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An Efficient Numerical Method for General
Regularization in Fluorescence

Molecular Tomography
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Abstract—Reconstruction algorithms for fluorescence tomog-
raphy have to address two crucial issues: 1) the ill-posedness of the
reconstruction problem, 2) the large scale of numerical problems
arising from imaging of 3-D samples. Our contribution is the
design and implementation of a reconstruction algorithm that
incorporates general regularization . The originality
of this work lies in the application of general constraints to
fluorescence tomography, combined with an efficient matrix-free
strategy that enables the algorithm to deal with large reconstruc-
tion problems at reduced memory and computational costs. In the
experimental part, we specialize the application of the algorithm
to the case of sparsity promoting constraints . We validate the
adequacy of regularization for the investigation of phenomena
that are well described by a sparse model, using data acquired
during phantom experiments.

Index Terms—Fluorescence , image reconstruction, optical to-
mography.

I. INTRODUCTION

F LUORESCENCE molecular tomography (FMT) is an
optical imaging technique that offers the possibilities

to monitor cellular and molecular function in vivo [1]–[3]. In
FMT, the distribution of biomolecules in tissue is assessed
either by detecting the fluorescence of probes that interact
specifically with the molecules of interest, or by detecting
the intrinsic fluorescence of biomolecules. This technique is
already used routinely for small animal research, in fields as
diverse as oncology [4], inflammation [5], cardiovascular dis-
ease, pharmacokinetics, and bone metabolism [6]. Moreover,
promising results were obtained for breast cancer detection in
humans [7]–[9].

In the near-infrared (NIR), which is the practical wavelength
range of operation in FMT, scattering is the dominating mode
of light-matter interaction as light propagates through tissue. As
a result, propagation can be described reasonably well by a dif-
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fusion equation. The task of reconstructing an image in FMT,
which corresponds to inverting the diffusion process, is a se-
verely ill-posed problem. To obtain meaningful results, it is es-
sential to include some form of regularization in the inversion;
for instance by exploiting a priori knowledge. In early stage of
cancer, for example, the biological mechanisms of interest occur
in very localized regions. Images of the bone metabolism, on the
other hand, show larger regions of activity, with defined bound-
aries. A common feature of the observed biological function in
these two examples is “sparsity.” In the first case, the spatial
distribution of biological activity is confined to a small region
(only a few pixels are activated). In the second case, the spa-
tial distribution of biological activity is piecewise-smooth. It is
characterized by its boundaries where sharp transitions occur,
or equivalently, a strong gradient. In view of such examples,
it appears that sparsity is an ingredient in a number of biolog-
ical mechanisms studied with FMT. As a consequence, sparsity
promoting regularization methods are potentially beneficial in
those cases.

In optical tomography the distribution of optical proper-
ties (accounting for the fluorescent probe) is computed by
minimizing the misfit between intensity measurements at the
boundary, and the measurements predicted by a physical model;
the forward model. In the most general case, one is interested
in recovering the spatial distributions of absorption, scattering
and fluorescence lifetime. The corresponding forward model
is nonlinear and the reconstruction is typically achieved by
iterative optimization methods that are based on the first-order
approximation of the forward model, that is, the Jacobian. A
variety of iterative procedures such as the Born iterative method
[10], the coodinate descent algorithm [11], the Gauss-Newton
method [12], the truncated-Newton method [13], [14], the Lev-
enberg-Marquardt method [15]–[17], the BFGS method [18],
[19], and the nonlinear conjugate gradient method [20] have
been studied. When the goal is solely to recover the fluorescent
probe concentration, a reasonable approximation is neglect the
change in absorption and scattering due to the presence of the
fluorophores. This results in a linear forward model [21], which
is the context of the present paper. A number of methods that
include regularization have been studied for linear reconstruc-
tion in optical tomography; the Kaczmarz method (ART) with
an appropriate stopping criterion, the filtered singular value
decomposition and Tikhonov regularization [22]–[25].

In this contribution, we propose general regularization
as a new regularization technique for the reconstruc-

tion of fluorescence data, together with an optimization method
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developed specifically for regularization. The practical in-
terest of such regularization is the sparsifying effect that is ob-
served for close to 1 [26]. Because of the particular structure
of the objective function, which is the sum of a linear least-
squares term and a regularization term, specific optimization
methods have to be employed. Even though our forward model
is linear, the reconstruction method is nonlinear. It is based on
the iteratively reweighted least-squares (IRLS) algorithm [27].
In the case , it reduces to the traditional Tikhonov regu-
larization. Some particular cases of regularization have been
reported for diffuse optical tomography (DOT) [16], [28], and
FMT [29]. These works, however, are limited to the case ,
with an emphasis on spatial sparsity, or minimization of total
variation. The method presented in this paper provides a broader
class of regularization schemes.

The computation and storage of the Jacobian matrix (or
system-matrix) is a limitation of many reconstruction methods
in optical tomography of complex shaped specimens [30]. One
can reduce the computation time and memory allocation of
the optimization methods referenced above by employing ma-
trix-free techniques. Methods that do not store a system-matrix
are referred to as matrix-free methods. Adjoint differentiation,
also termed reverse differentiation, is such a technique. It
was explored for optical tomography in [13], [19], and [31].
Other matrix-free methods, based on the adjoint equation, were
proposed for bioluminescence tomography in [32], and for
multiple-wavelength fluorescence tomography in [33]. In order
to improve the computation time and memory allocation of
IRLS, we have used the adjoint equation to derive a matrix-free
IRLS for fluorescence tomography. Finally, the last feature of
interest of our method is a fully continuous formulation. We
will see in Section III that it leads naturally to the matrix-free
method based on the adjoint equation.

We have taken special care to validate the method on synthetic
and measured phantom data. Specifically, we have compared
regularization versus regularization in order to demonstrate
the advantages of the proposed scheme. The performance was
assessed in terms of visual quality, contrast-to-noise ratio (an in-
dicator of reconstruction quality [34]), and robustness to noise.

The paper is organized as follows. In Section II, we de-
scribe the light propagation model for FMT. In Section III,
we review standard reconstruction methods and present our
algorithm. Section IV elaborates on the numerical aspect of
the reconstruction method. First, we explain how we handle

regularization, which yields a linear algorithm. Then, we
describe the algorithm for nonquadratic regularization. In
Sections V and VI, we discuss the numerical simulations and
phantom experiments. In Section VII, we analyze the compu-
tational and memory costs of the proposed method. Finally,
we conclude the paper in Section VIII with a discussion of the
results.

II. PHYSICAL MODEL

The propagation of light within biological tissue can be mod-
eled using the diffusion equation [35], [36]. Let be a domain
filled with some turbid medium and its boundary. The op-
tical properties of the medium are summarized by the absorp-
tion coefficient and the reduced scattering coefficient . In

the time independent case, an internal source generates a sta-
tionary light field whose fluence rate satisfies

,in
on

(1)

where is the diffusion coefficent, is a
coefficient that depends on and the refractive index of the
sample, and is the unit vector normal to .

Fluorophores are characterized by their excitation and emis-
sion spectra, and their quantum yield . The quantum yield is
the ratio between emitted fluorescence photons and absorbed
photons. Thus, the stationary light field generated by a fluores-
cent marker can be described by (1), in which the source term is
given by , where is the absorption
due to the marker, and is the fluence of the excitation wave.

is directly proportional to the marker concentration ,
so we can write . In all generality, the total
absorption in (1) is , the sum of the absorp-
tion of the flurorophore and the absorption the non-fluorescing
chromophores. In this work, however, we make the common ap-
proximation , so that the fluorophore determines only
the source term of the diffusion equation. We obtain a linear re-
lation between the concentration and the emitted light field.

In FMT, an excitation light source illuminates a portion
of the surface of the investigated object (source positions) and
detectors capture fluorescence light emitted from a subset
of the surface (detector positions). Measurements are performed
for a number of different pairs . This situation is
described by the set of equations

in
on
on

(2)

in
on

(3)

with the corresponding notation.

Fluence rates at excitation and emission
wavelength, and , respectively.

Fluence rate of the excitation field entering the
boundary.

Diffusion coefficients at and ,
respectively.

Absorption coefficient at and ,
respectively.

Coefficients depending on ,
respectively, and on the refractive index of the
medium.

Fluorophore distribution (to be recovered).

In this model, the measurements are the values of on
, i.e. . Since the fluorophore

concentration determines the source term in (3), we effectively
obtain information about the fluorophore concentration from
these measurements.



BARITAUX et al.: AN EFFICIENT NUMERICAL METHOD FOR GENERAL REGULARIZATION 1077

III. RECONSTRUCTION OVERVIEW

We begin by describing a standard reconstruction algorithm
with an explicit system matrix, which we refer to as direct
method. We then proceed with the derivation and presentation
of our approach.

A. Direct Method

The direct reconstruction method is derived from the Fred-
holm integral formulation of the FMT problem. Specifically, let

be the Green’s function of (3), and be the fluence gen-
erated by a source at position . The measured fluence at de-
tector position is given by

(4)

Now, let us assume that has been subdivided into voxels.
The discretization of (4) yields

(5)

where denotes the fluence observed by a detector at voxel
for a source in voxel , is the Green’s function evaluated

at detector for a point source in voxel , is the excitation
fluence in voxel generated by a source placed in voxel ,
is the fluorophore concentration at voxel and is the voxel
volume. We see that in order to obatin one needs to com-
pute and , . Using the reciprocity principle
of light propagation [30], we have that . Thus, in
order to evaluate (5), it is necessary to solve diffu-
sion equations, where is the number of sources and the
number of detectors; equations to get the values , and

equations for the values . Let us assume that there are
source-detector pairs. One can write equations such

as (5); one per source-detector pair. By rearranging these equa-
tions in matrix form we obtain

(6)

where is an matrix, and is the vector of flu-
orophore concentrations at each voxel. In general, this linear
system of equations is solved using ART, SVD, regularized
SVD, or Tikhonov regularization [22]–[24]. Note that there
are several numerical methods to determine Green’s functions
(finite differences, finite elements, finite volumes).

B. Proposed Method

We specify the reconstruction problem in a variational frame-
work. Specifically, the fluorophore distribution is computed by
minimizing a cost functional that consists of a data term and
a regularization term; the data term ensures that the computed
solution is in agreement with the measurements, while the reg-
ularization term promotes solutions with prescribed properties

in order to overcome the ill-posedness of the problem. We con-
sider the following class of continuous functionals with param-
eter

(7)

In this expression, is the surface measure, is the number
of sources, and , , and , are, respec-
tively, the fluence at emission wavelength, the measurements,
and measurement positions for the th source. is a suitable
linear operator chosen for the regularization, and is a param-
eter used for controlling the tradeoff between penalty and data
consistency. is possibly vector valued; for instance we
can have . The right-hand side integral in (7) is the

-norm of to the power . Indeed, for a scalar valued func-
tion , the norm is defined by

(8)

In order to extend this definition to a vector valued function ,
one applies it to the real valued function . The use of
functionals of the type of (7) is termed -regularization. Few
authors in the field [12] use a fully continuous cost functional.
This enables us to take advantage of current setups where the de-
tector is a CCD camera imaging at high resolution a wide por-
tion of the boundary of the domain. Such an approach differs
from the common practice which is to use point-like detectors,
and to formulate a discrete data term in the cost functional. No-
tice that the source-detector pairs in the two approaches do not
correspond. In the latter approach (point-like detectors) there
are source-detector pairs, whereas in the former there
are source-detector pairs (as many as sources). Finally, re-
mark that the use of a continuous norm as regularizer in (7)
is original.

Using calculus of variations, it is possible to formulate
the minimization of the quadratic functional (corre-
sponding to ) directly over function spaces. Some
authors use a constrained optimization framework with the
Lagrange formalism, incorporating (3) as a constraint [12].
Another possibility is to consider the measurements operators

, , where
denotes the space of finite energy signals with support

in . Notice that the ’s are linear. Computing
requires solving equations (2) and (3), with in (2) corre-
sponding to the th excitation light source. The gradient of
with respect to is given by the Fréchet derivative [37]

where is the adjoint operator of and for simplicity.
In a similar way as what was done for DOT in [38], we can
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prove (see Appendix) that the adjoint operator
is defined by where is the

solution of the equation

in
on
on .

The structure of the problem is as follows. Denoting the op-
erator , and , we
have . We see that the operator
plays the same role as the system-matrix times its transpose, in
a discretized setup. However, has been defined over function
spaces, in terms of partial differential equations (PDE). There-
fore, we do not need to assemble explicitly a system-matrix to
evaluate . One only needs to solve the corresponding PDEs.
This can be done rapidly with efficient linear solvers such as
preconditioned conjugate gradient, GMRES or multigrid for in-
stance. In addition, the use of a continuous framework guaran-
tees that our numerical solution is consistent regardless of the
discretization employed. Our main concern will now be to find
an efficient numerical way of computing a minimizer of . We
will first present a numerical method to implement efficiently
the operator . The knowledge of the operator yields the
gradient of the data term in (7), which is the key step for the
application of most optimization techniques.

IV. ALGORITHM

A. Discretization

For computational purposes, the diffusion equations (2) and
(3) and the functional (7) must be discretized. To that end, we
use the finite-elements method with triangular elements. We de-
fine a triangular mesh of the physical domain, and approximate
the quantities of interest , , ,
and using piecewise-polynomial basis functions (polynomial
in each triangle). We use separate meshes for the different quan-
tities, which makes the implementation more flexible. In math-
ematical terms this translates into

(9)

(10)

(11)

where is the element size, , , ,
, and , are the basis functions asso-

ciated with the meshes used for , and , respectively.
We see that the approximations , and are uniquely

defined by the vectors ,

, , and .

The following matrices and vectors enter the computations:

(12)

(13)

(14)

(15)

(16)

where .
We obtain a numerical approximation for the solution of (3)

by solving the linear system for . For sim-
plicity, we assume that the medium is homogeneous and we
define . Note that the method can also handle
varying coefficients. One simply has to use a varying in (12).
We also implicitly assume that was obtained by solving (2)
using the FEM as well.

B. Quadratic Functionals

In this section, we focus on the quadratic case, namely .
Replacing by its expansion over the basis functions and using
the notations introduced above, we obtain

(17)

where is a constant. Besides, we know that .
After some algebraic manipulations, we get

(18)

Dropping the constant which is irrelevant for the min-
imization, we are left with a quadratic function to mini-
mize: where we have ,

and .
In this expression, the matrix is the discrete counterpart of
the operator introduced in Section III. It is equivalent to the
matrix in the direct method.

A crucial property for our formulation is that the matrix is
symmetric positive-definite. Consequently we can use the con-
jugate gradient algorithm (CG) to perform the minimization.
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C. Efficient Gradient Computation

The key step in CG, and more generally in any gradient based
algorithm, is the computation of the gradient of the functional.
The gradient of is . It can be split into the gradient
of the data term , and the gradient of the regularization
term . The matrix is obtained during the discretization,
and because it is sparse, the calculation of the product is a
computationally cheap operation.

Computing is more involved. The proposed
strategy is to perform the matrix–vector multiplication

without assembling and
storing the matrix explicitly. Specifically, we break the
computation of in three steps

(19)

(20)

(21)

In this way, is evaluated via the solution of linear
systems involving . Since is a sparse symmetric positive-
definite matrix, this is rapidly achieved with CG as well.

D. Non-Quadratic Functionals

We will now show that we can handle nonlinear regularization
by considering a sequence of quadratic problems of the

same form as above. Numerically, the regularization integral in
(7) is computed using the Gauss quadrature formula [39]

(22)

where is the set of elements, for are fixed quadrature
points and for are quadrature weights. Let be
the matrix formed by concatenating the column vectors ,

, such that we have . Note that
the dependency on the variable is accounted for in the matrix

. For instance, in a 2-D setup, if , we have

(23)

and . Because the operator is usually local
(for instance or ), the matrix depends only on the few
basis functions interpolating at the position . Thus, evalu-
ating (22) is not more costly than a sparse matrix multiplication
with a vector.

With this notation we can write

(24)

where is a constant.
In order to minimize such a functional we use the iteratively

reweighted least-squares algorithm (IRLS). This algorithm
builds a sequence of estimates obtained from the minimization
of quadratic surrogate functionals. The intuitive idea behind

Fig. 1. Cost functional across IRLS iterations for TV regularization ( ,
).

this is as follows. When lies close enough to the current th
estimate we have

(25)
where the terms depending on are assumed to be fixed.
Thanks to this weighting procedure we are left with a quadratic
functional to minimize, which is readily done using the frame-
work we introduced above. For further analysis of the IRLS
algorithm we refer to [40]. Fig. 1 shows the evolution of the
cost functional with IRLS iterations in practice; minimization
of total variation (i.e. the norm of the gradient) in that case.
We see that the cost converges to a minimum, which indicates
that the iterates converge to a minimizer because the functional
is convex.

V. METHODS

A. Phantom Experiments

The setup employed to acquire FMT data is depicted in Fig. 2.
We use a noncontact, trans-illumination setup in the continuous
wave mode. The beam of a diode laser emitting at 655 nm is
focused onto the surface of a cylindrical phantom containing ei-
ther one or two fluorescent inclusions. A sensitive CCD camera
(iKon-M, Andor Technology, Belfast, U.K.), cooled to
to reduce dark-counts, records the light emitted from the oppo-
site side of the phantom. An interference filter is placed in front
of the camera objective ( , mm, Linos AG, Goet-
tingen, Germany) to block the light emitted by the laser. In order
to further reduce the detection of spurious signal from the laser,
a cleanup interference filter is placed between the laser diode
and the focusing lens. To obtain a complete data set, the sample
is rotated with respect to the laser/camera reference and images
are taken every 10 .

Two cylindrically shaped phantoms made of silicon with di-
ameters of 35 mm and 25 mm, respectively, were used in the
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Fig. 2. Experimental setup.

TABLE I
OPTICAL COEFFICIENTS

experiments. The 25 mm phantom contained a cylindrical hole
(4 mm in diameter) parallel to the symmetry axis and the larger
phantom contained two holes (4 mm). Otherwise, the cylinders
were homogeneous. Absorption and scattering coefficients were
adapted to be similar to those of biological tissue by adding the
required amounts of India ink as an absorber and titanium oxide
as a scatterer. The values of the optical coefficients are shown in
Table I. The holes were filled with an aqueous solution of Alexa
Fluor 680 (Invitrogen AG, Basel, Switzerland). The absorption
and scattering coefficients of this solution were adapted to those
of the silicon by adding the adequate amounts of India ink and
Intralipid.

B. Contrast-to-Noise Ratio

Whenever possible, we assessed reconstruction quality
by visual inspection. Nevertheless, this approach has two
drawbacks. First, visual inspection is subject to personal ap-
preciation. Second, in experiments where several parameters
are varied, inspecting all the reconstructed images becomes in-
tractable. For large studies, one would rather employ a criterion
that can be computed automatically on all reconstructions.

The contrast-to-noise ratio (CNR) is a measure that indicates
if a localized feature in an image is well discernable or lost in
the image noise [41]. In [42], the authors use the CNR to char-
acterize the performance of a FMT reconstruction system. The
CNR is defined as the image contrast between a feature that is
to be detected and the background, divided by a measure of the
image noise. Specifically

(26)

where and are the mean concentration values in the
ROI (the region of interest to which the feature is confined) and

background respectively, and are the variances, and
and are weighting factors.

In our CNR computations, the ROI was defined by the actual
fluorophore inclusions. We treated as background the signal in
the complement of the ROI. The weights and were
set to the fraction of area occupied by the ROI and the back-
ground, respectively.

C. Simulations

In simulation we modeled the geometry described in Sec-
tion V-A. The fluence rate of the excitation laser and the concen-
tration were always set to one. Poisson noise was added to the
simulated measurements in the following manner. Denoting
the noise-free measurement vector output by the forward model,
we generate the noisy vector

(27)

where is a parameter used to adjust the noise level, and
is the Poisson distribution with mean . We assess the noise level
with the signal to noise ratio,

. Because the forward model is linear, the SNR and the
CNR are invariant to scaling, working with unit excitation and
concentration is a valid approach.

D. Experiments

In the experiments we adjusted the noise level by changing
the integration time and laser power incident on the phantoms.
The laser power was adapted by means of OD filters placed in
the laser beam. Computing the SNR required a reference mea-
surement, for which the noise was negligible. For each exper-
iment, such a reference was obtained using a long integration
time and high laser power. The reference measurement was then
fitted to the noisy measurements with least squares to yield .
Note that in this methodology, measurements that are obtained
with a long integration time and high laser power are essentially
considered as noise-free. Therefore, we do not give an SNR
value in that case.

VI. RESULTS

The reconstruction algorithm was implemented in two di-
mensions. All the phantoms considered were invariant by trans-
lation along the symmetry axis of the cylinder which enabled
to apply a 2-D reconstruction algorithm. Although the results
shown here are 2-D, the proposed reconstruction algorithm ap-
plies also to 3-D, by employing a 3-D forward model. The im-
provement achieved by regularization over regularization
demonstrated in this section relies on the sparsifying effect of
regularization, and is independent of the linear forward model
employed. It is therefore reasonable to expect a similar improve-
ment in a fully 3-D setup.

For the results obtained with the IRLS algorithm (which cor-
responds to a regularization term here), it was necessary to
choose the number of IRLS iterations. The typical behavior of
the IRLS algorithm is represented Fig. 1. We see that the de-
crease in the cost functional saturates after the first few itera-
tions. In practice we observed (by visual inspection) that five
IRLS iterations were enough in most cases.
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Fig. 3. Experiment 1: synthetic data, one inclusion with diameter 4 mm in a cylinder with diameter 25 mm. (a) , . (b) , . (c) , . (d)
, . (e) Cross sections along a horizontal line of reconstructions (a) and (c). (f) Cross sections along a horizontal line of reconstructions (b) and (d).

The reconstructions presented in this section were performed
using grids that were restricted to the region enclosed 1.5 mm
away from the boundary of the sample. For instance, in the case
of a disk sample with diameter 25 mm, the grid would overlay
the 23-mm-diameter disk that is centered on the sample. This
restriction helps handling boundary artifacts. Using these re-
stricted grids is reasonable since the diffusion approximation is
not valid close the boundaries, rendering reconstructions at the
boundary meaningless.

A. Experiment 1: Synthetic Data, a Single Inclusion

We first present a representative reconstruction of simulated
data. The investigated sample was a cylinder with a diameter of
25 mm, containing a single cylindrical inclusion with a diameter
of 4 mm. The inclusion was parallel to the symmetry axis of
the phantom, and centered 7.5 mm away from the axis. Poisson
noise was added to obtain a SNR of 15 dB. We used and for
the regularization operator . The regularization parameter

TABLE II
CNR VALUES FOR RECONSTRUCTIONS OBTAINED IN EXPERIMENTS 1, 2, AND 3

was chosen by visual inspection, independently for the different
methods. Note that the so-obtained values of corresponded
to reconstructions with CNR close to the highest values (as a
function of ).

Fig. 3 displays the reconstructions. The values of CNR for
these reconstructions are given in Table II. Regardless the reg-
ularization operator, the reconstructions show less artifacts
and better accuracy for the marker location. In the recon-
structions, the estimated fluorophore distribution is spread over
a large region, which can be interpreted as an over-smoothing
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Fig. 4. Experiment 2: measured data, one inclusion with diameter 4 mm in a cylinder with diameter 25 mm. (a) , . (b) , . Arbitrary units.

Fig. 5. Experiment 3: measured data, two inclusions with diameter 4 mm in a cylinder with diameter 35 mm. (a) , . (b) , . Arbitrary units.

effect of regularization. reconstructions are not affected
by this over-smoothing. On image Fig. 3(c), we notice that for

, the reconstruction found a marker distribution that
is smaller than the true distribution. This is due to the sparsity
promoting behavior of the algorithm. In that case, it did select
a single basis function, which is the one that explains best the
observed data. The overall superiority of the method is con-
firmed by the CNR values of Table II.

On the cross sections shown in Fig. 3(e) and (f), we see how
the methods compare in term of quantification. Both and

underestimate the true distribution. , however, is slightly
more accurate, especially when .

B. Experiment 2: Measured Data, a Single Inclusion

This experiment confirms on measured data, the results ob-
tained on synthetic data in Experiment 1. The geometry of the
phantom was the same as in Experiment 1. It is a cylinder with
diameter 25 mm, containing a 4 mm cylindrical inclusion cen-
tered 7.5 mm away from the axis. The fluorophore concentra-
tion was 100 nM. The data was acquired using an integration

time of 86 ms, and laser power of 0.3 mW. Note that these ex-
perimental conditions are acceptable for in vivo experiments.
The noise level was high, with a computed SNR of 8.7 dB. We
performed reconstructions for and . Similarly
to above, the regularization parameter was chosen by visual in-
spection.

In Fig. 4, we show the reconstruction, in arbitray units, ob-
tained with . Both methods ( and ) located accu-
rately the marker, but the image contains much less artifacts.
Similar to what was observed in simulation in Experiment 1, the

reconstruction is more localized than the true inclusion, and
the reconstructed value is higher than the value obtained with

. regularization with has favored a single basis
function with a high weight to explain the data. Although the
values obtained with and differ, the average values inside
the inclusion do correspond. We found 119 for and 124 for

. This indicates that the two methods reconstruct the same
quantity of fluorophore.

The CNR values of the reconstructions with and
are given in Table II. They confirm the better quality of the
images.
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Fig. 6. Experiment 4. Results obtained with measured data. CNR as the function of the noise level on the measurements. (1) . (2) .

C. Experiment 3: Measured Data, Two Inclusions

There, we test the reconstruction algorithm on measured data,
with two inclusions. The phantom was a cylinder with a diam-
eter of 35 mm. It contained two inclusions with diameter 4 mm,
centered 10 mm away from the axis. The distance between the
centers of the two inclusions is 15 mm. The phantom is larger
than in the two previous experiments, and the marker inclu-
sions are buried deeper inside. The fluorophore concentration
was 200 nM in both inclusions. The integration time was 1 s, and
the laser power 30 mW. Again, these values are compatible with
in vivo experiments. Since the integration time and laser power
are high enough, this data set is essentially noise-free (according
to our noise estimation method). We performed reconstructions
for and , and chose the regularization parameter
visually.

Reconstructions for are shown in Fig. 5. In this
case, both methods yield comparable reconstructions. The
method, however, yields slightly less artifacts. In addition, the

image is composed of sharper transitions, between constant
regions. This leads to a better CNR as we can see in Table II.

D. Experiment 4: CNR Study, Measured Data, a Single
Inclusion

Next, we investigated the robustness of the reconstruction to
the noise on the measurements. The CNR presented in Sec-
tion V-B was used a performance criterion. The phantom was
the same as in Experiments 1 and 2. The fluorophore concentra-
tion was 100 nM. We varied the SNR of the measurements by
changing the integration time and laser power. The integration
time ranged from 0.13 to 1.53 s, and the laser power was 0.3 or
3 mW. The regularization parameter was set such as to maxi-
mize the CNR.

The results of this experiment are presented Fig. 6. We no-
tice that the CNR is consistently above the corresponding

CNR, confirming the trend observed in the previous exper-
iments. This supports the adequacy of regularization for re-
constructing localized inclusions.

E. Experiment 5: CNR Study, Synthetic Data, a Single
Inclusion of Varying Size

The protocol of Experiment 4 was reproduced in simulation.
In simulation, we varied the input SNR by changing the param-
eter of Section V-C. In addition, we repeated the experiment
for various diameters of the inclusion: 2, 4, and 6 mm. This ex-
periment enabled to confirm the validity of our simulation, and
to test the algorithm on two other inclusion sizes.

The results are displayed in Figs. 7 and 8. These simulations
are in agreement with Experiment 4: achieves best CNRs.
Interestingly, is more efficient than on small inclusions
(2 mm), whereas performs better on large inclusions (6 mm).
This can be explained by the fact that with , the algorithm
tends to select a single basis function, while promotes
large constant regions.

F. Experiment 6: Quantification of the Marker Concentration,
Synthetic Data

To further address the quantification issue, we simulated
again the setup of Experiments 1 and 2. We varied the con-
centration (in arbitrary units) from 1 to 10, and evaluated the
maximum of the reconstructed marker concentration. The
reconstructions were performed using . The SNR of the
synthetic data was 20 dB. The results are presented in Fig. 9.
We see that both and estimates are linear functions of
the marker concentration. From the linear trend, we may infer
that an appropriate calibration of the system would enable the
proposed reconstruction method to quantify the marker.

VII. COMPUTATIONAL COMPLEXITY AND

MEMORY REQUIREMENTS

In this section, we analyze the computational complexity and
memory requirements of our method and compare them to direct
methods in the case of quadratic functionals . We further
investigate experimentally the reconstruction time and memory
allocation. The results are presented in Table III and Fig. 10.

Let us start with the computational complexity. We first recall
the notations introduced in the previous sections: is the
number of degrees-of-freedom for , and is the number of
degrees-of-freedom for . Further, is the number of sources,

is the number of detectors, and is the number of source-
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Fig. 7. Experiment 5. Results obtained for synthetic data with . CNR as the function of the noise level on the measurements. (1) Fluorophore inclusion
with 2 mm diameter. (2) Fluorophore inclusion with 4 mm diameter. (3) Fluorophore inclusion with 6 mm diameter.

Fig. 8. Experiment 5. Results obtained for synthetic data with . CNR as the function of the noise level on the measurements. (1) Fluorophore inclusion
with 2 mm diameter. (2) Fluorophore inclusion with 4 mm diameter. (3) Fluorophore inclusion with 6 mm diameter.

Fig. 9. Experiment 6: maximum of the reconstructed marker concentration as a function of the true concentration; reconstructions obtained using ; (a) for
, (b) for . Synthetic data, arbitrary units.

detector pairs. With these notations, the matrices and of
Sections III and IV respectively have size and

. The matrix is a sparse matrix used for numerically
solving the diffusion equation. It is known from numerical anal-
ysis that computing is most efficiently performed
using iterative methods such as CG. Let us assume that the
number of CG iterations is fixed to . This is a reason-

able assumption because the error in the CG algorithm can be
bounded using the conditioning of only. Thus, because is
sparse, solving a diffusion equation costs . In
the method we present, we minimize quadratic functionals using
the CG algorithm as well. Let us assume that our estimate of
the minimizer is obtained after iterations of CG. From
equations (19)–(21), one can convince oneself that the overall
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TABLE III
RECONSTRUCTION TIME AND MEMORY ALLOCATION AS A FUNCTION OF THE

NUMBER OF DEGREES-OF-FREEDOM (dof) FOR , WITH AND WITHOUT SYSTEM
MATRIX. NOTICE THAT ABOVE 23280 DOF THE SIZE OF THE SYSTEM MATRIX
EXCEEDED WHAT OUR COMPUTER COULD HANDLE, SO ONLY VALUES FOR

THE MATRIX-FREE METHOD ARE SHOWN

Fig. 10. Measured reconstruction time as a function of the number of de-
grees-of-freedom per direction in two dimensions for (logarithmic scale).
The plot shows the times for the direct method (with system matrix) in blue,
and for the matrix-free method in red. The dashed lines are linear fits of the
experimental points. For the direct method the fit as a slope of 2.52, and for the
matrix method 1.21.

cost the method is
(all the matrices involved in (19)–(21) are sparse).

In the direct method, one first assembles the system matrix, and
then finds a regularized solution of the linear system .
For instance, in the case of Tikhonov regularization one would
solve . When has a large number of
degrees-of-freedom, iterative methods have to be employed for
solving the latter system; CG in our case. Since is not sparse
the cost of iterations of CG is .
The formation of was discussed in Section III, and has a
cost of . The total cost of direct
method is thus

. Varying , all other parameters staying unchanged,
we see that the cost is for the matrix-free method, and

for direct method. In two dimension, grows like

the square of the number of discretization points per direction
and the gain obtained with the matrix-free method is already
significant. It becomes even more favorable in three dimension
when grows like the cube of the number of discretization
points per direction. In practice however, the stopping crite-
rion for the CG algorithm is often a tolerance on the residual.
Thereby, the number of iterations depends in a non-ob-
vious way on the problem size. Later in this section we present
actual computation times of the two methods, which confirm
that the matrix-free method is indeed faster.

Let us now consider the memory requirements. The recon-
struction method we propose does not need any memory space
other than the space required to store the FEM forward model
matrix which is sparse and in any case indispensable. Direct
methods, on the other hand, store the system matrix . Because

is not sparse, the number of elements to store is
. For large size problems such a storage requirement rapidly

becomes an issue, as we show in the following experiment.
We monitored the reconstruction time and memory allocation

of the direct and matrix-free methods on a 2-D circular problem.
The reconstruction was performed employing Tikhonov reg-
ularization with for both methods. The linear
system in the direct method was solved by the CG algorithm.
We simulated 36 sources, and a camera with a field-of-view
of 250 . For the direct method, the detectors were placed on
the boundary, every 2 inside the field of view. We varied
the discretization step of the reconstruction grid (and thus
the number of degrees-of-freedom for ), keeping the other
parameters unchanged. The computations were made on a
workstation equipped with a 2.6-GHz dual core processor, and
10 GB of RAM. Table III summarizes the results. Notice that
for a large number of degrees-of-freedom (dof), the size of the
system matrix exceeded what our computer could handle. In
those cases, the table shows only results for the matrix-free
approach. Fig. 10 presents a plot of reconstruction time as a
function of the number of degrees-of-freedom per direction
for . Calling be the number of dof per direction, we have

, since we are in two dimensions. We see that the
actual computation times are lower than the upper bounds that
we gave above. From the data we collected the computation
time is instead of for the matrix-free,
and instead of for the direct method.
The fact that some of the libraries we used exploit the two cores
available in the computer could partly explain this trend. Still,
we observe a speedup, and we do expect the gain to
be much greater in three dimensions. Moreover the matrix-free
method is not limited by the size of the system matrix as
opposed to the direct method.

VIII. DISCUSSION AND CONCLUSION

We have presented a method for FMT reconstruction that in-
tegrates forward modeling and reconstruction into a single al-
gorithm. In terms of implementation complexity, our algorithm
stands between direct methods, and more sophisticated high-end
finite-element-based methods [43]. We showed that our strategy
improves the computation time and memory requirements for
FMT reconstruction compared to direct methods by eliminating
the need to explicitly calculate the system matrix. Our scheme
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includes an efficient method for computing the gradient of the
reconstruction functional, using only the forward model FEM
matrix and fast linear solvers for sparse systems of equations.
This approach of computing the gradient is general and can be
applied within any gradient based optimization algorithm; in
practice we employed the conjugate gradient.

Our reconstruction algorithm is based on a variational formu-
lation. One advantage of this approach is flexibility. In this work
we used or as regularization operators, but other operators
can be employed to promote images that satisfy prescribed prop-
erties. A possibility is to incorporate a priori information in the
form of a penalty term. This, in conjunction with our gradient
computation scheme, would result in an efficient way of making
use of a priori knowledge.

Many biological functions occur in localized regions, or in
larger regions with defined boundaries. A priori constraints
such as spatial sparsity, or sparsity of the variations are there-
fore appropriate to characterize these biological mechanisms.
We have proposed a general -regularization scheme for FMT
reconstruction. In particular, we investigated the reconstruction
quality improvement due to the sparsifying effect of -reg-
ularization, on localized and piecewise constant fluorophore
distributions. A quantitive study was conducted using exper-
imental FMT data acquired on phantoms. We relied on the
contrast-to-noise ratio to obtain a quantitative assessment of re-
construction quality. For fluorophore distributions that are aptly
described by a sparse model, -regularization reconstructions
showed less artifacts and better localization than reconstruc-
tions obtained with a linear algorithm; -regularization in
that case. By varying the noise level on the FMT data, we also
observed that -regularization was more robust to noise than

-regularization.

APPENDIX I
DERIVATION OF THE ADJOINT OPERATOR

Let us recall that the measurement operator is the linear
operator defined by where

is the solution of (3) in which is the excitation wave
generated by the th source. The adjoint operator satisties

Using Green’s theorem we obtain the following formula:

This is equivalent to

Now let us set is the above equation. We have

Defining to be the solution of

in
on
on

yields

In the above expression, we identifiy .

APPENDIX II
IMPLEMENTATION DETAILS

Our algorithm formulation requires direct access to the sparse
matrices (12)–(16). We therefore had to undertake a custom
implementation of the finite elements method. The algorithm
generates triangular meshes with the CGAL software library,
and Matlab as a first step. We tried T3 linear elements, and
T6 quadratic elements in practice, and noticed that the linear
elements gave a sufficient precision in our case. We use sepa-
rate meshes for excitation, emission, and fluorophore distribu-
tion, and have implemented interpolation procedures to do the
mapping between different meshes. The finite elements code
was developed in the form of a C++ library that interfaces with
Matlab through mex files. The C++ code assembles matrices in
the sparse format of Matlab, which enables us to use the avail-
able optimized functions to efficiently handle these data struc-
tures. In particular, we used the Matlab implementation of the
preconditioned conjugate gradient algorithm to solve the finite
elements linear systems. The preconditioning of those systems
was done using an incomplete Cholesky decomposition.
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