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A Subband Adaptive Iterative
Shrinkage/Thresholding Algorithm

İlker Bayram and Ivan W. Selesnick

Abstract—We investigate a subband adaptive version of the
popular iterative shrinkage/thresholding algorithm that takes
different update steps and thresholds for each subband. In partic-
ular, we provide a condition that ensures convergence and discuss
why making the algorithm subband adaptive accelerates the con-
vergence. We also give an algorithm to select appropriate update
steps and thresholds for when the distortion operator is linear
and time invariant. The results in this paper may be regarded as
extensions of the recent work by Vonesch and Unser.

Index Terms— Deconvolution, fast algorithm, shrinkage, sub-
band adaptive, thresholding, wavelet regularized inverse problem.

I. INTRODUCTION

I N a typical inverse problem, one is asked to recover an ob-
ject from distorted and noisy observations of it. Presence

of noise and ill-conditioning of the distortion operator lead to
an ill-posed problem and render further a priori information
about the object necessary [2]. To that end, sparsity of the ob-
ject in some given (wavelet) frame can be used to regularize the
problem. This can be done through a formulation that requires
the minimization of a functional composed of a data discrepancy
term and a sparsity promoting functional on the frame coeffi-
cients. For a particular selection of the functionals, the iterative
shrinkage/thresholding algorithm (ISTA) [10] gives a simple
method to obtain the minimizer. One iteration of ISTA consists
of a Landweber update [2] followed by thresholding the frame
coefficients. Despite its simplicity, a disadvantage of ISTA is its
slow convergence. In order to accelerate the algorithm, several
authors proposed to make the update steps and the thresholds
vary for different coefficients [10], [13], [33]. However, save for
the Shannon wavelet basis [33], there is not a simple method to
select these update steps and thresholds as far as we are aware.
In this paper, we address this problem and provide methods to
select the update steps and thresholds for different subbands of
an arbitrary iterated filter bank (or discrete wavelet transform).
We also make precise why this modification accelerates the al-
gorithm by an investigation of the convergence rate.
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Let us now expand the discussion above. Suppose there is an
object , we would like to acquire but that we observe only a
distorted and noisy version of it, namely , given by

(1)

where denotes the distortion operator and noise. Let
be a wavelet frame where denote the scale

and position respectively. To be precise, are dis-
crete-time functions derived from an iterated filter bank. Also
set to be the synthesis operator for this frame, acting on the
frame coefficients as . In
order to obtain an estimate of , wavelet regularization methods
usually constrain the estimate to have a sparse representation
using such a wavelet frame. This leads to a formulation where
one seeks1

(2)

and sets . Variants of the following algorithm, which
we refer to as ISTA, have been proposed [1], [3], [4], [7], [8],
[10]–[12], [16], [17], [28], [36], to obtain the solution . The
algorithm is also referred to as the thresholded Landweber al-
gorithm [33], since it consists of a Landweber iteration [2] fol-
lowed by soft thresholding.

Algorithm 1 (ISTA): Suppose we have an initial estimate
and is a positive operator. Repeat until some
convergence criterion is met

1) Update .
2) For and , update

(3)

where

(4)

ISTA treats all the subbands in a uniform manner. However,
the effect of the blurring operator is usually felt more severely in
some of the subbands than others. Therefore, in those subbands
where there is a significant suppression, it might be beneficial
to take larger steps towards the minimizer so as to accelerate
the algorithm [33]. In this paper, we investigate a generalization
of ISTA that allows the use of different thresholds and update

1This formulation may be regarded as a convexified version of a “sparse” reg-
ularized formulation (where an count would replace the norm). However,
it can also be motivated in a Bayesian setting (see [25], for example).
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steps for different subbands, thereby yielding a subband adap-
tive ISTA (that is, SISTA).

In order to state the algorithm, let us introduce the vector
, and the diagonal operator that multiplies

the subband by i.e., . We also write
. With this notation, we have the

following.
Algorithm 2 (SISTA): Suppose we have an initial estimate

and is a positive operator.2 Repeat until some
convergence criterion is met

1) Update .
2) For and , update

(5)

Notice that ISTA can be recovered from SISTA if we set all
’s equal to each other. In this sense SISTA is a generalization

of ISTA.
SISTA and the problem of the selection of ’s was inves-

tigated by Vonesch and Unser in [33] for the Shannon wavelet
basis. A more general form of the algorithm was also mentioned
but not pursued by Daubechies et al. [10] and Elad et al. [13].

As aforementioned, it may be anticipated that taking larger
steps would increase the convergence rate. However, in order to
ensure convergence, we also would like to make
a positive operator (see the statement of the SISTA and footnote
1). This paper addresses the problem of how to select ’s. More
concretely, we will show that the aforementioned anticipation
that favors choosing small ’s is indeed true, by relating the
convergence rate to the spectral radius of ,
and we will present a method to select ’s so that the algorithm
is also guaranteed to decrease [defined in (2)] monotoni-
cally and converge.

A. Prior Work

ISTA was derived by several groups in different frameworks
[5]–[8], [10], [16]. In particular, Figueiredo and Nowak [16]
propose the functional as the log-likelihood function for
a restoration problem with Gaussian noise and obtain the algo-
rithm based on an EM approach. Combettes and Wajs (see also
[7] and [17]) investigate the minimization of functions given
as sums of two convex functions. Characterization of the solu-
tion as the fixed point of a proximity operator leads to an iter-
ative algorithm that coincides with ISTA for the particular ob-
jective function in this paper. Another approach is discussed by
Bredies, Lorenz, and Maass in [6], where they interpret the in-
clusion of a nondifferentiable regularization term as a general-
ization of a constraint and regard ISTA as a generalized condi-
tional gradient algorithm. We also refer to [5] for a convergence
rate analysis of these algorithms.

In this paper, we will follow the derivation of the algorithm in
the majorization-minimization (MM) framework, as done by De
Mol and Defrise [24] (which is analyzed further by Daubechies
et al. [10]). In a nutshell, the idea of MM algorithms is to relax

2In fact, it was shown by Combettes and Wajs [8] and Hale et al. [17] that
if is positive, then convergence is guaranteed. However, in
this paper, we will mainly follow the majorization minimization derivation of
De Mol and Defrise [24] and Daubechies et al. [10] which demands that

be positive. We return to this issue briefly at the end of Section III.

the minimization problem by replacing the objective function
with a surrogate function that depends on the current estimate of
the minimizer, which also upper bounds the objective function.
Minimizing this surrogate function one obtains a better estimate
of the minimizer. Iterating the procedure gives the minimizer of
the original problem under certain conditions. We will discuss
the MM methodology in more detail in Section II.

Modifying ISTA by utilizing subband-adaptive thresholds
and update steps (that is, SISTA) was hinted by Daubechies et
al. in [10, Remark 2.4] but not pursued. SISTA was investigated
by Vonesch and Unser in [33] for when the Shannon wavelet
basis is used. In particular, the selection of ’s were made
based on properties specific to the Shannon wavelet basis and
are not generally applicable. In a more recent paper [34], the
same authors present a slightly different algorithm that allows
employing arbitrary wavelet frames. More specifically, the
modified algorithm in [34] applies a Landweber step followed
by a soft thresholding operation to a single subband using a
threshold and update step adapted to that particular subband
and then reflects the change to this subband on the remaining
subbands. Cycling through the subbands this way, a multi-
level subband-adaptive algorithm is obtained to solve (2). Our
approach falls somewhere in between these two papers. We
use SISTA thereby retaining the IST approach without any
modification and provide a method for the selection of ’s
for an arbitrary wavelet frame. Due to treating the subbands
separately, the algorithm in [34] can utilize better (that is,
larger in this case) update and threshold steps. The advantage
of SISTA is that it runs in parallel, updating all of the subbands
at the same time which therefore has a lower cost (compared to
the algorithm in [34]) for the same number of iterations.

Even though we presented ISTA with soft-thresholding, other
types of thresholding may also be applied. For example, Blu-
mensath and Davies [4] study the problem where the norm
in the objective function is replaced by an count and show
that ISTA with hard-thresholding converges to a local minimum.
Another interesting extension, closer in spirit to SISTA is the
work of Zhang and Kingsbury [37] where they utilize the dual-
tree complex wavelet transform and an adaptive Bayesian prior
along with the bivariate shrinkage rule described in [9].

B. Outline

SISTA (and, therefore, ISTA) falls in the general category of
MM algorithms [15], [19], [21], [22] under certain conditions.
In Section II, we review the main idea behind MM algorithms
so as to hint why SISTA is expected to converge faster than
ISTA. Following this, we present a derivation of the SISTA in
Section III within the MM framework. In Section IV we will
describe the set of admissible ’s (rendering
positive) for the case of a general linear operator . When

is known to be time-invariant (or space-invariant3) as well,
we further analyze the problem and give an easy-to-imple-
ment recipe for the selection of ’s in Section V. After that,
in Section VI, we discuss a generalization of the results of
Section II, and relate the convergence rate to the spectral radius
of . We demonstrate the performance of

3Throughout the paper, we will use “time-invariant” but there are no con-
straints about dimension.
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Fig. 1. Two different majorizing functions that touch at . Notice that
the minimizer of is closer to the minimizer of .

SISTA in comparison to ISTA and show that further accelera-
tion is also possible by combining SISTA with TwIST (see [3])
in Section VII. Section VIII is the conclusion.

II. MM ALGORITHMS AND RATE OF CONVERGENCE

For simplicity, consider a 1D convex optimization problem
where the task is to find

(6)

where is strictly convex. Also assume that is
complicated enough to preclude any attempt for analytic mini-
mization.

Let be a starting point. We wish to find some
s.t. . Suppose we have a set of functions

with the properties that
(i) for all ;

(ii) for all .
Now if we set , (i) and (ii) ensure
that . Given then, the algorithm that sets

, monotonically decreases the
cost with each iteration, converging to under mild
conditions.

In general, MM does not specify how the majorizing func-
tions should be chosen (for some suggestions,
see [15] and [19], [22]). However, in order for the algorithm
to be practical, should be chosen so that they
can be minimized (or decreased at least) easily. Still though,
there may be many different sets of functions satisfying (i), (ii),
which are also easy to minimize. Fig. 1 shows two such can-
didate functions, , . Notice that ap-
proximates better than . Intuitively, if ap-
proximates better than for all , we expect
the iterates to converge faster than

for . Thus, criteria for se-
lecting majorizing functions can be stated as

(a) Ease of minimization;
(b) Good approximation of .

Given the set of functions, and a cur-
rent estimate , one iteration of the MM algorithm is
essentially a mapping , defined by

Fig. 2. and have the same fixed point , but iterating
converges to faster because in the vicinity of .

. Then, convergence of the
algorithm to is ensured if is an attractive fixed point

. Moreover, the speed of convergence is related to
. Consider Fig. 2 where two mappings ,

associated with the two sets of functions ,
are shown. They intersect at the

same point , and therefore have the same limit when it-
erated. However, the figure suggests that starting from the
same point, iterations of converge to faster because

. Indeed, if we write

(7)

we have

(8)

since . Provided , it can be
shown that, for

(9)

Therefore, the magnitude of the derivative of at the limit
point determines the convergence rate. In Section VI, we will
present a rigorous generalization of this result for our algorithm
that is basically an iterated mapping operating on . The key
result will be that the spectral radius of the ‘derivative’ of this
mapping at the fixed point, which in turn will be shown to be
bounded by the spectral radius of , deter-
mines the linear convergence rate.

III. DERIVATION OF SISTA

Recall that the objective function we are trying to minimize
is

(10)

Assuming the frame is tight, we can also write

(11)
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The difficulty here is that depends not just on but
several other ’s (with ). In order to de-
couple this system of equations, De Mol and Defrise [24]
and Daubechies, Defrise, and De Mol [10] add a nonnegative
convex functional, to . These functionals enjoy the
property for all , thereby yielding an MM type of
algorithm, since

(i) ;
(ii) for all .

In contrast to , we will use a subband dependent convex
positive functional, , leading to a subband dependent ver-
sion of IST algorithm (see also [10, Remark 2.4]).

A. A Subband-Dependent Surrogate Functional

First, notice that if is a positive operator, then is a
convex function of . Therefore, if is a positive
operator, then

(12)

is a nonnegative convex function for fixed with
(compare to [10, ]). Adding this to , we obtain the
convex surrogate functional

(13)

where is independent of . Notice that can be
minimized (over ) by minimizing the function inside the curly
brackets for each pair. For fixed and , the function
inside the curly brackets is minimized if

(14)

where

(15)

This is a direct consequence of the following well-known result.
Proposition 1: attains its minimum

value at .
Suppose now that we have an approximate minimizer of

. Then, since , for all , we get that
. It follows that . This

leads to SISTA presented in Section I.
A few words about convergence is in order. If the objective

function were strictly convex (which would be the case if the
operator had a trivial null space) the minimizer would be
unique. In this case, for , convergence of the algorithm to
this minimizer follows by noting that the algorithm defines a
monotonically descending sequence on and the convexity
of (see [23, Global Convergence Theorem]). For , and
the case where the objective function is not strictly convex, the
situation is more complicated. In [10], Daubechies et al. show
that ISTA for is convergent by studying the associated oper-
ator (iteration of which gives the algorithm). Even though the

operator associated with SISTA is different, the analysis in [10]
can be adapted and it follows that ISTA for is also conver-
gent. Therefore, we can safely assume that “a” minimizer can
be obtained by SISTA regardless of the starting point. Last, the
papers by Combettes et al. [8] and Hale et al. [17] suggest that
SISTA is convergent even if is positive (i.e.,

’s can actually be half of what we proposed). However, if
is not nonnegative, the MM interpretation and

monotone decrease of the objective function cease to be true. To
gain some insight on this case, let us investigate convergence
for the following simplified version of the problem. Suppose
that the objective function is strictly convex, that for diagonal

, whose diagonal entries are determined by the vector , we
have for some
and that we are in the finite dimensional setting. Then, if we
can show that SISTA is a contraction and that the minimizer is
a fixed point,4 we are done. First, notice that soft thresholding
is nonexpansive, i.e., and that
this is true even if we define a new norm as, ,
i.e., (recall that is diagonal
and invertible). Now consider the first step of SISTA. We want
to show that it is a contraction. The first step (i.e., Step 1 in Alg.
2) is essentially a mapping defined as

(16)

Noting that , we can
write

(17)

(18)

(19)

(20)

Thus, it follows that each iteration of SISTA is a contraction in
the modified norm . To see that the minimizer is the unique
fixed point of this operator, we can appeal to convex analysis,
following the operator splitting approach (see, for example, [7],
[8], and [17]), but we can also use the fact that SISTA with 2
is a convergent MM algorithm and therefore its fixed point is
the unique minimizer. In this case, if we denote the minimizer
as , we have, by the fixed point property [recall (5)]

(21)

where

(22)

But (21) is equivalent to

if

if
(23)

which is equivalent to

if

if .
(24)

4In fact, it is the unique fixed point in this case, by the Banach fixed point
theorem [20].
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It follows by these equivalences that

(25)

for an arbitrary . In words, is a fixed point of SISTA for any
diagonal , and convergence therefore follows.

In Section IV, we will discuss the problem of selecting ’s
for a general distortion operator . In Section V, we propose a
simple recipe for choosing ’s when is LTI.

IV. SELECTION OF FOR A LINEAR DISTORTION OPERATOR

Let us partition the synthesis operator and the frame coef-
ficients into parts and write

(26)

(27)

Here, maps the “ subband” frame coefficients to the
space where and from (1) reside in. Now if we define,

(28)

we can express the operator as,

. . .
...

...
(29)

Notice that for we have

(30)

By the triangle inequality, we can write

(31)

where

(32)

Therefore

(33)

(34)

(35)

(36)

where we used (31) in the last line. Now if we define the Her-
mitian matrix as

...
. . .

(37)

we can express (36) as

...
...

(38)

Noting also that

...
...

. . .
...

(39)
we conclude that if is a positive ma-
trix, then is a positive operator. The following
proposition is useful in this regard.

Proposition 2: Let be a Hermitian matrix, whose entries
are denoted by . In order for to
be positive:

(i) It is necessary that for .
(ii) It is sufficient that .

Proof: These are corollaries of well known results. (i) fol-
lows from the fact that the diagonal entries of a Hermitian matrix
majorizes its eigenvalues (see [18, Thm. 4.3.26]). (ii) follows
from Gershgorin’s theorem (see [18, Thm. 6.1.1]).

As a corollary, we have the following.
Proposition 3: If

(40)

then is a positive operator.
We remark that even though (40) is a sufficient condition, part

(ii) of Prop. 2 implies that the selected ’s will not be much
larger than necessary if the matrix is diagonally dominant.
However one should keep in mind that (38) is not an equality
either.

In a finite dimensional setting, the system can be repre-
sented by a matrix. In this case, Prop. 3 suggests that we take

(41)

where denotes the spectral radius of ,
which is equal to the largest eigenvalue of the nonnegative
matrix .

Next, we provide a further analysis for the relatively simple
but important case of an LTI distortion operator and a frame
derived from a filter bank.
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Fig. 3. The operator is realized by the system above. Here, an up-
sampler by inserts zeros between each sample of its input. A down-
sample by keeps every sample of the input where ranges over .
For more details, see [32].

Fig. 4. This system is equivalent to the one in Fig. 3 and realizes the operator
.

V. SELECTION OF UPDATE STEPS/THRESHOLDS FOR A

DECONVOLUTION PROBLEM

In this section, we assume that the distortion is an LTI
system and that the frame is derived from a filter bank with
subbands. We will denote the -transform and the DTFT of a
filter as and respectively. We will assume that
all of the filters have DTFTs with at most a finite number of
discontinuities, that they have real coefficients and we will set

. Other than these, we adopt the notation of
the previous sections. We will describe two methods to obtain

’s s.t. is positive.
In this setting, since is an LTI operator, if we denote the

filter associated with by , the operator is re-
alized by the system in Fig. 3. In Section V-A, we will transform
this system and describe the set of ’s that make
a positive operator. In Section V-B, we will pursue the develop-
ment in Section IV and describe a selection algorithm for so
that is positive.

A. Method I: Polyphase Matrix Description of

Notice that, by linearity and associativity, the sys-
tems in Fig. 3 and Fig. 4 are equivalent. Now if we set

, these systems are also equivalent
to a system like the one shown in Fig. 5, where ’s are
determined by ’s and ’s. Notice that the sub-
band coefficients should also be split into subbands to
accommodate for the transformation. For this -band system,
admissible ’s for can be found using the
polyphase description of the system.

For the filter the polyphase components
(for ) are defined through

(42)

Fig. 5. A uniformly sampled (overcomplete) synthesis and analysis FB in cas-
cade.

Using these, the polyphase matrix is constructed by set-
ting the st entry to . It follows, following
the notation of Fig. 5, that

...
...

(43)

If we denote the system in Fig. 5 by (this is equivalent to
), we have the following.

Proposition 4: For , is a
positive operator if and only if there exists such that

al-
most everywhere.

Proof: Suppose almost everywhere.
Then

(44)

(45)

For the converse, suppose there does not exist such a positive
constant . Then, for any given , we can find a set with
nonzero measure where . Therefore on we
can find with at most a finite number of discontinuities
(recall that we assume that the filters have only finitely many
discontinuities) such that with real

. If we set equal to zero outside of , we
get . Since was arbitrary, we have that

is not positive and the claim follows.
In principle, since the number of channels is finite, one can

determine the family of allowed ’s s.t. is positive. To
that end, Prop. 2 may also be utilized, which is likely to give
“good” ’s when is diagonally dominant.

In order to apply Prop. 4 to our original system in Fig. 3, we
need to transform the system so that all of the upsampling/down-
sampling operations are performed with respect to the same
integer. One drawback is that the number of subbands can be
substantially higher than the number of subbands we originally
started with. Our next method pursues the approach presented
in Section IV and provides a recipe for the selection of ’s,
without transforming the FB structure.
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Fig. 6. A component of the system realizing . We refer to this
system as .

Fig. 7. Provided the FB in Fig. 6 is a DWT type FB (obtained by iterating
an FB on its lowpass filter), it is of the form above, i.e. the upsampler and the
downsampler is a power of an integer.

Fig. 8. Norm of this operator is given in Lemma 1.

B. Method II: Decomposition of Into Subsystems

Recall that Prop. 3 already provides a method to select ’s
if we know ’s. For a general linear distortion operator ,
one has to compute (or at least upper bound) explicitly
for all , . In fact, for a DWT type filter bank
(obtained by iterating a multichannel FB), when is an LTI
system, as we assumed in this section, we can express in
terms of and .

First notice that following the notation of Fig. 3, the system
can be drawn as in Fig. 6. If the frame is obtained by it-

erating a filter bank, the system in Fig. 6 can be redrawn as in
Fig. 7, where .

Proposition 5: For given in Fig. 7, set ,
. Also downsample by and denote the

resulting filter by . Then

(46)

For the proof, we will use the following lemma.
Lemma 1: Let us denote the operator in Fig. 8 by . Then

(47)

Proof: Notice . Suppose the RHS
of (47) evaluates to . Then

(48)

(49)

Thus, .
For the converse, given an arbitrary , we can find a set

with a nonzero measure s.t. the RHS of
(47) is greater than . Now take on
and zero elsewhere for . Then, it follows by

Fig. 9. For , it follows by the noble identities that the system in Fig. 7
and the system in (a) are equivalent. Again provided , the system in (b) is
equivalent to (a) since all of the channels except the uppermost one yield zero
output.

the train of equalities in (48) that . By
the arbitrariness of then, we have and the claim
follows.

Proof of Prop. 5: First notice that the cases and
give transpose system pairs, so their norms are the same. Thus,
without loss of generality, we take .

Now if we denote the polyphase components of by
for , equivalence of the systems in

Fig. 7 and Fig. 9(a) follows by the noble identities [32]. That the
systems in Fig. 9(a) and Fig. 9(b) are equivalent is also evident
by inspection. The proposition now follows by Lemma 1.

We note that norm analyses of more general multirate sys-
tems, where ’s are not powers of an integer, were provided in
the papers by Shenoy [30], Weisburn et al. [35] and Shenroy et
al. [31], but the particular case we treat here lead to significant
simplifications as indicated by the proposition.

To summarize,
Algorithm 3 (Selection of ’s for a Deconvolution Problem):

Suppose with an integer for all .
(i) Repeat for , ,

• Set .
• Set , .
• Downsample by and denote the resulting filter

by .
• Set

(ii) Pick s.t. .
We remark that the vector computed using this algorithm is

more effective when the matrix [in (38)] is diagonally dom-
inant, which in turn requires that the frequency support of the
frame functions employed in different stages do not overlap
much. For deconvolution, this means that better frequency se-
lectivity of the frame leads to a tighter upper bound calculation
by Algorithm 3. To demonstrate this, we selected as the blurring
kernel, the Hamming window of length 5 (in Matlab: ‘ham-
ming(5)’). The frequency response of this filter is indicated
by the dashed line in Fig. 10(a) and Fig. 10(b). For a 4-stage
Haar DWT, using Algorithm 3, we computed the vector for
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Fig. 10. The vector computed using Algorithm 3 improves with the filters’
frequency selectivity. In both of the figures, the dashed line depicts the fre-
quency response of the blurring kernel (‘hamming(5)’). (a) Frequency re-
sponse of the Haar DWT weighted by . (b) frequency response of the DWT
using Daubechies filters with 6 vanishing moments, weighted by .

this blurring filter and multiplied the (properly normalized) fre-
quency response of each subband with the corresponding entry
in . The result is depicted in Fig. 10(a). Notice that there is a
significant overshoot in all of the subbands. If we do the same
for a DWT using Daubechies filters with 6 vanishing moments,
the filters turn out to follow the frequency response of the blur-
ring filter much closely [see Fig. 10(b)]. This requirement of
disjoint frequency support may be regarded as a downside of
Algorithm 3.

In the next section, we make more precise why the selection
of small ’s speed up the algorithm by generalizing the treat-
ment in Section II.

VI. CONVERGENCE RATE OF SISTA

In order to draw a parallel with the development and notation
of the MM algorithm in Section II, we regard SISTA as a re-
peated application of a fixed operator, , defined by

(50)

where is a subband dependent soft-threshold operator with
a threshold equal to for the subband. With this def-
inition, for a given starting point , SISTA is equivalent to re-
peatedly updating as

(51)

is an operator mapping to . However, we will now
show that maps a neighborhood of the minimizer (or its
fixed point) into a fixed finite dimensional space determined
solely by the minimizer (we also refer to [5] and [17] for detailed

analyses). This will allow us to express the convergence rate ex-
plicitly in terms of the spectral radius of .

First notice that, for , will be nonzero for a
finite number of pairs, otherwise we could find infinitely
many pairs such that and thus would
not have a finite norm. Noting, for ,

is also in we, therefore, have that
can be nonzero only for finitely many pairs. Now since
the limit point satisfies , it follows that is
nonzero for only a finite number of pairs.

For convenience of notation, let us denote the operator pro-
jecting elements of to the support of as

if
if . (52)

The following number will be useful for defining a convenient
neighborhood around .

(53)
where

(54)

We remark that if for every pair, then
will be a positive number (otherwise would not be in as
argued before).

Lemma 2: Suppose that for every pair.
Set . If then

is nonzero if and only if is nonzero.
Proof: Set .

Notice

(55)

Therefore

(56)

Now suppose we can find a pair such that
but . This implies that . Thus,

, a contradiction.
By a similar argument, implies that

and the lemma follows.
These results, along with the fact that the algorithm con-

verges, implies that becomes essentially a mapping of
into where is the number of pairs for which is
nonzero (or the dimension of the range of ). In the following,
we will further assume that the minimizer is also unique.5 Such
iterated mappings are well studied (see, for example, [26]).

In order to generalize the assertions of Section II, let us now
make a few definitions and state some results.

Definition 1: We will say that defines a
convergent algorithm if for any given ,
converges to the same point .

5Recall that this is in fact true when has a trivial nullspace. However, this
might leave out the important case where the underlying frame is overcomplete,
so that has a nontrivial nullspace. Nevertheless, we hope that the analysis that
follows sheds some light for such cases as well.
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Given an operator that defines a convergent algorithm, the
question is: How fast is the convergence? We now define a rel-
evant convergence rate.

Definition 2 ([26, Defn. 9.2.1]): Let be a sequence
in (i.e., for all ) that converges to . Set

(57)

This definition specifies a rate for a single sequence. How-
ever, our algorithm produces different sequences for different
starting points.

Definition 3 (R-Factor): Let denote the set of all sequences
generated by iterating a mapping . Suppose also
that all of these sequences converge to . The -factor of is

(58)

Recall that for 1D, the magnitude of the derivative of at the
fixed point provided a rate of convergence. For a generalization
of this result to our case, we first need to adapt the definition of
the derivative.

Definition 4 ([26, Defn. 3.1.5]): A mapping
is called Frechet (F-) differentiable at if there is a linear
mapping s.t.

(59)

In this case, the linear operator is denoted by and is
called the F-derivative of at .

We can now state a result analogous to (9).
Proposition 6 ([26, Thm 10.1.4]): Let

define a convergent algorithm with limit point . Also sup-
pose exists and the spectral radius of satisfies

. Then, .
Since we know that in the vicinity of the limit , be-

comes a mapping from a finite dimensional space into itself, the
derivative of restricted to this finite dimensional space will
determine the -factor for .

Proposition 7: Suppose that for every
pair. In this case, the derivative of regarded as a map-
ping from the range space of into itself is given by

(60)

Proof: Set . Pick in the range
space of with . Let be a pair such that

. It follows by Lemma 2 that .
For this pair

(61)

Also, if is zero, then both and
are zero. Therefore

(62)

Since is a linear operator, it must be
the -derivative we are looking for.

Corollary 1: The -factor of is equal to the spectral
radius of .

For linear operators , , we remark that
. Therefore ’s give us some means to accelerate

the algorithm by making as small
as possible. To that end, the following proposition provides a
guideline.

Proposition 8: Suppose we are given ,
such that , for . If

is a positive operator, then
(i) is a positive operator.

(ii)
.

Proof:
(i) Notice that

(63)

Since the sum of a nonnegative and a positive operator is
positive, the claim in (i) follows.

(ii) We remark that, in the following, the operators map a fixed
finite-dimensional space (namely the range space of )
to itself and therefore may be taken as matrices.

First, notice that all eigenvalues of
are positive since it is a product of positive operators. Also,
is an eigenvalue of if and only if
is an eigenvalue of . Therefore,
finding the minimum eigenvalue of
suffices to compute . The
same argument is valid if is replaced with some as in the
hypothesis.

On the range space of , if
is not invertible, it has a zero eigenvalue and

and the claim is true
trivially.

Now suppose is invertible. We remark
that if a finite dimensional linear operator has positive
eigenvalues, its minimum eigenvalue is given by .
Therefore

(64)

and

(65)

Now if we denote , we
have

(66)

(67)

(68)

(69)

since . This implies the claim by (64), (65).
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Fig. 11. (a) Original signal. (b) Observation. (c) Result of ISTA for 50000 iter-
ations with a 6-stage (7-subband) dyadic DWT with Daubechies filters having
4 vanishing moments. (d) Result of ISTA for 50000 iterations using a 4-stage
(9-subband) double-density DWT (see [29]).

TABLE I
‘ ’ VECTOR COMPUTED FOR EXPERIMENT 1. ‘LP’

STANDS FOR LOWPASS CHANNEL

Notice that one can make positive by taking
the elements of arbitrarily large. This proposition implies that
this is a poor strategy, as it decreases the convergence rate.

VII. PERFORMANCE

To compare the performances of SISTA and ISTA, we con-
ducted a number of experiments. In the first two experiments,
we used the same observation signal. To obtain the observa-
tion signal, we blurred the signal of length 1024 (zero padded
to avoid boundary effects) shown in Fig. 11(a) with a length-30
moving average filter (therefore, neglecting the boundaries,
is a circulant 1024 1024 matrix) and added Gaussian noise
with . The observed signal is shown in Fig. 11(b). The
first two experiments differ by the choice of the frame utilized.

Experiment 1: Using a 6 stage critically sampled DWT with
Daubechies filters having four vanishing moments, we ran
ISTA for 50 000 iterations, thereby obtaining an estimate of
the solution to problem (2) with . After computing

using the method in Section V-B (see Table I for
these values) we ran SISTA and ISTA for 1000 iterations. For
both algorithms, we used values that are half of that required
by MM. In other words, we used (where are those values
in Table I) for SISTA and for ISTA. Fig. 12 shows the
logarithm of the RMSE between the iterates of the algorithms

Fig. 12. versus Number of Iterations for Experiment 1 (Or-
thonormal Dyadic DWT). (a) Thin curve: ISTA, Thick curve: SISTA. (b) Dashed
line: SISTA [from (a)], Thin solid line: TwIST, Thick solid Line: TwIST+SISTA.

and . According to the definition of the -factor, for high ,
we expect, noting the orthonormality of the frame that

(70)
i.e.

(71)

The constant is introduced to accomodate for the arbitrariness
of the index ( may be equal to for some other se-
quence). Notice that both curves are fairly linear and the slope
of the curve for SISTA is significantly higher in magnitude than
that for ISTA, indicating a lower -factor for SISTA.

Even though the speed-up is significant in this case, it is
also important to understand where SISTA stands compared to
state-of-the-art methods. To gain some insight, we compared
the algorithm to TwIST [3], since the definition of ‘an iteration’
in TwIST is compatible with ISTA and SISTA and therefore
it makes sense to track the progress of the algorithms through
each iteration (otherwise the comparison has to be somewhat
implementation dependent—see [36], for example). If we
denote one iteration of ISTA as

(72)

then an iteration of TwIST is given by

(73)

where and are given or adapted on the run (see [3]). Since
the improvement of TwIST stems from combining previous es-
timates of ISTA, it can readily be adapted to SISTA (by making

in (73) subband adaptive). This suggests that SISTA and
TwIST are not rival algorithms but can be combined to yield
possibly better performance. This indeed turned out to be the
case for this example. For the regular TwIST, we hand-tuned
the and parameters for our example and obtained (for
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Fig. 13. The double-density DWT is obtained by iterating an oversampled FB.
See Experiment 2 for details.

TABLE II
“ ” VECTOR COMPUTED FOR EXPERIMENT 2. ‘LP’ STANDS FOR “LOWPASS”

TABLE III
EXAMPLE 1—THE FILTERS FOR THE DOUBLE-DENSITY DWT

(SEE FIG. 13) USED IN EXPERIMENT 2

, ) the log-distance curve shown by the thin line in
Fig. 12(b). Compared to the log-distance curve of SISTA, there
is a significant improvement. However, if we combine TwIST
and SISTA (with hand-tuning and ) we obtain
yet better performance [see the thick line in Fig. 12(b)].

Experiment 2: In the second experiment, we utilized an
overcomplete dyadic DWT, namely a double-density DWT (see
Fig. 13—also see [29] for more information on this transform)
with 4 stages and set as in Experiment 1. The filter
coefficients are tabulated in Table III. In this setting, we ran
ISTA for 50 000 iterations to obtain the approximate and

, where the latter is shown in Fig. 11(d). Here, since
the frame is not orthonormal, we do not have
and therefore the first equality in (70) does not hold. We can
therefore produce two different graphs pertaining to and

. The graph in Fig. 14(a) shows versus ,
and the graph in Fig. 14(b) shows versus . We
remark that the asymptotic results presented in Section VI are
related to —see Footnote 5. As in the previous
experiment, we computed using Algorithm 3 (see Table II)
and ran SISTA with and ISTA with for 5000
iterations. The log distances are shown in Fig. 14. Observe that
even though the convergence rate for SISTA is higher [compare
the slopes towards the tail in Fig. 14(a)], the rate of convergence
in the ‘time-domain’ for SISTA and ISTA are approximately
equal [compare the slopes towards the tail in Fig. 14(b)]. This
observation suggests that, in this example, towards the tail of the
sequence , most of the action takes place in the null space of

, which might not be interesting in an inverse problem setting
as discussed in this paper, but which might be interesting if one

Fig. 14. Convergence comparison for Experiment 2 (double-density DWT).
(a) versus Number of Iterations. (b) versus
Number of Iterations. In both (a) and (b), Thin curve: ISTA, Thick curve: SISTA.

Fig. 15. Convergence comparison for Experiment 2 (double-density DWT) and
TwIST. (a) versus Number of Iterations. (b)
versus Number of Iterations. In both (a) and (b), Dashed line: SISTA, Thin line:
TwIST, Thick line: TwIST+SISTA.

was looking for an approximation of the sparsest representation
of the object (e.g., for a coding purpose).

To demonstrate the speed-up with TwIST, we performed an-
other experiment similar to the one described in Experiment 1.
In this example too, we hand-tuned the and parameters to en-
hance the performance. In particular we set ,
for TwIST and , for SISTA combined with
TwIST. The results are depicted in Fig. 15. Once again we ob-
serve that TwIST can be faster than SISTA alone but combining
TwIST with SISTA results in yet better performance.

Experiment 3: As a final experiment, we compared the algo-
rithms in a separable 2D deconvolution problem. For the ‘cam-
eraman’ image (of size 512 512), we normalized the intensity
level so that the highest intensity is equal to 1 and added a zero
border around the image of size 30, to avoid boundary effects.
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Fig. 16. (a) Observation. (b) Result of ISTA for 10000 iterations with a 4-stage
(13-subband) dyadic separable 2D DWT with Daubechies filters having 4 van-
ishing moments. In both images, the border is cropped.

TABLE IV
‘ ’ VECTOR COMPUTED FOR EXPERIMENT 3. THE VALUES COMPUTED FOR

THE HL CHANNEL ARE EQUAL TO THOSE FOR LH AND ARE NOT LISTED

To obtain the observation signal, we blurred the image with a
9 9 separable moving average filter (therefore, may be re-
garded as a highly structured matrix of size 512 512) and
added Gaussian noise with . This observation signal is
shown in Fig. 16(a). Using a 4-stage, separable 2D DWT with
Daubechies filters having 4 vanishing moments as the basis, and
setting , we ran the TL algorithm for 10 000 iterations
and obtained the estimate of the minimizer shown in Fig. 16.
Proceeding as in the previous experiments, we computed the
vector (see Table IV). The log-distances of ISTA and SISTA are
depicted in Fig. 17. As in the 1D experiments, SISTA clearly
improves the convergence rate.

Fig. 17. versus Number of Iterations for Experiment 3 (Or-
thonormal 2D Dyadic DWT). Thin curve: ISTA, Thick curve: SISTA.

VIII. CONCLUSION

In this paper, we investigated a method to accelerate ISTA,
namely SISTA, which was studied in detail by Vonesch and
Unser in [33] for the Shannon wavelet basis. SISTA, as well
as the original ISTA may be regarded as MM algorithms. In the
MM framework, one replaces the cost functional with a more
convenient set of surrogate functionals and reaches the optimum
by optimizing these surrogate functionals. In particular, ISTA
employs a surrogate functional by replacing the data discrep-
ancy term, with another functional that does not discriminate
between the subbands. The main idea of SISTA is to replace the
data discrepancy term with a subband adaptive functional. In
fact, this approach is valid regardless of the regularization term.
This subband adaptive functional can be employed in inverse
problems that contain a data discrepancy term similar to the one
used in this paper. We, therefore, expect this subband adaptive
strategy to accelerate similar algorithms where different regular-
izers (like total variation [27] or norm of the wavelet analysis
coefficients [14]) are used in the problem formulation.

Another interesting aspect of SISTA is that it can readily be
used within an acceleration method like TwIST [3] as demon-
strated in the Experiments section. We remark that it can also
directly be used within the continuation scheme of Hale et al.
[17]. Utilizing SISTA alongside these and other schemes like
SPARSA [36], FISTA [1] etc. might lead to further acceleration
of these algorithms.

ACKNOWLEDGMENT

The authors would like to thank M. A. T. Figueiredo, Tech-
nical University of Lisbon, for bringing [5], [8], and [17] to our
attention, M. Unser and C. Vonesch, EPFL, for their comments
regarding the comparison to their work and M. Guerquin-Kern,
EPFL for comments and discussions. We also would like to
thank the anonymous reviewers for their constructive remarks/
suggestions that helped improve the paper.

REFERENCES

[1] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 1, pp.
183–202, 2009.

[2] M. Bertero and P. Boccacci, Introduction to Inverse Problems in
Imaging. New York: Taylor and Francis, 1998.

[3] J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-
step iterative shrinkage/thresholding algorithms for image restoration,”
IEEE Trans. Image Process., vol. 16, no. 12, pp. 2992–3003, Dec. 2007.

[4] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse ap-
proximations,” J. Fourier Anal. Appl., vol. 14, no. 5, pp. 629–654, Dec.
2008.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 29,2010 at 13:16:43 UTC from IEEE Xplore.  Restrictions apply. 



BAYRAM AND SELESNICK: SUBBAND ADAPTIVE ISTA 1143

[5] K. Bredies and D. A. Lorenz, “Linear convergence of iterative soft-
thresholding,” J. Fourier Anal. Appl., vol. 14, no. 1, pp. 813–837, Oct.
2008.

[6] K. Bredies, D. A. Lorenz, and P. Maass, “A generalized conditional
gradient method and its connection to an iterative shrinkage method,”
Computat. Optimiz. Appl., vol. 1, no. 1, p. 1-1, Nov. 2007.

[7] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, “A vari-
ational formulation for frame-based inverse problems,” Inverse Prob-
lems, vol. 23, no. 4, pp. 1495–1518, Aug. 2007.

[8] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” SIAM J. Multiscale Model. Simul., vol. 4, no. 4, pp.
1168–1200, Nov. 2005.
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