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FRACTIONAL BROWNIAN VECTOR FIELDS∗

POUYA DEHGHANI TAFTI† AND MICHAEL UNSER†

Abstract. This work puts forward an extended definition of vector fractional Brownian motion
(fBm) using a distribution theoretic formulation in the spirit of Gel’fand and Vilenkin’s stochas-
tic analysis. We introduce random vector fields that share the statistical invariances of standard
vector fBm (self-similarity and rotation invariance) but which, in contrast, have dependent vector
components in the general case. These random vector fields result from the transformation of white
noise by a special operator whose invariance properties the random field inherits. The said operator
combines an inverse fractional Laplacian with a Helmholtz-like decomposition and weighted recom-
bination. Classical fBm’s can be obtained by balancing the weights of the Helmholtz components.
The introduced random fields exhibit several important properties that are discussed in this paper.
In addition, the proposed scheme yields a natural extension of the definition to Hurst exponents
greater than one.
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1. Introduction. A one-dimensional fractional Brownian motion (fBm) BH(x),
x ∈ R, is a nonstationary zero-mean Gaussian random process satisfying BH(0) = 0,
with the characteristic property that for any fixed step size |x − y| the increment
BH(x)− BH(y) is a stationary Gaussian process with a variance proportional to the
step size:1

E{|BH(x)−BH(y)|2} = 2α|x− y|2H .

The parameter H ∈ (0, 1) is known as the Hurst exponent, after Harold Edwin Hurst,
a pioneer in the study of long-range statistical dependence [21, 53] (α is an arbitrary
positive constant).

The above definition can be extended to the multivariate setting in the style of
Lévy’s characterization of multiparameter Brownian motion [29, 30], by making the
parameter x a vector in Rd and defining multidimensional fBm as a Gaussian random
field with a variogram of the form

E{|BH(x)−BH(y)|2} = 2α‖x− y‖2H

(we shall use bold symbols to denote vector quantities).
FBm’s are important examples of stochastic fractals: They are statistically self-

similar in the sense that an fBm BH(·) and its scaled version σHBH(σ·) have the
same statistics. FBm processes have been used to model natural and man-made phe-
nomena in different areas of application including optics, fluid mechanics, seismology,
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1The second moment of the increment of a process, defined in the above fashion, is also known
as its variogram or structure function.
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1646 POUYA DEHGHANI TAFTI AND MICHAEL UNSER

financial mathematics, network traffic analysis, and image processing, among oth-
ers [13, 14, 15, 24, 27, 33, 39, 40, 48, 54]. Since the notion of invariance that inspires
the definition of fractals is also fundamental in physics, it is natural to expect that
the scope of applications of such models will further expand with time. For the same
reason, investigation of physical invariances and stochastic models characterized by
them seems worthwhile.

Our goal in the present paper is to extend the definition of fBm to the vector
(multicomponent) field setting. In this undertaking we draw our inspiration from two
sources. One is the usual consideration of self-similarity. The second influence comes
from physics, as we shall impose on the model a special form of rotation invariance
that is compatible with the effect of rotations on coordinates of physical vector fields.

We remark that a trivial vectorial extension of scalar fBm satisfying the conditions
of homogeneity and vector rotation invariance can be readily constructed by taking
the components of the d-dimensional vector to be independent scalar fBm’s. This
extension is consistent with the variogram relation [22]

(1.1) E{‖BH(x)−BH(y)‖2} = 2α′‖x− y‖2H

(note that the absolute value has been replaced by a Euclidean norm in the argument
of the expectation operator). But it should be emphasized that (1.1) in itself does
not specify the cross-correlation structure of the components of BH , and the clas-
sical assumption of independent components is not exhaustive. Hence, in this paper
we shall consider more general families of fractal vector fields satisfying (1.1) whose
vector components can be correlated in ways that lead to a full range of vectorial
comportment from fully solenoidal to completely irrotational.

This paper continues the line of reasoning adopted in Tafti, Van De Ville, and
Unser [51] (where we considered scalar fBm fields) and more originally in Blu and
Unser [4] (where one-dimensional fBm processes were studied). In keeping with these
previous works, we shall characterize fBm vector fields as particular solutions of a
stochastic fractional differential equation

(1.2) UBH = W

subject to zero boundary conditions at x = 0, where W denotes a vector of normal-
ized and independent white noise fields (defined in subsection 3.1). The “whitening”
operator U is chosen based on its specific invariance properties that carry over to the
random vector field BH . U will turn out to be a generalization of the fractional vector
Laplacian (−∆)γ , with additional parameters that control the solenoidal versus irro-
tational tendencies of the solution. Rigorous interpretation and inversion of (1.2) are
conducted in the framework of Gel’fand and Vilenkin’s theory of generalized random
processes and distributional stochastic analysis [18]. Some aspects of this theory that
are relevant to our work are summarized in subsection 3.1.

Our characterization by means of a whitening equation gives mathematical mean-
ing to inverse power-law spectra that are traditionally associated with self-similar
processes, by providing the mechanics for resolving the singularity of the said spectra
at ω = 0 (the noted processes, being nonstationary, do not have power spectra in the
classical sense). We should, however, note that in a different approach to the mathe-
matical modeling and simulation of self-similar physical phenomena, the introduction
of a cut-off length can provide an alternative way of dealing with the frequency-domain
singularity.
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Previous related work in the direction of the present paper has appeared, for
instance, in Yaglom [62], where a second-order analysis of random vector fields with
similar invariance properties was given. Yaglom and others also considered, albeit
separately, scalar random processes with stationary nth-order increments [11, 42, 63].
In addition to differences in formulation and approach—for example, in our consider-
ation of singular operators and our focus on characteristic functionals—in the present
paper we bring together these separate generalizations (cf. subsection 4.4). Further-
more, our approach is not limited, in essence, to the study of second-order statistics
(even though this would have sufficed for the Gaussian fields considered here). This
means that by using a similar approach it is possible, without too much difficulty, to
construct and completely characterize other—non-Gaussian—models satisfying simi-
lar invariance properties, by driving (1.2) with different types of non-Gaussian white
noise.

On the applied side, consideration of models in line with (1.1) and their rel-
atives has a long history in fluid dynamics and specifically in the study of turbu-
lence, although the emphasis and methodology are frequently different from ours
(see, e.g., Monin and Yaglom [37, Chapter 8], Avellaneda and Majda [2], Carmona [7],
Orszag [38], or Klyatskin, Woyczynski, and Gurarie [25]).

In the remainder of this paper we first turn our attention to the search for an
operator U satisfying the required invariances (section 2). There, the question of in-
verting U—which is necessary for solving (1.2)—requires us to consider a particular
regularization of singular Fourier integrals. Next, in section 3, we solve (1.2) and give
a complete stochastic characterization of generalized vector fBm fields as particular
solutions of this equation. A list of the main properties of these random fields is
given in section 4. This is followed by computer simulations (section 5) and conclu-
sions (section 6). Proofs of some intermediate results have been deferred until the
appendices.

2. Vector operators invariant under rotation and scaling.

2.1. Generalized fractional Laplacians. Let f(u), u ∈ Rd, represent a vec-
tor field in terms of the standard coordinates u = (u1, . . . , ud). Consider a second
coordinate system x related to u by means of a smooth invertible map φ : Rd → Rd

as per

x = φ(u).

The coordinates of f in the second system are then given by the formula

fφ(x) =
∂φ

∂u
(u)f(u)

(this can be seen as a consequence of identifying vector fields with differential one-
forms and applying the chain rule of differentiation; cf. Rudin [44, paragraphs 10.21,
10.42]).

In particular, for a linear coordinate transformation x = Mu, where M is an
invertible d× d matrix, one has

fM(x) = Mf(M−1x).

It follows that if M = Ω is orthogonal (in particular, a rotation matrix), then

fΩ(x) = Ωf(Ω
Tx);
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1648 POUYA DEHGHANI TAFTI AND MICHAEL UNSER

and if M = σI with σ > 0 (a scaling), then

fσ(x) = σf(σ−1x).

We shall consider certain convolution operators acting on vector fields, as well as
their inverses. By the former we mean those operators which can be written in terms
of an inverse Fourier integral as per

(2.1) U : f &→ (2π)−d

∫

Rd

ej〈x,ω〉Û(ω)f̂(ω) dω,

where Û is the (matrix-valued) Fourier expression for the operator U and f̂ is the
Fourier transform of f .

Operators of the above type appear in equations of the form

(2.2) UBH = W ,

which we shall use to model statistically self-similar (homogeneous) and rotation-
invariant (isotropic) vector fields. These properties are imposed on the solution BH

of the above equation by requiring that the right inverse of U interact in a particular
way with rotations and scalings of the coordinate system.2

The “invariance” properties the operator U is required to satisfy are the following:

UfΩ = (Uf)Ω (rotation invariance);(2.3)

Ufσ = σ2γ(Uf)σ (degree 2γ homogeneity)(2.4)

(γ relates to one of the main parameters of the family of the random solutions, namely
the Hurst exponent, by the relation H = 2γ − d/2). Note that we shall assume
invariance with respect to improper rotations (with detΩ = −1) as well as proper
rotations (with detΩ = 1).

The above properties translate, respectively, to the following conditions on the
Fourier expression of the operator U:

Û(Ωω) = ΩÛ(ω)ΩT (rotation invariance);(2.5)

Û(σω) = σ2γÛ(ω) (homogeneity).(2.6)

The following theorem was proved by Arigovindan for d = 2, 3 [1]. It can be shown
more generally to hold in any number of dimensions.

Theorem 2.1 (Arigovindan [1]). A vector convolution operator satisfying prop-
erties (2.3) and (2.4) has a Fourier expression of the form

(2.7) Φ̂
γ

ξ(ω) = ‖ω‖2γ
[
eξirr

ωωT

‖ω‖2 + eξsol
(
I− ωωT

‖ω‖2

)]
,

with ξ = (ξirr, ξsol) ∈ C2.
It is easy to verify that the converse of the theorem is also true for arbitrary

dimension d. Since we shall be considering real operators, in what follows we shall
implicitly assume eξirr , eξsol ∈ R without further mention.

2We shall have to consider a right inverse of U that—unlike U—is not shift invariant and does
not correspond to a convolution; hence the solution BH will not be stationary (more on this later).
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The operators introduced in Theorem 2.1 generalize vector Laplacians in two
senses (fractional orders and reweighting of solenoidal and irrotational components).
We shall therefore refer to them as fractional (vector) Laplacians and use the symbol

(−∆)γξ to denote the operator with Fourier expression Φ̂
γ

ξ . To gain a better under-
standing of the action of fractional vector Laplacians, it is instructive at this point
to recall the Fourier expressions (in standard Cartesian coordinates) of some related
vector differential operators:3

(2.8)

grad
F←−→ jω;

div
F←−→ (jω)T;

curl
F←−→

[
0 −jω3 jω2
jω3 0 −jω1

−jω2 jω1 0

]
;

grad div
F←−→ −ωωT;

curl curl
F←−→ ‖ω‖2I− ωωT;

∆
F←−→ −‖ω‖2I;

E
F←−→ ωωT

‖ω‖2 ;

(−∆)γξ
F←−→ Φ̂

γ

ξ(ω) = ‖ω‖2γ
[
eξirr ωωT

‖ω‖2 + eξsol
(
I− ωωT

‖ω‖2

)]
.

The penultimate operator (E) and its complement (Id − E) project a vector field
onto its curl-free and divergence-free components, respectively. In other words, to-
gether they afford a Helmholtz decomposition of the vector field on which they act
(these operators appear prominently in fluid dynamics literature [8, 9, 10, 46]). This
is because

div (Id− E) = 0 and curl E = 0.

In addition, one has

E grad = grad and E curl = 0.

(Id− E) is known as the Leray projector in turbulence literature.
Our notation for the fractional vector Laplacian (−∆)γξ is motivated by the ob-

servation that it can be factorized as

(−∆)γξ = (−∆)γ0
[
eξirrE + eξsol (Id− E)

]
.

In view of the properties of the operator E, this factorization means that the operator
(−∆)γξ combines a coordinatewise fractional Laplacian with a reweighting of the curl-
and divergence-free components of the operand.

2.2. Some properties of Φ̂
γ

ξ . Let us now take a closer look at the family of

matrix-valued functions Φ̂
γ

ξ , γ, eξirr , eξsol ∈ R. They, of course, satisfy the required
invariances:

Φ̂
γ

ξ(Ωω) = ΩΦ̂
γ

ξ(ω)ΩT;

Φ̂
γ

ξ(σω) = σ2γΦ̂
γ

ξ(ω).

3Note that, while the curl operator is classically defined in three dimensions, the equivalents of
graddiv, curl curl, and ∆ = graddiv− curl curl can be defined in any number of dimensions,
for instance by their Fourier symbols. In fact, for arbitrary d, the equivalents of − curl curl and
−graddiv that appear in the definition of the vector Laplacian correspond, respectively, to the
product of d-dimensional curl and divergence with their adjoints.
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But they exhibit, in addition, the following properties.
(Φ̂1) Closedness under multiplication. We have

Φ̂
γ1

ξ1
(ω)Φ̂

γ2

ξ2
(ω) = Φ̂

γ1+γ2

ξ1+ξ2
(ω),

which belongs to the same family. To see this, note that the matrix

Ê(ω) :=
ωωT

‖ω‖2

which appears in the definition of Φ̂
γ

ξ is a projection, and therefore

Ê2 ≡ Ê and Ê(I− Ê) ≡ 0.

(Φ̂2) Closedness under matrix inversion. The inverse of the matrix Φ̂
γ

ξ(ω), for

ω )= 0, is equal to Φ̂
−γ

−ξ(ω), which is again in the same family. This follows from the

previous property and the observation that Φ̂
0

0(ω) is the identity matrix for ω )= 0.
(Φ̂3) Closedness under Fourier transformation. The family is closed under el-

ementwise Fourier transforms in the particular fashion indicated by the following
lemma.

Lemma 2.2. Let

Ψ̂
γ

ξ :=
2−γ

Γ(γ + d
2 )
Φ̂

γ

ξ ,

where Γ denotes the Gamma function. The elementwise inverse Fourier transform of
Ψ̂

γ

ξ (in the sense of generalized functions [17]) is given by the formula

F−1
{
Ψ̂

γ

ξ

}
= (2π)−

d
2 Ψ̂

−γ−d
2

ζ ,

where ζ = (ζirr, ζsol) is related to ξ = (ξirr, ξsol) by

eζirr = 2γ+d−1
2γ eξirr − d−1

2γ eξsol and eζsol = − 1
2γ e

ξirr + 2γ+1
2γ eξsol .

A proof can be found in Appendix A.
In particular, observe that if eξirr = eξsol , then eζirr = eζsol = eξirr = eξsol .

2.3. Inverse fractional Laplacians. The purpose of inverting the fractional
Laplacian operator introduced in the previous subsection is to allow us to solve an
equation of the form

(2.9) (−∆)γξg = h.

This equation is understood in the sense of the identity

〈(−∆)γξg,f〉 = 〈h,f〉,

which must hold for all test functions f in some appropriate space.4 In other words,
the sides of the former equation are viewed as generalized functions belonging to the
dual of the space of test functions f .

4More precisely, the action of (−∆)γξ on g itself is defined by the duality relation

〈(−∆)γξg, f〉 = 〈g, (−∆)γ∗ξ f〉,

where (−∆)γ∗ξ is the adjoint of the fractional Laplacian. With some abuse of notation, we shall denote

(−∆)γ∗ξ by (−∆)γ
ξ
, as the two operators share the same Fourier expression (they are, however, defined

on different spaces). Also note that g and h need not belong to the same space, which in turn means
that the test functions applied to them may come from different function spaces.
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The solution to (2.9) is sought in some generalized function space (e.g., a subspace
of (S ′)d). Solving (2.9) for general h is made possible by finding a right inverse of
(−∆)γξ which injects h into the said space of solutions. Let us denote the desired

right inverse by (−∆́)−γ
−ξ . We shall define its action on h by the action of its adjoint

(−∆̀)−γ

−ξ
on test functions:

(2.10) g = (−∆́)−γ
−ξh ⇔ 〈g,f〉 = 〈h, (−∆̀)−γ

−ξ
f〉.

The adjoint operator is a left inverse of the dual Laplacian over the test function
space since

〈h, (−∆̀)−γ

−ξ
(−∆)γ

ξ
f〉 = 〈(−∆)γξ(−∆́)−γ

−ξh,f〉 = 〈h,f〉.

We hinted previously that in order to use (2.2) with U = (−∆)γξ , γ > 0, to
define self-similar and isotropic random fields we would be seeking a particular right
inverse of (−∆)γξ that retains its properties of homogeneity and rotation invariance.
Equivalently, the adjoint (i.e., the left inverse) must be homogeneous and rotation
invariant. Furthermore, it will be found necessary for our characterization that the
range of the left inverse be a subspace of (L2)d (cf. subsection 3.1).

In connection with the fractional Laplacian we make the following observation.
Let us first consider test functions belonging to the subspace Sd

0 of Sd consisting
of Schwartz functions with vanishing moments (i.e., zero derivatives of all orders
at the origin of the Fourier space). (−∆)γξ is a bijection on this space, and hence

also on its dual (Sd
0 )

′, which can be identified with the quotient space of tempered
distributions modulo polynomials, denoted by (Sd)′/Π. The left and right inverses of
(−∆)γξ therefore coincide on Sd

0 and on (Sd
0 )

′. On either space, they are both given
by the integral

(2.11) (2π)−d

∫

Rd

ej〈x,ω〉Φ̂
−γ

−ξ(ω)f(ω) dω.

However, from the identification of (Sd
0 )

′ with (Sd)′/Π one sees that the extension
of the right inverse to (Sd)′ is not unique. This is precisely because (−∆)γξ has a

nontrivial null space in (Sd)′ due to the zero of its symbol at ω = 0. Correspondingly,
the action of the left inverse on an arbitrary test function in Sd is not a priori well-

defined, as its Fourier expression (Φ̂
−γ

−ξ) is singular at ω = 0.
The problem of finding inverse operators that satisfy the desired properties (in-

variances and L2-boundedness of the left inverse) can therefore be reformulated as
that of choosing a particular regularization of the singular Fourier integral of (2.11)
consistent with the said requirements. This will be the subject of the remainder of
this subsection.

By a regularization of the singular Fourier integral operator of (2.11) we mean the
following. Assume f ∈ Sd

0 to be a function with vanishing moments; f then satisfies
∂kf̂(0) = 0 for all nonnegative multi-integers k. As was already noted, the above
Fourier integral converges for such f . Consequently, the restriction of (−∆)−γ

−ξ to this

subspace of Sd is well-defined and inverts (−∆)γξ (and, by duality, the adjoint inverse

can be applied to the dual of the image of this subspace). A regularization of (−∆)−γ
−ξ

is an extension of it to a larger class of functions, in our case Sd.
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There exists a canonical regularization of the above singular integral, which is ho-
mogeneous and rotation and shift invariant. It can be shown that the canonical regu-
larization, which is the one considered by Gel’fand and Shilov [17] and Hörmander [20],
corresponds to a convolution with a homogeneous generalized function. Unfortunately,
this regularization fails the third of our requirements, namely L2-boundedness. We
shall therefore have to consider a different regularization of (2.11).

In what follows, we shall always limit our consideration to values of γ such that

(2.12) 2γ − d
2 )∈ Z.

It will be seen later that this condition is equivalent to requiring that the Hurst
exponent H )∈ Z in the definition of fBm (see the discussion following Theorem 3.2).

To extend the definition of the (left) inverse from functions with vanishing mo-
ments to arbitrary test functions f ∈ Sd let us introduce the regularization operator

(2.13) Rγ : f(·) &→ f(·) −
∑

|k|≤)2γ−d
2 *

Tk[f ](·)k,

where Tk[f ] denotes the (vector) coefficient of (·)k in the Taylor series expansion of
f(·) around 0 (we use multiindex notation). Next, consider the operator

(2.14) (−∆̀)−γ
−ξ : f &→ (2π)−d

∫

Rd

ej〈x,ω〉Φ̂
−γ

−ξ(ω)[Rγ f̂ ](ω) dω

(defined in the sense of the L2 Fourier transform). This operator essentially removes
sufficiently many terms from the Taylor expansion of f̂(ω) at ω = 0 so as to make the

singularity of Φ̂
−γ

ξ (ω) square integrable. Of key importance is the fact that (−∆̀)−γ
−ξ

maps Schwartz test functions in Sd to square-integrable functions (assuming, as we
already stated, that 2γ − d

2 )∈ Z).
Proposition 2.3. The operator (−∆̀)−γ

−ξ
maps Sd into (L2)d on the condition

that 2γ − d/2 )∈ Z.
Proof. By Parseval’s identity,

‖(−∆̀)−γ

−ξ
f‖2 = (2π)−d‖Φ̂

−γ

−ξ [R
γ f̂ ](ω)‖2

= (2π)−d

∫

Rd

[Rγ f̂ ]H(ω)Φ̂
−2γ

−2Re ξ(ω)[Rγ f̂ ](ω) dω

= (2π)−d

∫

Rd

∑

1≤m,n≤d

Rγ f̂m(ω)
[
Φ̂

−2γ

−2Re ξ(ω)
]
mn

Rγ f̂n(ω) dω.

We may consider the behavior of the integrand separately about ω = 0 and at infinity.

First, note that Rγ f̂m(ω)Rγ f̂n(ω) has a zero of order at least 2-2γ−d/2.+2 at ω = 0

(cf. the definition of Rγ in (2.13)). Since the singularity of
[
Φ̂

−2γ

−2Re ξ(ω)
]
mn

at ω = 0
is of order −4γ and

2-2γ − d/2.+ 2− 4γ > −d

for 2γ − d/2 )∈ Z, the integral converges about ω = 0.

At infinity, Rγ f̂m(ω)Rγ f̂n(ω) is dominated by the polynomial term and grows at

most like ‖ω‖2)2γ−d/2*, while
[
Φ̂

−2γ

−2Re ξ(ω)
]
mn

decays like ‖ω‖−4γ . We have

2-2γ − d/2. − 4γ < −d,
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from where it follows that the integral also converges at infinity. The (L2)d norm of
(−∆̀)−γ

−ξ
f is therefore bounded.

The Hermitian adjoint5 of (−∆̀)−γ
−ξ is the operator

(2.15) (−∆́)−γ

−ξ
: f &→ (2π)−d

∫

Rd



ej〈x,ω〉 −
∑

|k|≤)2γ−d
2 *

j|k|xkωk

k!



 Φ̂
−γ

−ξ(ω)f̂ (ω) dω

(see Appendix B).
As was suggested, (−∆̀)−γ

−ξ and (−∆́)−γ
−ξ are named, respectively, the left and

right inverses of (−∆)γξ . They satisfy

(2.16) (−∆̀)−γ
−ξ(−∆)γξ = Id and (−∆)γξ(−∆́)−γ

−ξ = Id

over Sd. We may further extend the domain of (−∆́)−γ

−ξ
to a subset of generalized

functions (distributions)6 on Sd, using as definition the duality relation

〈(−∆́)−γ

−ξ
g,f〉 := 〈g, (−∆̀)−γ

−ξf〉

wherever the right-hand side (r.h.s.) is meaningful and continuous for all f ∈ Sd.
It is easily verified that (−∆̀)−γ

−ξ and, by duality, (−∆́)−γ

−ξ
are rotation invariant

and homogeneous. This fact is captured in our next proposition, which we shall prove
with the aid of the following lemma.

Lemma 2.4. Rγ [f(M−1·)](x) = [Rγf(·)](M−1x).
Proof. By the uniqueness of the Taylor series expansion,

r.h.s. = f(M−1x) −
∑

|k|≤)2γ−d
2 *

Tk[f ](M
−1x)

k
= l.h.s.

Proposition 2.5. The operators (−∆̀)−γ
−ξ and (−∆́)−γ

−ξ
are rotation invariant

and homogeneous in the sense of (2.3) and (2.4).
Proof. For a nonsingular real matrix M,

(−∆̀)−γ
−ξfM(x) = (2π)−d

∫

Rd

|detM| ej〈x,ω〉Φ̂
−γ

−ξ(ω)[RγMf̂ ](MTω) dω

= (2π)−d
∫

Rd

ej〈M
−1x,ρ〉Φ̂

−γ

−ξ(M
−Tρ)M[Rγ f̂ ](ρ) dρ

by Lemma 2.4 and with the change of variables ρ = MTω. Equations (2.5) and (2.6)
can now be used to verify the rotation invariance and homogeneity of (−∆̀)−γ

−ξ (and,

by duality, of (−∆́)−γ

−ξ
).

5This adjoint is with respect to the Sd scalar product

〈f ,g〉 :=
∫

Rd
fH(x)g(x) dx =

∑

1≤i≤d

〈fi, gi〉.

6By these we mean members of the dual (Sd)
′
of Sd. As a matter of fact, (Sd)

′
can be identified

with (S′)d.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1654 POUYA DEHGHANI TAFTI AND MICHAEL UNSER

Finally, we note that the scalar counterparts of the vector left and right inverses
were defined in our previous paper [51] (as generalizations of the one-dimensional
definitions of Blu and Unser [4]) as follows:

(2.17)

(−∆̀)−γ : f &→ (2π)−d

∫

Rd

ej〈x,ω〉‖ω‖−2γ



f̂(ω)−
∑

|k|≤)2γ−d
2 *

f (k)(0)ωk

k!



 dω;

(−∆́)−γ : f &→ (2π)−d
∫

Rd



ej〈x,ω〉 −
∑

|k|≤)2γ−d
2 *

j|k|xkωk

k!



 ‖ω‖−2γ f̂(ω) dω.

They share the conjugacy and inversion properties of the vector inverses (cf. (2.10),
(2.16)). Notice that the operand, f , is now scalar valued. Also, the vectorial parame-
ters ξirr, ξsol have no equivalent in the scalar case.

Digression 2.6. The reader may be wondering why we should bother at all about
singular integrals and distinct left and right inverses when we could have—as indicated
in the introduction to this subsection—conveniently characterized the solution as an
element of the space (Sd)′/Π of Schwartz distributions modulo polynomials, on which
space the fractional Laplacian is bijective and therefore uniquely invertible. This would
indeed be possible, since the space Sd

0 , being a subspace of a nuclear space, is again
nuclear [41, Chapter 5]; therefore the theorems of Minlos (see [26, 36]) which we shall
use in subsection 3.1 apply to it. By following this approach, one can characterize
fractional Brownian vector fields as random elements of (Sd)′/Π (i.e., as random
equivalence classes of tempered distributions modulo polynomials). One could in fact
do even better by considering test functions with a finite number of vanishing moments
and their dual spaces (Schwartz distributions modulo polynomials of some finite order),
as was done by Dobrushin [11] in the scalar setting. (On a related note, the reader
might also wish to consult the work of Vedel on the wavelet analysis of the Mumford
process [59]; see also Bourdaud [5].)

However, the latter approach—although more straightforward from a technical
point of view—does not provide us, at least immediately, with as complete a char-
acterization of the stochastic solutions to (2.2) as the one we shall see in the following
sections.

As far as the spaces of solutions are concerned, another possibility would be to
use fractional Sobolev spaces, as proposed by Ruiz-Medina, Anh, and Angulo [45]
and Kelbert, Leonenko, and Ruiz-Medina [23]. It appears that this approach would
work especially well when considering Gaussian self-similar vector fields. Working
with spaces of generalized functions, on the other hand, allows us to use the method
of characteristic functionals [26, 36, 43], which shows its versatility when extending
the work to the study of non-Gaussian random models.

3. Vector fBm. A classical definition of the scalar isotropic fractional Brownian
motion field with Hurst exponent H (denoted BH , with 0 < H < 1) goes as follows:
BH is a zero-mean Gaussian field satisfying BH(0) = 0, with stationary (Gaussian)
increments whose variance depends on the step size as per

(3.1) E{|BH(x)−BH(y)|2} = 2α‖x− y‖2H .

This is a generalization of Lévy’s characterization of multiparameter Brownian mo-
tion [30], to which it reduces for H = 1

2 . The above expectation, as a function of x and
y, is also known as the variogram of the field BH (denoted here by Vario[BH ](x,y)).
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A straightforward extension of the above definition to the multicomponent (vec-
tor) setting is obtained by requiring the vector-valued field BH to satisfy

(3.2) E{‖BH(x)−BH(y)‖2} = 2α′‖x− y‖2H ,

where one now considers the Euclidean norm of the increments instead of their abso-
lute values [22]. This definition leaves the cross-correlation structure of the components
of BH unspecified; these are typically assumed to be independent, in which case the
components become scalar fBm’s of exponent H ; i.e., the generalization is trivial.
More generally, for a vector-valued random field, one may define a variogram matrix

Vario[BH ](x,y) := E
{
[BH(x)−BH(y)][BH(x)−BH(y)]H

}
.

The scalar function given in (3.2) corresponds to the trace of this matrix.
A different approach to defining fBm consists in characterizing it as a linear

transformation (essentially a fractional integral) of white noise. In this approach, one
starts with a white noise measure on some suitable space and proceeds to derive the
probabilistic law (probability measure on a certain space7) of fBm from there, showing
that it is consistent with the definition given in (3.1) and (3.2). One advantage of this
approach is that it is not, in its essence, limited to second-order statistical analysis;
this means that one is in principle free to consider non-Gaussian white noises within
the same framework.

In the scalar setting, it has been indicated previously in one way or another
that the linear transformation of white noise which produces fBm corresponds, in
effect, to the right inverse of the scalar fractional Laplacian introduced in (2.17)
(see, for instance, Tafti, Van De Ville, and Unser [51], Benassi, Jaffard, and Roux [3],
Leonenko [28], and Kelbert, Leonenko, and Ruiz-Medina [23] for the multidimensional
case and Samorodnitsky and Taqqu [47] and Blu and Unser [4] for the unidimensional
one). One may therefore say that the scalar fractional Brownian field BH solves—we
shall elaborate on this—the fractional Poisson equation

(3.3) (−∆)H/2+d/4BH = εHW

subject to boundary conditions imposed by the right inverse (zero at the origin); i.e.,

BH = εH(−∆́)−H/2−d/4W .

In the above formulaW denotes a Gaussian white noise field (defined in subsection 3.1)
and εH is a special constant related to α in (3.1) by

εH =

√

(2π)
d
2
22H+d/2Γ(H + d

2 )

|Γ(−H)| α.

Given that the only essential limitation on H values in the above characterization is
the exclusion of integer H (as a consequence of (2.12)), it can also serve as a natural
generalization of the definition of fBm to H > 1 [4, 51].

So far in this section we have identified two approaches towards defining scalar
fBm’s: first by means of the variogram and then through a transformation of white

7The space of tempered distributions is standard [19], although other choices are also possible
(cf. the monographs by Vakhania [58] and Talagrand [52] and the papers by Ruiz-Medina, Anh, and
Angulo [45] and Kelbert, Leonenko, and Ruiz-Medina [23]).
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noise. Early on in this section we also highlighted what may be considered a fun-
damental property of any reasonable vector generalization of fBm (see (3.2)). We
noted that a relatively trivial random vector field with the said property could be
constructed by grouping together d independent scalar fBm’s.

Next, we shall propose a more general definition of vector fBm consistent with
the trace structure of (3.2). We shall not, however, approach the problem by imposing
this requirement directly. Instead, following the line of reasoning sketched in the pre-
vious paragraph, our characterization relies on solving a stochastic fractional partial
differential equation similar to (3.3). From there, we shall then proceed to derive the
variogram of the model in section 4 and show that it has the desired trace property.

3.1. The whitening model. As hinted above, we shall take generalized vector
fBm to be the solution of the fractional Poisson equation

(3.4) (−∆)H/2+d/4
ξ BH,ξ = εHW

defined using the right inverse as per

(3.5) BH,ξ := εH(−∆́)−H/2−d/4
−ξ W ,

where W is a white noise vector field, to be defined shortly. The first identity is known
as a whitening equation in signal processing parlance (although there it is applied only
to stationary processes). We shall limit our consideration to real random fields.

Equations (3.4) and (3.5) may be understood as equivalences in law in a sense
we shall now describe. The main reference for the underlying theory of generalized
random fields is Gel’fand and Vilenkin [18].

BH,ξ and W are taken to be generalized random fields, i.e., random elements of
the continuous duals of certain spaces of test functions. Let us use X to denote one
such random element. Under some reasonable consistency conditions, by a generaliza-
tion of Kolmogorov’s extension theorem [36], the stochastic law (infinite-dimensional
σ-additive probability measure) of X is fully specified—in the sense of a σ-additive
measure on the σ-algebra of Borel cylinder sets—by way of indicating all finite joint
distributions of its “scalar products” with test functions. These products are classical
random variables denoted as 〈X,f〉, with f belonging to the desired test function
space.

By Minlos’s infinite-dimensional generalization of Bochner’s theorem [26, 36], it
is also possible to uniquely specify the stochastic law of a real random field X by its
characteristic functional, defined as the expectation

LX(f) := E
{
ej〈X,f〉},

provided the test functions belong to a nuclear space. More precisely, a probability
measure on a dual nuclear space gives rise to a positive-definite and continuous char-
acteristic functional, and, conversely, any positive-definite and continuous functional
on a nuclear space that evaluates to 1 at f ≡ 0 uniquely determines a probability
measure on the dual space.

The characteristic functional serves as an infinite-dimensional equivalent of the
characteristic function of a random variable. In particular, for any finite number of
test functions f1, . . . ,fN (N arbitrary), the N -variable function

ϕ(ω1, . . . , ωN ) := LX




∑

1≤i≤N

ωifi




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is the joint characteristic function of the random variables 〈X ,fi〉, 1 ≤ i ≤ N , which
is in one-to-one correspondence with their finite-dimensional joint measure by the
finite-dimensional version of Bochner’s theorem. Characteristic functionals have an
entire theory of their own on which we shall not elaborate here, referring instead to
Gel’fand and Vilenkin [18] and the survey article by Prohorov [43].

Another useful functional that one may consider is the correlation form of X,
defined as

〈〈f , g〉〉X := E
{
〈X,f〉〈X , g〉

}
for f , g ∈ Sd.

For real Gaussian fields, it can be shown that the correlation form and character-
istic functional are related by

(3.6) LX(f) = exp[− 1
2 〈〈f ,f〉〉X ],

which is consistent with the understanding that a Gaussian field is completely specified
by its second-order statistics.

A reasonable definition of scalar white noise can be given as a random field W
that has independent values at every point in the sense that for any two test functions
f, g with disjoint supports 〈W, f〉 and 〈W, g〉 are independent. With the additional
assumption that the field has Gaussian statistics, one is led to the standard definition
of scalar white Gaussian noise as the field with characteristic functional

LW (f) = exp[− 1
2‖f‖

2
2]

(‖ · ‖2 denotes the L2 norm). This random field exists as a random element of S ′

(i.e., it corresponds to a unique probability measure on S ′), as Minlos [36] has shown.
The above characteristic functional also defines a cylinder probability measure on
subspaces of L2.

We shall define the standard white Gaussian noise vector W as the field with
characteristic functional

LW (f) = exp[− 1
2‖f‖

2
2] = exp



− 1
2

∑

1≤k≤d

‖fk‖22



 .

It is clear that W corresponds to a vector of independent scalar white noise fields. Its
correlation form is given by the relation

(3.7) 〈〈f , g〉〉W = 〈f , g〉 =
∑

1≤k≤d

〈fk, gk〉.

Digression 3.1. The general form of the characteristic functional of a (not nec-
essarily Gaussian) one-dimensional white noise process can be found in Gel’fand and
Vilenkin [18]. In the multivariate setting, we note here in particular the characteristic
functional of a Poisson white noise field P consisting of Dirac impulses with indepen-
dent and identically distributed amplitudes with probability measure Pa and a spatial
Poisson distribution with parameter λ:

LP (f) = exp

[
λ

∫ ∫

Rd

(ejaf(x) − 1) dx Pa(da)

]
.
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Poisson white noise can be used to define non-Gaussian stochastic fractals that agree
with fractional Brownian models in their second-order statistics [57].

With our framework set as it is, all we now need is a means to derive the law of
BH,ξ from that of W , i.e., to give probabilistic meaning to (3.5). This we shall do as
follows.

By definition, the action of an operator on a generalized function (random or
deterministic) is described by the action of its adjoint on test functions. In particular,
we have (cf. (2.10))

(3.8) BH,ξ = εH(−∆́)−H/2−d/4
−ξ W ⇔ 〈BH,ξ,f〉 = 〈W , εH(−∆̀)−H/2−d/4

−ξ
f〉

for all test functions f ∈ Sd. One may interpret the right-hand equality as an equiv-
alence in joint law for all finite collections of test functions f .

We shall now make use of (3.8), (3.7), and (2.14) to find the correlation form of
vector fBm:

〈〈f , g〉〉BH,ξ = E
{
〈BH,ξ,f〉〈BH,ξ, g〉

}

= E
{
〈εH(−∆́)−H/2−d/4

−ξ W ,f〉〈εH(−∆́)−H/2−d/4
−ξ W , g〉

}

= |εH |2E
{
〈W , (−∆̀)−H/2−d/4

−ξ
f〉〈W , (−∆̀)−H/2−d/4

−ξ
g〉
}

= |εH |2〈〈(−∆̀)−H/2−d/4

−ξ
f , (−∆̀)−H/2−d/4

−ξ
g〉〉W

= |εH |2〈(−∆̀)−H/2−d/4

−ξ
f , (−∆̀)−H/2−d/4

−ξ
g〉

=
|εH |2

(2π)d

∫

Rd

[RH/2+d/4f̂ ]H(ω)Φ̂
−H− d

2

−2Re ξ(ω)[RH/2+d/4ĝ](ω) dω.

In view of the above identity and (3.6) we have the following theorem.

Theorem 3.2. The characteristic functional of the vector fBm BH,ξ is given by

(3.9) LBH,ξ(f) = exp

[
− |εH |2

2(2π)d

∫

Rd

[R
2H+d

4 f̂ ]H(ω)Φ̂
−H− d

2

−2Re ξ(ω)[R
2H+d

4 f̂ ](ω) dω

]
,

with Φ̂
−H− d

2

−2Re ξ(ω) and the regularization operator R
2H+d

4 defined as in (2.7) and (2.13),
respectively.

We remark that the positive-definiteness and continuity of LBH,ξ follow from

the positive-definiteness of LW and the continuity of LW and (−∆̀)−H/2−d/4
−ξ . These

imply the existence of a probability measure corresponding to the given characteristic
form, also for H > 1, thus extending the definition of fBm outside the usual range of
0 to 1 (however, by (2.12), integer Hurst exponents are once again excluded).

4. Some properties of vector fBm. In this section we shall establish some of
the main properties of the random fields defined in the previous section.

4.1. Self-similarity. Vector fBm fields are statistically self-similar (fractal) in
the sense that the random field BH,ξ(σ·) has the same statistical character as the
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field σHBH,ξ. This can be shown as follows:

〈BH,ξ(σ·),f(·)〉 = 〈εH [(−∆́)
− 2H+d

4
−ξ W ](σ·),f(·)〉 by (3.4),

= 〈σH+ d
2 εH(−∆́)

− 2H+d
4

−ξ {W (σ·)},f(·)〉 by (2.4),

= 〈σH+ d
2 εHW (σ·), (−∆̀)

− 2H+d
4

−ξ
f(·)〉 by duality,

= 〈σH+ d
2 σ− d

2 εHW (·), (−∆̀)
− 2H+d

4

−ξ
f(·)〉 by the homogeneity of W ,

= 〈σHεH(−∆́)
− 2H+d

4
−ξ {W (·)},f(·)〉 by duality,

= 〈σHBH,ξ(·),f(·)〉 by (3.4).

4.2. Rotation invariance. For any orthogonal transformation matrix Ω, the
random fields BH,ξ and ΩBH,ξ(Ω

T·) follow the same stochastic law. The demonstra-
tion is similar to the previous one.

4.3. Nonstationarity. Vector fBm is nonstationary. The operator (−∆̀)
− 2H+d

4
−ξ

is not translation invariant, and consequently the random variables

〈BH,ξ,f(·)〉 = 〈εHW , (−∆̀)
− 2H+d

4

−ξ
{f(·)}〉

and

〈BH,ξ,f(·+ h)〉 = 〈εHW , (−∆̀)
− 2H+d

4

−ξ
{f(·+ h)}〉

are not identically distributed in general.

4.4. Stationary nth-order increments. We shall now show that the incre-
ments of order -H.+ 1 of the field BH,ξ are stationary. In particular, for 0 < H < 1,
BH,ξ has stationary first-order increments, as is the case for standard fBm [53]. To
show this, let us first define the nth-order symmetric difference operator Dh1,...,hn

recursively by the relations

Dh1 : f(·) &→ f(·+ h1
2 )− f(· − h1

2 ),

Dh1,...,hn := DhnDh1,...,hn−1 ,

with h1, . . . ,hn ∈ Rd\{0}. The above operator is represented in the Fourier domain
by the expression

∏

1≤i≤n

2 sin 〈hi,ω〉
2 .

We have the following theorem.
Theorem 4.1. The vector fBm field BH,ξ has stationary increments of order

-H.+ 1; that is, the random field

Dh1,...,hnBH,ξ

with n = -H.+ 1 is stationary, irrespective of the lengths and directions of the steps
hi, 1 ≤ i ≤ n.
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Proof. We proceed to show that the characteristic functional of the increment field
In := Dh1,...,hnBH,ξ is shift invariant, i.e.,

LIn(f(· − h)) = LIn(f),

which then directly implies the stationarity of In.
Indeed, one may write

LIn(f(· − h)) = E
{
exp[j〈In,f(· − h)〉]

}

= E
{
exp[j〈Dh1,...,hnBH,ξ,f(· − h)〉]

}

= E
{
exp[j〈BH,ξ,D−hn,...,−h1f(· − h)〉]

}

= LBH,ξ(D−hn,...,−h1{f(· − h)})

= exp

[
− |εH |2

2(2π)d

∫

Rd



R
2H+d

4




f̂ (ω)e−j〈h,ω〉
∏

1≤i≤)H*+1

2 sin 〈hi,ω〉
2









H

· Φ̂
−H− d

2

−2Re ξ(ω)

[
R

2H+d
4

{
f̂(ω)e−j〈h,ω〉

∏

1≤i≤)H*+1

2 sin 〈hi,ω〉
2

}]
dω

]
.

Next, note that the partial derivatives at ω = 0 of the function

f̂ (ω)e−j〈h,ω〉
∏

1≤i≤)H*+1

2 sin 〈hi,ω〉
2 , ω ∈ Rd,

which appears as the argument of the regularization operator R
2H+d

4 in the integral,
all vanish up to order -H. + 1 at least; this means that the first -H. + 1 terms of
its Taylor expansion around the origin are all zero. As a result, the said function is a
fixed point of the regularization operator R

2H+d
4 (cf. (2.13)).

All this means that we have

LIn(f(· − h)) = exp

[
− |εH |2

2(2π)d

∫

Rd

[
f̂(ω)e−j〈h,ω〉

∏

1≤i≤)H*+1

2 sin 〈hi,ω〉
2

]H

· Φ̂
−H− d

2

−2Re ξ(ω)

[
f̂(ω)e−j〈h,ω〉

∏

1≤i≤)H*+1

2 sin 〈hi,ω〉
2

]
dω

]

= exp

[
− |εH |2

2(2π)d

∫

Rd

[f̂(ω)]HΦ̂
−H− d

2

−2Re ξ(ω)[f̂(ω)]
∏

1≤i≤)H*+1

4 sin2 〈hi,ω〉
2 dω

]
(4.1)

= LIn(f),

which is what we set out to prove.

4.5. The variogram and correlation form of vector fBm. As was seen in
the previous paragraph, for 0 < H < 1 the random field BH,ξ has stationary first-
order increments. In this case we may define its variogram (or second-order structure
function) as the correlation matrix of the stationary increment BH,ξ(x)−BH,ξ(y) =
Dx−yBH,ξ(

x+y
2 ). Formally, this is to say

Vario[BH,ξ](x,y) := E
{
I(0)[I(0)]H

}
,
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with I := Dx−yBH,ξ(· − x+y
2 ).

We shall proceed as follows to evaluate the above expression. First, we shall
find the cross correlation of the (stationary) scalar random fields [I]i and [I]j that
constitute the components of the vector I. The ijth element of the variogram matrix
then corresponds to the value of the said correlation function at 0.

We first obtain the correlation form of I from its characteristic functional (derived
from (4.1) by setting n = 1) by identification (cf. (3.6)):

〈〈f , g〉〉I =
|εH |2

(2π)d

∫

Rd

4 sin2 〈x−y
2 ,ω〉[f̂ (ω)]HΦ̂

−H− d
2

−2Re ξ(ω)[ĝ(ω)] dω.

Next, let f = êiφ and g = êjψ, where êi and êj denote standard unit vectors in
Rd and φ and ψ are scalar test functions. We have

E
{
〈[I]i, φ〉〈[I]j , ψ〉

}
= 〈〈f , g〉〉I

= (2π)−d

∫

Rd

4 sin2 〈x−y
2 ,ω〉

[
|εH |2Φ̂

−H− d
2

−2Re ξ(ω)
]
ij

φ̂(ω)ψ̂(ω)] dω.

By the kernel theorem, this last expression can be written in the spatial domain
as

(2π)−d

∫

Rd

c(t− τ )φ(t)ψ(τ ) dtdτ ,

where c(t) is the generalized cross-correlation function of the random fields [I]i and
[I]j . c(t) is given by the inverse Fourier transform of

4 sin2 〈x−y
2 ,ω〉

[
|εH |2Φ̂

−H− d
2

−2Re ξ(ω)
]
ij
=
(
ej〈x−y,ω〉 − 2 + ej〈y−x,ω〉)[|εH |2Φ̂

−H− d
2

−2Re ξ(ω)
]
ij
,

which, by Lemma 2.2, is equal to

(4.2) α
[
Φ̂

H

η (t + x− y)
]
ij
− 2α

[
Φ̂

H

η (t)
]
ij
+ α

[
Φ̂

H

η (t+ y − x)
]
ij

with η = (ηirr, ηsol) given by

(4.3)
eηirr = 2H+1

2H+de
−2Re ξirr + d−1

2H+d e
−2Re ξsol ;

eηsol = 1
2H+d e

−2Re ξirr + 2H+d−1
2H+d e−2Re ξsol .

In particular, we find the ijth element of the variogram matrix by evaluating (4.2)

at t = 0. This, along with the even symmetry of Φ̂
H

η , yields

2α
[
Φ̂

H

η (x− y)
]
ij

as the ijth element of the variogram. We have thus proved the following theorem.
Theorem 4.2. The variogram of a normalized vector fBm with parameters H ∈

(0, 1) and ξ = (ξirr, ξsol) is

(4.4) Vario[BH,ξ](x,y) = 2αΦ̂
H

(ηirr,ηsol)(x− y),

where the dependence of (ηirr, ηsol) on (ξirr, ξsol), H, and d is dictated by (4.3).
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Corollary 4.3. For 0 < H < 1 we have

E{‖BH,ξ(x)−BH,ξ(y)‖2} = α′‖x− y‖2H

with

α′ = [e−2Re ξirr + (d− 1)e−2Re ξsol ]α.

The proof is immediate, once it is observed that the above expectation is nothing
but the trace of (4.4). We have thus shown that the new definition of fBm is consistent
with (3.2).

We further remark that, by (4.3), eξirr = eξsol implies eηirr = eηsol (and vice versa).
Consequently, in the case of classical fBm (where ξirr = ξsol) the variogram matrix is
diagonal and the vector components are uncorrelated (and hence independent, due to
Gaussianity).

4.6. Wavelet analysis and stationarity. The utility of wavelet analysis in
studying fractal processes and turbulent flow has been noted frequently since the
early days of wavelet theory, and the stationarizing effect of wavelet transforms on
fBm has been widely documented [13, 16, 31, 34, 35, 60]. In this connection, an
interesting observation can be made with regard to the scalar products of BH,ξ with
test functions that have sufficiently many vanishing moments and, in particular, with
respect to the representation of BH,ξ in a biorthogonal wavelet system.8

Let ψn,k ∈ L2 and ψ̃n,k ∈ L2 symbolize the primal and dual basis functions of a
biorthogonal wavelet system, with n denoting the resolution and k indicating position
on a refinable lattice in Rd.

By construction, all wavelets at a given resolution n are lattice shifts of one
another (k ∈ Zd indexes the refinable lattice QD−nZd with dilation matrixD ∈ Zd×d,
|detD| > 1):

ψn,k(x) = ψn,0(x−QD−nk).

Consider the discrete random field wn,i defined by

wn,i[k] := 〈BH,ξ, êiψ̃k〉.

Then

(4.5) wn,i[k] = 〈εH(−∆́)
− 2H+d

4
−ξ W , êiψ̃n,k〉 = 〈εHW , (−∆̀)

− 2H+d
4

−ξ
êiψ̃n,k〉.

Assuming that ψ̃n,k has vanishing moments (Fourier-domain zeros at ω = 0) up to

degree -H. so that R
2H+d

4 êiψ̃n,k = êiψ̃n,k, we have

(−∆̀)
− 2H+d

4

−ξ
êiψ̃n,k = (2π)−d

∫

Rd

ej〈x,ω〉[Φ̂
− 2H+d

4

−ξ (ω)
]H
i
ˆ̃ψn,k(ω) dω ∈ L2;

8See Mallat [32] for detailed definitions and properties of wavelet systems. For an account of
fractional-order splines and wavelets that are derived from fractional derivative operators see Unser
and Blu [55]. A fundamental link between splines and fBm processes was studied in two papers by
the same authors [4, 56] and extended to the multiparameter setting by Tafti, Van De Ville, and
Unser [51]. The last reference also provides a detailed account of polyharmonic cardinal fractional
splines in arbitrary dimensions and their connection with the wavelet analysis of scalar fBm fields.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRACTIONAL BROWNIAN VECTOR FIELDS 1663

and it becomes clear that the left inverse is shift invariant over this particular subspace
of functions (in contrast to the general case of functions with nonvanishing moments

for which it is not, due to the space-dependent operation of R
2H+d

4 ). But then, since
W is stationary, by (4.5) we may conclude that in this case the discrete random
process wn,i[·] is stationary.

In other words, a wavelet analysis of vector fBm with wavelets whose moments
of degrees up to -H. vanish yields stationary coefficients at each resolution.

For an overview of how matrix-valued wavelets can be used to estimate the pa-
rameters of vector fBm we refer the reader to Tafti et al. [49] and Tafti and Unser [50].

4.7. Link with the Helmholtz decomposition of vector fields. It is pos-
sible to study the divergence and curl of vector fBm (the latter for d = 3, where it is
defined) using adjoint operators.

Taking an arbitrary scalar test function φ, for the divergence we have

〈divBH,ξ, φ〉 = −〈BH,ξ,grad φ〉

= −〈W , (−∆̀)
−H

2 −d
4

−ξ
gradφ〉

= −〈W , e−ξirr(−∆̀)
−H

2 −d
4

0 gradφ〉

= −e−ξirr〈W , (−∆̀)
−H

2 −d
4

0 gradφ〉,(4.6)

where the penultimate step can be verified easily in the Fourier domain as follows:

(−∆̀)
−H

2 −d
4

−ξ
gradφ(x) = (2π)−d

∫

Rd

ej〈x,ω〉‖ω‖−H−d
2

·
[
e−ξirr ωωT

‖ω‖2 + e−ξsol

(
I− ωωT

‖ω‖2

)]
(jω)φ̂(ω) dω

= (2π)−d

∫

Rd

ej〈x,ω〉(jω)‖ω‖−H−d
2

[
e−ξirr + 0

]
dω

= e−ξirr(−∆̀)
−H

2 −d
4

0 grad φ.

Similarly, one can take an arbitrary vector test function f and write the following
with regard to the curl:

〈curlBH,ξ,f〉 = 〈BH,ξ, curl f〉

= 〈W , (−∆̀)
−H

2 −d
4

−ξ
curl f〉

= 〈W , e−ξsol(−∆̀)
−H

2 −d
4

0 curl f〉

= e−ξsol〈W , (−∆̀)
−H

2 −d
4

0 curl f〉.(4.7)

The derivation is comparable to that of the previous result, with the difference that
one needs to use the Fourier matrix of the curl operator (cf. (2.8)).

We may then deduce from (4.6) that as |exp(−ξirr)| → 0, BH,ξ assumes a
divergence-free nature. It follows likewise from (4.7) that as |exp(−ξsol)| → 0, BH,ξ

becomes curl-free.
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5. Simulation. The random vector fields that we have described can be simu-
lated on a digital computer in several ways. A simple approach is to take the definition
(3.4) in conjunction with (2.15) and apply the operator to simulated white Gaussian
noise in the Fourier domain.

A more complex scheme can be set up by considering the scalar products of
the vector field with measurement test functions and deriving the joint probability
distributions of the resulting Gaussian samples, which can then be simulated using
standard techniques. For example, a localized test function of the form êiψ would
measure the ith component of the field about a certain location. In implementing this
scheme, one may for instance take these measurement functions to be wavelets and
simulate the field in keeping with subsection 4.6, taking advantage of the fact that
wavelet transform coefficients of vector fBm are stationary (cf. subsection 4.6). (In this
connection, see also Elliott and Majda [12]. A Fourier-based technique for simulating
processes with power-law spectra was presented in Viecelli and Canfield [61].)

The reader can find examples of simulated two-dimensional vector fBm in Figures
1 and 2. These figures were generated from a single 512 × 512 pseudorandom noise
sequence with different values for the parameters H , ξirr, and ξsol; they are available
in color only in the online version.

In each instance, we have provided two complementary visualizations. Images on
the left were produced by a visualization technique known as line integral convolution
(LIC), which consists of local directional smoothing of a noise image in the direction
of flow [6] (we used Mathematica’s implementation). In these images, more neutral
tones indicate larger magnitudes. Arrows are superimposed in white.

In the images on the right, the hue angle encodes local direction, while the local
amplitude of the field is indicated by the saturation level (smaller amplitudes are
washed out).

The change in smoothness with increasing H is visible in these images, as is
the clear effect of the parameters ξirr and ξsol on the directional behavior of the
field, exhibiting nearly divergence-free and nearly rotation-free extremes as well as
the middle ground.

More examples can be found online at http://bigwww.epfl.ch/tafti/gal/vfBm/.

6. Conclusion. In this paper we introduced a family of random vector fields that
extend fBm models by providing a means of correlating vector coordinates, which are
independent in classical vector fBm models.

The first step in our investigation was to identify vector operators that are invari-
ant under rotations and scalings of the coordinate system and can therefore be used
to define random fields that are self-similar (fractal) and rotation invariant. The spe-
cific formulation of rotation invariance considered in the present work was inspired by
the way physical vector fields transform under changes of coordinates. The operators
identified in this step turned out to be generalizations of the vector Laplacian.

Our study of the said operators was aimed at characterizing random vector field
models with the desired invariances as solutions of a whitening equation with the said
generalized fractional Laplacians acting as whitening operators. To this end, we next
addressed the problem of inverting the fractional Laplacian operators. This required us
to introduce a new way of regularizing singular integrals, in order to define continuous
inverse fractional Laplacian operators that are homogeneous and rotation invariant.

Once these inverse operators were identified, we were able to set the problem of
characterizing the random models in the framework of Gel’fand and Vilenkin’s theory
of stochastic analysis. Specifically, we used the method of characteristic functionals to
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(a) H = 0.60, ξirr = ξsol = 0 (b) H = 0.60, ξirr = ξsol = 0

(c) H = 0.60, ξirr = 0, ξsol = 100 (d) H = 0.60, ξirr = 0, ξsol = 100

(e) H = 0.60, ξirr = 100, ξsol = 0 (f) H = 0.60, ξirr = 100, ξsol = 0

Fig. 1. Simulated vector fBm with H = 0.6 and varying ξirr and ξsol. Left column: LIC visu-
alization with arrows superimposed in white. Right column: directional behavior with local direction
coded by the hue angle (see inset) and local amplitude represented by color saturation level (smaller
amplitudes are bleached out).
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(a) H = 0.90, ξirr = ξsol = 0 (b) H = 0.90, ξirr = ξsol = 0

(c) H = 0.90, ξirr = 0, ξsol = 100 (d) H = 0.90, ξirr = 0, ξsol = 100

(e) H = 0.90, ξirr = 100, ξsol = 0 (f) H = 0.90, ξirr = 100, ξsol = 0

Fig. 2. Simulated vector fBm with H = 0.9 and varying ξirr and ξsol. See the caption of Figure 1
for a description of the different visualizations.
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provide a complete probabilistic characterization of the new random vector fields. Us-
ing this methodology, we were also able to extend the definition of fractional Brownian
fields to Hurst exponents beyond the usual range of 0 < H < 1.

Similar to classical fBm, the fractional Brownian vector fields introduced in the
present work are nonstationary but have stationary nth-order increments and can also
be stationarized by means of wavelet analysis. In addition, in accordance with classi-
cal fBm models, these random fields exhibit statistical self-similarity (fractality) and
rotation invariance, which are in fact properties they inherit from inverse fractional
Laplacian operators. On the other hand, the directional properties of these new models
have no scalar counterpart. Significantly, these models can exhibit a range of vectorial
behavior, from completely irrotational (curl-free) to fully solenoidal (divergence-free).

Considering the versatility of these stochastic vector field models, potential sto-
chastic modeling applications can exist in different disciplines such as fluid mechanics
and turbulence physics, field theory, and image processing.

Appendix A. Proof of Lemma 2.2. Let

fλ(ω) := 2−
λ
2

‖ω‖λ

Γ(λ+d
2 )

.

We note the following facts concerning the above function:

F−1{fλ(ω)} = (2π)−
d
2 f−λ−d(x);

fλ(ω)

‖ω‖2 = 1
λ+d−2fλ−2(ω);

∂i∂jfλ(ω) = λ
λ+d−2fλ−2(ω)

[
δij + (λ − 2)

ωiωj

‖ω‖2

]
,

where δij is Kronecker’s delta.

The ijth element of Ψ̂
γ

ξ is

[
Ψ̂

γ

ξ(ω)
]
ij
= f2γ(ω)

[
eξsolδij − (eξsol − eξirr)

ωiωj

‖ω‖2

]
.

Using the cited properties of fλ we can write

F−1
{[
Ψ̂

γ

ξ(ω)
]
ij

}
= (2π)−

d
2

[
eξsolδijf−2γ−d(x) +

eξsol−eξirr
2γ+d−2 ∂i∂jf−2γ−d+2(x)

]

= (2π)−
d
2 f−2γ−d(x)

[
eξsolδij + eξsol−eξirr

2γ

(
δij − (2γ + d)

xixj

‖x‖2

)]

= (2π)−
d
2 f−2γ−d(x)

[
eζirr

xixj

‖x‖2 + eζsol
(

δij −
xixj

‖x‖2

)]

with

eζirr = 2γ+d−1
2γ eξirr − d−1

2γ eξsol and eζsol = − 1
2γ e

ξirr + 2γ+1
2γ eξsol .

Appendix B. Conjugacy of (−∆́)−γ

−ξ
and (−∆̀)−γ

−ξ . We proceed to show that

for all test functions f and g ∈ Sd,

〈(−∆́)−γ

−ξ
f , g〉 = 〈f , (−∆̀)−γ

−ξg〉.
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Using Parseval’s identity and the definition of (−∆̀)−γ
−ξ in (2.14) we can write

〈f , (−∆̀)−γ
−ξg〉 = (2π)−d

∫

Rd

[f̂(ω)]HΦ̂
−γ

−ξ(ω)[Rγ ĝ](ω) dω

= (2π)−d
∫

Rd

[f̂(ω)]HΦ̂
−γ

−ξ(ω)



ĝ(ω) −
∑

|k|≤)2γ−d
2 *

Tk[ĝ]ω
k



 dω.(B.1)

Moreover,

Tk[ĝ] =
ĝ(k)(0)

k!
=

∫

Rd

(−j)kxk

k!
g(x) dx.

By combining this and (B.1) we get

〈f , (−∆̀)−γ
−ξg〉 = (2π)−d

∫

Rd

[f̂(ω)]HΦ̂
−γ

−ξ(ω)

·




∫

Rd



e−j〈x,ω〉 −
∑

|k|≤)2γ− d
2 *

(−j)kxkωk

k!



g(x) dx



 dω

=

∫

Rd

[
(−∆́)−γ

−ξf(x)
]H
g(x) dx,

where the last step follows from exchanging the order of integration and using the

definition of the right inverse given in (2.15), together with the identity
[
Φ̂

−γ

−ξ(ω)
]H

=

Φ̂
−γ

−ξ(ω). The last integral is equal to the scalar product 〈(−∆́)−γ

−ξ
f , g〉 by defini-

tion.
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[29] P. Lévy, Le mouvement brownien, Mémor. Sci. Math. 126, Gauthier–Villars, Paris, 1954.
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