function is
given by with ,
which is consistent with the Wiener-Kintchine theorem. If one
switches to a Poisson excitation, one obtains a class of sta-
tionary random processes sometimes referred to as generalized
shot noises [28], [29]. These signals are made up of shifted
replicas of the impulse response of the shaping filter with some
random amplitude factor: . They
are typically bumpy (depending on the localization properties
of ) and quite distinct from what one would commonly call a
spline. Generating random splines is possible as well, but these
will typically not be stationary.

C. Scale-Invariant Operators and Their Inverse

Among the large variety of admissible operators L, we are
especially interested in those that commute with the primary
coordinate transformations: translation, dilation and rotation.
This is because they are likely to generate processes with inter-
esting properties. These operators, which are also tightly linked
to splines and fractals, happen to be fractional derivatives.

We have shown in earlier work that the class of linear 1-D
shift- and scale-invariant operators reduces to the -deriva-
tives with and [30]. Their Fourier-domain
definition is

where is the Fourier transform of (in the sense of distribu-
tions). The parameter is a phase factor that allows for a pro-
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TABLE I
INVERSION OF THE SCALE-INVARIANT OPERATORS IN ONE AND MULTIPLE DIMENSIONS

gressive transition between a causal operator and an
anti-causal one , which is the adjoint of the former
(more generally, we have that ). Note that the
causal fractional derivative , whose frequency response is

, coincides with Liouville’s fractional derivative of order
which is often denoted by . When is integer, one

recovers the traditional derivatives .
Adding the requirement of rotation invariance further narrows

down the options. One is then left with the fractional Lapla-
cians with , which are the only multidimen-
sional linear operators that satisfy the requirement of simulta-
neous shift-, scale-, and rotation invariance [31], [32]. The cor-
responding Fourier-domain definition is

Here too, there is a direct correspondence with the classical
Laplace operator when the order is
even.

While the above differential operators are promising candi-
dates for defining generalized stochastic processes, one is faced
with a technical difficulty in defining the inverse operator
because the frequency responses of and vanish
at the origin. This means that the inversion problem, as such, is
ill-posed. Fortunately, it is not insurmountable because the null
space of our fractional derivative operator is finite-dimensional:
it is made up of the polynomials of degree . Concretely,
this means that we can uniquely specify the inverse operator
(and solve our stochastic PDE) by imposing suitable boundary
conditions. In previous work on fractional Brownian motion,
we have shown that one can design an inverse operator
that forces the process (and a proper number of derivatives) to
vanish at the origin. Since the derivation of these inverse opera-
tors (which are fractional integrators with boundary conditions
at the origin) and their duals is somewhat involved, we refer the
reader to the corresponding publications for mathematical de-
tails [32], [33]. The basic results are summarized in Table I.

To gain some insight into the type of transformation, let us
have a closer look at the fractional integral operator

, which is defined as follows:

(15)
with the condensed multiinteger notations:

, and . We note that, except
for the summation term within the integral, it corresponds to
the inverse Fourier transform of which represents
the filtering of with the (potentially unstable) inverse of the
fractional Laplacian. The correction term amounts to a polyno-
mial (in the form of a Taylor series at the origin) that ensures
that the resulting function and its derivatives
up to order are vanishing at . This is justified
formally by invoking the moment property of the Fourier trans-
form:

where . Forcing
the values of the (generalized) function and its derivatives to be
zero at the origin is crucial for the specification of fractional
Brownian motion as there, by definition, the process should
equal zero at [34]. Conveniently, these are precisely
the boundary conditions that are imposed by all fractional in-
tegral operators in Table I. Another important property is
that in the distributional sense, which constitutes
the foundation of the proposed innovation models.
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The adjoint operator of is specified by

and has the same type of flavor. The difference is that it
now includes a Taylor series correction in the frequency
domain that sets the moments of the test function to zero
up to order . Mathematically, this compensates
the singularity of at and ensures that this
dual operator is well-behaved over the class of test functions

. The domain of definition of the dual fractional inte-
gral operators can actually be extended to the weighted
space where

and , which is considerably
larger than . This is stated in the following theorem, whose
proof is given in Appendix II.

Theorem 2: Let with integer
. Then, and

the corresponding generalized Gaussian and symmetric Poisson
characteristic forms (13) and (14) are well-defined. The same
applies in 1-D for the operators for any .

Note that the cases where is an integer are excluded be-
cause the corresponding -norms are generally unbounded, in-
cluding when . The proof that is given in Appendix II
completely takes care of the Gaussian and symmetric Poisson
cases. In more recent work, we have extended the results for the
general, nonsymmetric Poisson case by slightly modifying the
inverse operators to make them stable in the -sense [35].

The boundedness result in Theorem 2 ensures that the defi-
nition of the corresponding Gaussian and generalized Poisson
processes is mathematically sound. By the same token, it also
provides a constructive method for solving the stochastic dif-
ferential equation (12), thanks to the inverse operator speci-
fied by (15). Indeed, we can show that and

(which is the dual statement of the former) for all
test functions . This means that is the left inverse of

, while is the right inverse of L. In the first case, the oper-
ator sets the moments of the intermediate function to zero so
that the effect of is equivalent to that of the unregularized
inverse. In the second case, L sets to zero the polynomial com-
ponent that was added by to fulfill the boundary conditions
at .

We conclude this technical discussion by mentioning that, un-
like the fractional derivatives and Laplacian, the inverse opera-
tors specified in Table I are not shift-invariant (because of the
boundary conditions). They are, however, invariant with respect
to scaling as well as rotation in the case of the Laplacian. The
implication is that the corresponding random processes will in-
herit some form of invariance, but that they will generally not
be stationary.

D. Fractal and Spline-Type Processes

By combining the scale-invariant operators of Table I with
the general framework proposed in Section III-C, we obtain an
interesting family of stochastic processes. Their key property is

self-similarity in the sense that the spatially rescaled versions of
a process are part of the same family. Our generation model is
ultimately simple and boils down to a fractional integration of a
white noise process subject to appropriate boundary conditions.
The mathematical technicalities have been dealt with in the pre-
ceding section by specifying the proper fractional integration
operators together with their domain of definition (cf. Theorem
2).

We first consider the one-dimensional case. If the driving
noise is Gaussian, the formulation is equivalent to that presented
in [33]. Specifically, by taking with and
any , one obtains fractal processes that are equivalent to
the fractional Brownian motion (fBm) introduced by Mandel-
brot and Van Ness [36]. Rather than the order, fBms are usually
characterized by their Hurst exponent whose value
is restricted to the open interval ; the fractal dimension is

. The case (or ) corresponds to
the Brownian motion (or Wiener) process, which is illustrated in
Fig. 1(a). By definition, this process is whitened by all first-order
derivative operators ; in particular, by , which corre-
sponds to the optimal regularization functional for the Brownian
motion denoising problem (1). The formalism is also applicable
for (but noninteger), in which case it yields
the higher-order extensions of fBm introduced by Perrin et al.
[37].

Alternatively, if we excite the system with impulse noise, we
obtain a stochastic process that is a random spline of order or,
equivalently, of degree . The corresponding -Poisson
processes are piecewise-smooth: they have pointwise disconti-
nuities with a Hölder exponent5 at the spline knots and
are infinitely differentiable in between (this follows from the
properties of the Green functions in Table I). In other words,
they are infinitely differentiable almost everywhere, whereas the

th-order fBms are uniformly rough everywhere (i.e., Hölder-
continuous of order ). Another distinction between the
Gaussian and Poisson processes is the importance of the phase
factor for the latter. Specifically, we can use any fractional
derivative operator to whiten an fBm of order , while in
the case of a random spline, the value of needs to be
matched to the type of singularity (generation model) to recover
Poisson noise. Some examples of extended fBms and random
splines with matching exponents are shown in Fig. 4. The im-
portant point is that the signals that are shown side by side share
a common innovation model (same whitening operator L) but
yet are fundamentally different: the random splines on the right
have a sparse representation (due to their finite rate of inno-
vation), which is not the case for the Gaussian fBms on the
left. These signals were generated by inverse FFT using a dis-
cretized version of the Fourier representation of the operator

. The Poisson noise was generated using uniform random
generators for the location and amplitude parameters. The un-
derlying operators in this experiment are causal derivatives so
that the generalized Poisson processes of integer order are poly-
nomial splines (e.g., piecewise-constant for and piece-
wise-linear for ). As the order increases, the functions

5A function is -Hölder-continuous iff
is finite with .
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Fig. 4. Gaussian versus sparse signals: Comparison of fractional Brownian motion (left column) and Poisson (right column) generalized stochastic processes as
the order increases. The processes that are side-by-side have the same order and identical second-order statistics.

Fig. 5. Gaussian versus sparse signals in 2-D: Comparison of fractional Brownian (upper row) and Poisson (lower row) generalized stochastic fields as the order
increases. The processes in the same column have the same order and identical second-order statistics.

become smoother and the two types of processes are less and
less distinguishable visually.

The generation mechanism naturally extends to multiple
dimensions. In the case of a Gaussian excitation, we obtain
fractional Brownian fields [38], whose detailed characteri-
zation as generalized random processes was presented in a
recent paper [32]. If we switch to a Poisson noise, we generate
random fields that are polyharmonic splines of order . For

, these exhibit impulse-like singularities which

are explained by the form of the Green function (cf. Table I);
the impulse-like behavior disappears as the order increases and
as the process becomes smoother. A series of generalized fBms
and random polyharmonic splines with matching exponents is
presented in Fig. 5. Note the characteristic cloud-like appear-
ance of low order fBms. Here too, the two types of processes
become more and more similar visually as the order increases.

We did allude to the fact that the processes in Figs. 4 and 5
are self-similar. This property is well known for the fBms which



UNSER AND TAFTI: STOCHASTIC MODELS FOR SPARSE AND PIECEWISE-SMOOTH SIGNALS 999

are the prototypical examples of stochastic fractals [38], [39].
The random splines that we have defined here are self-similar
as well, but in a weaker sense. Specifically, if one dilates such a
generalized Poisson process by a factor of one obtains a gen-
eralized Poisson process that is in the same family but with a
rescaled Poisson parameter where is the param-
eter of the primary process.

E. Mixed Poisson Processes

Conveniently, the characteristic form of the sum of two inde-
pendent processes is the product of their characteristic forms;
i.e., [18]. A direct implication is
that a Poisson noise is infinitely divisible in the sense that
it can always be broken into a sum of i.i.d. Poisson processes.

Following this line of thought, we propose to construct mixed
Poisson processes by summing independent generalized
Poisson processes with parameters . The
characteristic form of such a mixed process is

where

(16)

The corresponding random signals exhibit different types of
singularities. They will generally be piecewise-smooth—sums
of random splines—if the operators are scale-invariant
(cf. Section IV-C). We can vary their structural complexity by
including more or less independent Poisson components. Yet,
their intrinsic sparsity (or rate of innovation) remains the same
as long as . The variations on this
theme are countless, especially in 1-D, due to the large variety
of available operators (e.g., with and ).

F. The Mondrian Process

We became especially intrigued by the generalized Poisson
process associated with the partial differential operator

and decided to call it the “Mon-
drian process”. A colorful realization is shown in Fig. 6. The
2-D process corresponding to this illustration is the
solution of the (marginally unstable) stochastic PDE:

where the and are independent uniformly distributed
random variables. Since L is separable, its Green function is
separable as well: it is the multidimensional Heaviside function

(e.g., is a quarter plane integrator
in 2-D). This results in a signal that is the direct multi-D coun-
terpart of (4).

The Mondrian process in Fig. 6 was constructed and first
shown at a conference in the honor of Martin Vetterli in 2007. It
is distinct from the Mondrian process of Roy and Teh [40] which
is generated hierarchically via a random subdivision of rectan-
gular regions. The characteristic feature of the present construct
is the spatial-, long-range dependence that is introduced by the

(quarter plane) integration process. This type of pattern is more
intriguing visually and intellectually than a mere random super-
position of colored rectangles—remarkably, it is also shorter to
describe mathematically (cf. equation above).

G. Poisson Processes and System Modeling

The proposed stochastic framework is general enough to
handle many other types of operators; essentially, all those that
lead to viable deterministic spline constructions since these
require the resolution of the same type of operator equation [cf.
(12)]. The choice of the “optimal” operator may be motivated
by physical considerations. For instance, it is possible to model
time-domain signals that are generated by a physical
system driven by random impulse-like events. Specifically, the
operator L associated with an th-order ordinary differential
equation is characterized by the generic rational frequency
response

(17)

It admits a stable causal inverse (i.e.,
, which is the impulse response of the system) iff. the

poles of the system are in the left complex half-plane. Interest-
ingly, there is no such restriction for defining the corresponding
family of exponential splines, which are entirely specified by
the poles and zeros of the system [20], nor for using this type
of operator for specifying generalized stochastic processes. In
general, the processes corresponding to BIBO stable inverse op-
erators6 are stationary, while the ones corresponding to unstable
operators (poles on the imaginary axis) are nonstationary. The
prototypical examples in this last category are the random poly-
nomial splines; these are generated by -fold integration which
is basically an unstable operation ( th-order pole at 0).

We believe that the major benefit of adopting a system mod-
eling point of view is that it provides us with a conceptual frame-
work for developing new “designer wavelets” that are matched
to particular classes of signals, in accordance with the scheme
outlined in Fig. 7.

V. ON THE WAVELET COMPRESSIBILITY OF GENERALIZED

POISSON PROCESSES

A. Operator-Like Wavelets

It is well known that conventional wavelet bases act like mul-
tiscale derivatives [9]. We have exemplified this behavior for
the Haar basis in our introductory discussion. More generally,

th-order wavelets, which have vanishing moments, behave
like th-order derivatives; i.e., they can be represented as

where is a suitable (lowpass) smoothing
kernel. In the case where the wavelet is a polynomial spline
(e.g., Battle-Lemarié or B-spline wavelet), the link with the
differential operator can be made completely explicit. For
instance, it is well known that the cardinal spline wavelet

6The present mathematical framework can cope with poles that are in the right
complex half-plane by allowing noncausal inverses, irrespective of any physical
consideration.



1000 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 3, MARCH 2011

Fig. 6. Pseudo-color display of a realization of the Mondrian process with
.

Fig. 7. A signal analysis paradigm where the operator L as well as the corre-
sponding wavelet decomposition are matched to the characteristics of a physical,
event-driven linear system.

where is the unique cardinal spline interpolator of order
, generates a semiorthogonal Riesz basis of for any

[41].
Remarkably, this concept carries over to more general classes

of operators provided that there is a corresponding spline con-
struction available. In particular, there exist wavelet bases that
are perfectly matched to the complete range of fractional deriva-
tive operators in Table I:

— the fractional spline wavelets which are linked to the oper-
ator [42], and well as [43], [44];

— the multidimensional polyharmonic spline wavelets asso-
ciated with the fractional Laplacian [45].

The latter are thin-plate spline functions that live in the span
of the radial basis functions (cf. Green’s
function in Table I). The spline wavelets come in a variety of
flavors (semi-orthogonal, B-spline, operator-like) and can also
be constrained to be orthogonal.

When the operator L is not scale-invariant anymore, we can
still build wavelets that form multiresolution hierarchies and
yield Riesz bases of , but that are no longer dilates of
one another. Yet, as long as the operator is shift-invariant, the

wavelets at a given resolution remain translates of a single pro-
totype whose generic form is

where is a resolution-dependent smoothing kernel [46]. In
the canonical construction, is an -spline interpolator with
respect to the grid at resolution (in accordance with Defini-
tion 1), which ensures that is itself an L-spline. The cor-
responding transform can also be implemented using Mallat’s
fast filterbank algorithm but with resolution-dependent filters.
In particular, we have shown how to construct 1-D wavelets that
replicate the behavior of any given th-order differential oper-
ator, as specified by (17) [47]. While the basic wavelet proto-
types are exponential splines, the scheme can be extended to
obtain generalized, operator-like Daubechies wavelets that are
both orthogonal and compactly supported [48].

B. Wavelet Analysis of Generalized Poisson Processes

We will now argue that the above operator-like wavelets are
matched to the type of generalized Poisson processes introduced
in this paper and that they will generally result in a sparse repre-
sentation. By solving the operator equation (12), we obtain the
following explicit representation of a generalized -Poisson
process:

where is a finite-dimensional signal component that is in
the null space of and where is the Green’s function of
such that ; the ’s are random locations that follow
a Poisson distribution with parameter while the ’s are i.i.d.
random weights with cumulative probability distribution .

Let us consider the analysis of such a process with any higher-
order L-wavelet transform with the property that
where the factor is a proper7 differential operator (the limit
case being ). The wavelet coefficients at resolu-
tion of are obtained as follows:

(18)

Recalling that the density of Poisson impulses is proportional
to , this result suggests that the wavelet representation of such a
process is intrinsically -sparse, provided that the ’s are de-
caying sufficiently fast. Indeed, since the essential support of the
smoothing kernel is usually proportional to (the wavelet
scale), it implies that a singularity will affect the same number of

7The requirements are: 1) linear shift-invariance and 2) with
sufficient decay, the worst case being where is the (possibly
fractional) order of the operator ([35, Prop. 2.4]).
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wavelet basis functions at any resolution (cone-like region of in-
fluence). This last characteristic number, which is 1 for the Haar
transform, can also be expected to increase with the order of L
since higher-order wavelets are typically less localized. Another
implicit effect is that the amplitude of the wavelet coefficients
will exhibit a certain rate of decay (or growth) with because of
the unit-norm normalization of the basis functions. For instance,
in the case of the Haar basis, we have that

where is a rescaled triangle
function.

Interestingly, this sparsifying behavior subsists if we consider
a mixed process of the type where
the ’s are independent generalized -Poisson processes (cf.
Section IV-E) with the ’s all being admissible factors of L. In
the case of 1-D derivative-like wavelets, the argument applies
to a broad class of piecewise-smooth signals because of the nu-
merous ways of factorizing a derivative of order

where and can be arbitrary. Concretely,
this means that a conventional wavelet of order will sparsify
signals that contain any variety of -Hölder point singularities
with (cf. Green’s function in Table I). The spline
operator-like wavelets discussed earlier turn out to be ideal for
this task because the calculations of in (18) can be carried
out analytically [44, Theorem 1]. Such a behavior of the wavelet
transform of a piecewise-smooth signal is well documented in
the literature, but it has not been made as explicit before, to the
best of our knowledge.

The above analysis also suggests that wavelet compressibility
is a robust property (i.e., it is not necessary to pick the “optimal”
wavelet that precisely matches the whitening operator of the
process). This is good practical news because it means that any
wavelet will do, provided its order is sufficient.

Less standard is the extension of the argument for other
types of operators that are not necessarily scale-invariant. In
particular, if we have prior physical knowledge of the signal
generation mechanism, we can invoke the above results to
justify the signal processing paradigm in Fig. 7. The proposed
wavelet-based approach is stable and much more robust to
modeling errors and noise than a conventional deconvolution
scheme. We have applied this strategy and demonstrated its
benefits in two concrete applications: (1) the reconstruction of
the dynamic positron emission tomograms with a constraint
on the -norm of the spatio-temporal wavelet coefficients
[49], and (2) the detection of neuronal activity using functional
magnetic resonance imaging [50]. In the first case, we have
tuned the time-domain wavelets to the pharmacokinetic model
that rules the time activity curve in response to the injection
of a radioactive tracer. In the second case, we matched the
wavelets to a linearized version of an established model of
the hemodynamic response of the brain. In both instances,
the results obtained with “designer” wavelets were superior to
those obtained with conventional ones.

VI. BACK TO THE COMPOUND POISSON PROCESS

To illustrate the suitability of the proposed formalism
for deriving new signal estimators, we consider the com-

pound Poisson process whose explicit form is given by
(4). First, we note that the total variation of this signal is

, which already makes an in-
teresting connection between parametric (FRI) estimation and

-minimization [cf. (3)]. To specify an optimal statistical esti-
mator (MAP or minimum mean-square error) for the denoising
problem in Section II, we need to know the th-order joint
probability density of the samples of the signal at the integers:

. Instead of working with these sam-
ples which are strongly correlated, we propose to consider the
finite-difference process ,
which is stationary with a very short correlation distance. To
specify this latter process mathematically, we use the technique
of Section IV-B to transfer the underlying operators onto the
argument of the characteristic form of the Poisson noise
given by Theorem 1

where is the anticausal B-spline of degree 0, which is
piecewise-constant and compactly supported in .
The critical step here is to show that

, which is best achieved in the Fourier domain by using
the relevant formula for in Table I

where the RHS factor is precisely the Fourier transform of .
Note that the (forward) finite difference operator , whose fre-
quency response is , suppresses the zero-order correc-
tion term of (integration constant), which is crucial for ob-
taining a stationary output. Next, we get the 2-D characteristic
function of the joint distribution
with and by evaluating the characteristic
form of for , which yields

. Moreover,
since the B-splines and are nonoverlap-
ping and the Poisson characteristic form in Theorem 1 factorizes
for functions with disjoint support, we have that

with

where we have used the fact that is equal to one for
and zero elsewhere to evaluate the inner integral

over . This factorization result proves independence and has
the following implication.

Proposition 1: The integer samples of the finite-difference
process where is a
generalized poisson process with parameters are
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i.i.d. random variables with probability distribution function
.

It follows that provides the complete information for the
statistical description of the sampled version of such signals.
Proposition 1 allows us to express the regularization functional
for the MAP estimator as a summation of independent log-like-
lihood terms, which results in a form that is compatible with the
discretized version of the TV estimator described by (3). Inter-
estingly, we can get an exact equivalence by making the formal
substitution in the Poisson functional.
The relevant Fourier-domain identity is

where the integral on the left-hand side (LHS) is convergent be-
cause as . This translates into
a pure -norm log-likelihood term:

, which may explain the superiority
of the TV algorithm in the denoising experiment in Section II.
The existence of this limit8 example is hard evidence of the rel-
evance of the proposed stochastic framework for sparse signal
recovery. We should keep in mind, however, that -regulariza-
tion is only one of the many possibilities, and that the proposed
framework is rich enough to yield a board class of statistical es-
timators. The topic calls for a more detailed investigation/eval-
uation which is beyond the scope of the present paper.

Let us close by providing an intuitive justification for the
digital prefiltering step that is implicit in Proposition 1: while
the defining differential equation (12) would suggest applying
the exact whitening/sparsifying operator L to the signal, this is
not feasible conceptually nor practically because: 1) we cannot
handle Dirac impulses directly, and 2) the measurements are dis-
crete. The next best thing we can do is to apply a discrete ap-
proximation of the operator (e.g., finite difference instead of a
derivative) to the samples of the signal to essentially replicate its
whitening effect. Remarkably, this discretization does not result
in any statistical approximation.

VII. CONCLUSION

We introduced a unifying operator-based formulation of sto-
chastic processes that encompasses the traditional Gaussian sta-
tionary processes, stochastic fractals which are Gaussian but
nonstationary, as well as a whole new category of signals with
finite rates of innovation. These signals are all specified as solu-
tions of stochastic differential equations driven by white noise of
the appropriate type. When the system is stable and the driving
noise is Gaussian, the approach is equivalent to the traditional
formulation of Gaussian stationary processes. Sparse or FRI sig-
nals are obtained in a completely analogous fashion by consid-
ering an impulsive Poisson noise excitation. It is important to
note that these generalized Poisson processes are not Gaussian,

8The proposed example does not correspond to a compound Poisson process
in the strict sense of the term because the function is not integrable.
It can be described as the limit of the Poisson process:

with , as
tends to infinity. Taking the limit is acceptable and results in a well-defined

stochastic process that is part of the extended Lévy family.

irrespective of the choice of the amplitude distribution of the
driving noise.

A particularly interesting situation occurs when the whitening
operator is scale-invariant; while the corresponding system is
unstable, we have shown that the operator can be inverted by
introducing suitable boundary conditions. The corresponding
Gaussian processes, which are self-similar, include Man-
delbrot’s famous fractional Brownian fields. The Poisson
counterparts of these processes in one or multiple dimensions
are random splines—unlike their fractal cousins, they are infin-
itely differentiable almost everywhere and piecewise-smooth
by construction.

We believe that this latter class of signals constitutes a good
test bed for the evaluation and comparison of sparsity-driven
signal processing algorithms. The specification of a statistical
model is obviously only a first step. A topic for future research
is the investigation and extension of the type of result in Propo-
sition 1 and the derivation and assessment of corresponding sta-
tistical estimators. While -minimization and wavelet-based al-
gorithms are attractive candidates, they are probably not the ul-
timate solution of the underlying statistical estimation problem.

APPENDIX I
RESULTS FROM THE THEORY OF GENERALIZED

STOCHASTIC PROCESSES [18]

We recall that a multidimensional distribution (or gen-
eralized function) is not defined through its point values
(samples) , but rather through its scalar products
(linear functionals) with all “test” functions

. Here, denotes Schwartz’s class of in-
definitely differentiable functions of rapid descent (i.e.,
as well as all its higher order derivatives decay faster than

). In an analogous fashion, Gelfand de-
fines a generalized stochastic process via the probability law
of its scalar products with arbitrary test functions ,
rather than by considering the probability law of its pointwise
samples , as is customary
in the conventional formulation.

A. The Characteristic Form

Given a generalized process and some test function
is a random variable characterized by a prob-

ability density . The specification of this PDF for any
allows one to define the characteristic form of the process

(19)

where is the expectation operator. is a functional of
that fully characterizes the generalized stochastic process .

In fact, Gelfand’s theory rests upon the principle that specifying
is equivalent to defining the underlying generalized sto-

chastic process.
Theorem 3 (Existence): Let be a positive-definite con-

tinuous functional on the test space such that . Then
there exists a generalized process whose characteristic func-
tional is .
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We will illustrate the concept with the (normalized) white
Gaussian noise process , which, in Gelfand’s framework, is
succinctly defined by

(20)

If we now substitute with the variable and
define , we get

which is the characteristic function (in the classical sense) of the
scalar random variable . The PDF of is obtained by inverse
1-D Fourier transformation, which yields

with . This clearly shows that all first-order
densities of the process are Gaussian. Similarly, to derive its
second-order statistics, we substitute in
(20) with as above and ; this produces the 2-D
Gaussian-type characteristic function

(21)

with and

By taking the 2-D inverse Fourier transformation of (21), we
readily derive the PDF of , which is zero-
mean Gaussian with covariance matrix . This result also yields
the covariance form of the white Gaussian noise process

More generally, based on the first equality in (21) which is
valid for any process (including non-Gaussian ones), we invoke
the general moment generating properties of the Fourier trans-
form to relate the covariance form of a process to a second-
order derivative of its characteristic form

(22)

The generalized stochastic process is called normalized
white noise iff. its covariance properties are described by the
simplest possible bilinear form . Note
that such a process need not be Gaussian and that it will essen-
tially take independent values at every point9. To see this, we
may select and consider a series of con-
tracting functions converging to a Dirac impulse. In the limit,
the correlation form will tend to
which is entirely localized at the origin and zero elsewhere.

9This is obviously a loose statement: white noise is discontinuous everywhere
and there is no hope in trying to specify its samples in the traditional pointwise
sense.

B. Linear Transformation of a Generalized Process

While the characteristic form may look intimidating on first
encounter, it is a powerful tool that greatly simplifies the charac-
terization of derived processes that are obtained by linear trans-
formation of the primary ones, including the cases where the
operator is highly singular (e.g., derivatives). Specifically, let T
be a linear operator whose action over Schwartz’s space of tem-
pered distributions is specified using a standard duality
formulation

(23)

where is the topological dual of . The key point in
such a definition is to make sure that the adjoint operator is
such that it maps a test function into another test function

; otherwise, the space of test functions needs to
be modified accordingly. Then, it is a trivial matter to obtain
the characteristic form of the transformed generalized stochastic
process

where we have used the adjoint’s definition
to move the operator onto the test function.

For instance, we can apply such an operator T to white
Gaussian noise to obtain a generalized “colored” version of a
noise process:

The noise will obviously remain white if and only if T (or, equiv-
alently, ) is norm preserving over , which is equiva-
lent to T being unitary. Note that this condition is fulfilled by
the Fourier transform (up to some normalization factor), which
proves that the Fourier transform of white noise is necessarily
white as well.

It is not hard to show that the correlation form of the linearly
transformed noise process is

where we observe that iff. T is unitary.

C. Generalized Power Spectrum

By restricting ourselves to the class of linear, shift-invariant
operations where is a suitable multidimensional
convolution kernel with frequency response and is (not
necessarily Gaussian) white noise, we can use this transforma-
tion mechanism to generate an extended class of stationary pro-
cesses. The corresponding correlation form is given by
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with and . Here, is
an extension of the classical power spectrum that remains valid
when is not square-integrable. For instance,
corresponds to the case of white noise (e.g., ). The filter

has the same spectral shaping role as in the classical theory
of stochastic processes with the advantage that it is less con-
strained.

APPENDIX II
PROOF OF THEOREM 1

The goal is to derive the characteristic form (8) starting from
the explicit representation of the Poisson process (5). To that
end, we select an arbitrary infinitely differentiable test function

of compact support, with its support included in, say, a cen-
tred cube . We denote by the number of
Poisson points of in ; by definition, it is a Poisson random
variable with parameter . The restriction of to
corresponds to the random sum

using an appropriate relabeling of the variables
in (5); correspondingly, we have
.

By the order statistics property of Poisson processes, the
are independent and all equivalent in distribution to a random
variable that is uniform on .

Using the law of total expectation, we expand the character-
istic functional of , as

by independence

total expectation

as is uniform in

(24)

The last expression has the inner expectation expanded in terms
of the distribution of the random variable . Defining the
auxiliary functional

we rewrite (24) as

Next, we use the fact that is a Poisson random variable to
compute the above expectation directly

Taylor

We now replace by its integral equivalent, noting also that
, whereupon we obtain

As vanishes outside the support of (and,
therefore, outside ), we may enlarge the domain of the
inner integral to all of , yielding (8). Finally, we evoke a
density/continuity argument to extend the result to the functions
of the Schwartz class that are not compactly supported, which
is justifiable provided that the first absolute moment of is
bounded.

APPENDIX III
PROOF OF THEOREM 2

First, we prove that for
.

The condition ensures that the moments
are finite up to order . More gen-

erally, it implies that and its derivatives up to order are
uniformly bounded. The auxiliary function

is therefore well defined, and the task

reduces to showing that .
To guarantee square integrability of the singularity

of at the origin, we must make sure that
with as tends to .

Since is sufficiently regular for its th-order taylor series
to be well-defined, we have that where

so that the condition is automatically satisfied.
To establish -integrability over the rest of the do-

main, we invoke the triangle inequality. The delicate as-
pect there is the decay at infinity of the elementary signals

with for .
The strict requirement is that , which is guaranteed
for noninteger, but not otherwise.
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This boundedness result ensures that the Gaussian character-
istic form (13) is well defined. As for the Poisson functional, we
can transfer the Gaussian bound to the real part of the argument
in the exponential function in (14). Specifically, we have that

which is bounded by

based on . This takes care entirely of the
symmetric Poisson case.

We construct a similar bound for the imaginary part using
the inequality . It will be finite whenever

, or more generally, if decays like
with as goes to infinity. In order to complete

the proof for the noneven case, one needs to show that
meets the required conditions, which is presently left as an open
issue. The problem is easily overcome when the moments of
are zero up to order , but this is probably too restrictive a
condition.

Upon the completion of this work, we came up with an alter-
native approach where we further regularize the inverse oper-
ator by including higher-order correction terms in (15) to ensure
that for all [35]. A remarkable
finding is that the combination of scale-invariance and -sta-
bility uniquely specifies the inverse.
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