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Discretization of the Radon Transform and of its
Inverse by Spline Convolutions

Stefan HorbeltMember, IEEEMichael Liebling Student Member, IEEERNd Michael Unser*Fellow, IEEE

Abstract—We present an explicit formula for B-spline con- implementation of this analytical formula leads to the standard
volution kernels; these are defined as the convolution of several filtered back-projection (FBP) algorithm, which goes back to
B-splines of variable widths h; and degreesn;. We apply our  ipa aarly 1970s [11]. Despite the considerable research efforts

results to derive spline-convolution-based algorithms for two . . . . .
closely related problems: the computation of the Radon transform devoted to alternative reconstruction techniques—in particular,

and of its inverse. First, we present an efficient discrete implemen- algebraic (ART) [4] and statistical ones, including maximum
tation of the Radon transform that is optimal in the least-squares likelihood [12] and Bayesian [13]-[16]—FBP is still the method
sense. We then consider the reverse problem and introduce a newof choice used in commercial CT scanners. It owes its success
spline-convolution version of the filtered back-projection algo- to the fact that it is direct, fast, and reasonably simple to imple-
rithm for tomographic reconstruction. In both cases, our explicit ' : . .

kernel formula allows for the use of high-degree splines; these mem' Even thOUQh_ the: standard implementation uses a rather
offer better approximation performance than the conventional rudimentary discretization—at least by modern standards, it has
lower-degree formulations (e.g., piecewise constant or piecewisenot been much improved over the years, except for the aspect
linear models). We present multiple experiments to validate our of filter design [17]. One noteworthy exception is the work of
approach and to find the parameters that give the best tradeoff be- - ,6qoret al.who derived an optimal reconstruction filter based
tween image quality and computational complexity. In particular, . : .

we find that it can be computationally more efficient to increase on a piecewise-constant model of the |r‘r_1age [18]. Some wavelet
the approximation degree than to increase the sampling rate. approaches can also be viewed as multi-scale variations on FBP
[19]-[21]. In this paper, we are not dealing with the problem of
noise which is better treated statistically. However, even in the
presence of noise it makes good sense to apply a good algorithm
for noiseless data first and to reduce noise afterwards by suitable

. INTRODUCTION nonlinear wavelet denoising; Kalifat al.[22] have shown that

HE Radon transform of a two-dimensional (2-D) functiofihis two-step approach is essentially as good as a regularized re-
T is given by the collection of its line-integrals (or projec£onstruction during FBP and much easier to implement.
tions); each ray is indexed by its distantéo the origin and The practical computation of the Radon transform or of its in-
its angled [1], [2]. The Radon transform plays a crucial role inVerse necessarily involves some form of interpolation because
medical imaging because it constitutes a good model of the 8¢ underlying mathematical objects are defined in the contin-
mographic acquisition process [3]-[5]. For instance, the forwafus domain. The same holds true for Fourier-based reconstruc-
step—or re-projection—that is required in some iterative recofion techniques [23]-{25]. For efficiency, practitioners tend to
struction algorithms is similar to the computation of a Radose relatively simple techniques such as piecewise constant or
transform. Re-projection is also used explicitly for beam-hardDear interpolation. One of the arguments that is often made
ening correction [6], streak suppression [7], and the removgl favor of FBP is that it is less sensitive to interpolation er-
of artifacts caused by the presence of radio-opaque matef@fiS than direct Fourier-based reconstruction [26], [27]. Thus,
such as metallic implants [8]. Other applications of the RaddRere appears to be a general perception that the role of inter-
transform in image processing are the detection of lines (Hougflation is not predominant. Our purpose in this paper is to
transform) [9] and the recently proposed ridgelet transform uomvestlgate this issue in greater details and determine the ex-
which is essentially a wavelet transform applied in the Radd@nt to which the use of high quality interpolation models to-
domain. gether with an optimal discretization can improve performance.
An attractive feature of the continuously defined Radon trankldeed, we will see that a careful design—i.e., the use of a good

form is that it has an exact inversion formula [2]. The digitamodel and a sampling method that s optimal in the least-squares
sense—can make quite a difference. We have chosen to base

our approach on splines because this type of representation of-
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fit a continuously defined spline model to the sinogram (respe&nd the centerech(+ 1)th finite-difference operator scaled at
tively, to the image), instead of determining the values by resamidth &
pling, as is done usually. Third, we select the spline basis func-
ti . .. . . enli An+1:Al*~~~*Al
ion in a way that allows for an explicit solution with B-spline L h h
———

convolution kernels and, therefore, an optimal discretization of ni1terms

the Radon transform. Finally, the method is general and works n+tl 1\ 8(z + R - (2L — k)

for splines of any degree. Choosing a larger degree (typically, = Z(_l)k <” + ) * 2 .4
. . " . . k hn—l—l

n = 3) results in better quality, but it also implies more compu- k=0

tation. Thus, there is a compromise to be found. ] ] ] ) o
The paper is organized as follows: In Section I, we reviel/sing this notationy can also be written as the central finite

classical B-splines and derive explicit formulas for the multipidifference of the Heaviside step functieh

B-spline convolution kernels that will be used in our algorithms. 0 0
In Section Ill, we briefly recall the basics of B-spline signal pro- - g9 — Al P 1 <$ + ﬁ) — <$ — ﬁ) .
cessing and generalized sampling. In Section IV, we use these h 2) 4 2/ 4

results to derive our spline-based implementation of a Radon ) . )
transform which is optimal in the least-squares sense. In Secd NUS: We may rewritgf: in terms of the following convolu-
tion V, we introduce a Radon-based version of a FBP algorith‘i’ﬁn operators:
that also uses spline kernels. In Section VI, we discuss imple-
mentation issues for both algorithms (direct and inverse). Fi-
nally, in Section VII, we present experimental results for each gfsing the commutativity of convolution operators, we get
the algorithms. In particular, we investigate the influence of the
various parameters (degrees of the splines, spatial and angular By = AL x-x A *xg_ *oee ok x(jr
sampling steps) on the overall performance. We determine the h ~ g
’ : . . n+1 terms n+1 terms

best tradeoff between computation time and image quality.

While we believe that our spline-formulation of FBP anavhich, as shown in the first part of Appendix |, can be expressed
the Radon transform is original, we are aware of three othiérthe more succinct form
instances where splines have been used for tomographic re- s
construction. The first is a finite-element formulation of the Br(z) = At —J,’ (5)
problem using splines as basis functions [32]; it is essentially an "
algebraic method that requires solving a large system of Iinem;chereA}j”L1 andz?} are given by (4) and (3), respectively.
equations. The second applies box splines—a multidimensional¥et another way to define the centered B-spline is by its
extension of B-splines—for improved approximation in an algd-ourier transform
rithm based on Fourier reconstruction [33]. The third is an ap- h
proach where the ramp-filtering is evaluated analytically based B (w) = sind"+t <w—>
on the continuously defined derivative of the projection data 2
[34]. Finally, itis interesting to note that the benefit of bi-cubigynere sin¢z) = sin(rz) /7.
interpolation—albeit not splines—has been demonstrated in-
directly in rotation-based methods for iterative reconstructia®. B-Spline Convolution Kernels
[35].

Br=pn s = (Apxal) - x (A x2).

To implement the Radon transform, we will need to convolve
several B-splines of variable widths (see Figs. 1 and 2). The
splinebikernel 3, () is defined as the convolution of two

hi,ha

Il. B-SPLINE CONVOLUTION KERNELS

A. The B-Spline Function B-splines of degrees;, ny and widthsiy, 72
We define the centered B-spline of degreand of widthh grinz oy gray gne 6
as the £ + 1)fold convolution of the normalized box function Prana () = By B (). (©)
of size/ In the same way, we define the splinekernel, which is the
) = %7 for—’—g <z< % a \(,:Vci)gx]oSIL;Ltlon ofrZ dlffk;arent B-splines of degrees, ..., n,, and
" 0, otherwise Lye o lma DY
Br(x) =5 « [37_1 x) =Y % x B (z). 2 Grra T (0 — BT gy BT ().
() =+ B () = B () &) By pr(w) = Byl ok ox B (x)

n+1 terms

Proposition 1: The splinem-kernel can be computed as
Note that these functions are normalized to have a unit integral; N
isi i g = w Py P _ AniHL e, rym™
this implies thatB,.L (z) = (1/h)/.31 (z/h). . B (7) = Ahl—i.—.:.Lhm +1, Yy ' @)
Let us also define the one-sided power function e o Np,!

", z>0andn >0 whereAZ:::Z: = ARt Apmis the cc_)nvolution of
zly = { 1, z>0andn=0 ) several finite-difference operators as defined in (4) and where
0, otherwise Ny =m— 14370 n.
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B-spline kernels

S 'l
|

33 33
~N W =0

Fig. 1. Spline bikernels by convolution of two causal B-splifigs« 3;: ()
with n. = {0,1,3} andh € [0.1]. The kernels generate a smooth transitior
between B-splines of degreeand degreén + 1. Forh = 0 andh = 1, the
kgrnflls are B-splines, dBuy, _,o 87 * 87 (x) = B3 (x) andpy * 87 (x) =
B2 (),

The splinen-kernel is a nonuniform spline of degrég, and
its support is the sum of the supports of the convolved B-splin

m m

Supp(ﬁ;z::::g:: (x)> _ |- Z h; (ﬂ;-‘r 1) 7 Z h; (ﬂ;-‘r 1)
(8)

i=1 i=1

The proof of Proposition 1 is given in Appendix I. O
In the case where thg; are equal, the compound finite dif-
ference operator simplifies to

ni4l g+l A Nyl

Ahj...,h - Ah . (9)
We can use (7) and (9) to derive the well-known convolutio
property of two B-splines

+na+1
B () = Apett e TETT gt
h h - h (711+712+1)‘ — R '

The splinem-kernel formula (7) expanded by (4) leads to i '~
closed-form expression. For instance, with= 2, we get the °°7:
following explicit formula for the splindikernel

1ot
ﬁn],nQ (J}) _ AntH,not xil'f‘"z-l-
hi,ha T =hq,he (nl +7’LQ+1)'
ni+Hl ngtl
=3 Y e (M) ()
k1 =0 ko=0 it k2
41 41 nitnat Fig.2.  Spline flowers. The Radon transform of the 2-D B-splifiéx)- 3™ (y)
(a:—i— (MQ _kl) “hi+ (n22 _kQ) . h2)+ is a B-spline convolution kernel. We show several examples. They are plotted
’ THn Tn : on the floor, for various projection anglésAt angles that are multiples af/4,
(7‘L +n +1)l.h L. pome . - Rt . -
1 2 S 2 the B-spline convolution kernel simplifies to an ordinary B-spline.{aF 0.

(10) (b)yrn =1.(c)n = 3.
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[ll. LEAST-SQUARES SAMPLING By applying this spline interpolation to a Kronecker delta

Continuous signals have to be sampled into discrete sign gitimpulse at origin), one obtains the so-called cardinal spline

before they can be processed digitally. The spline formalism gp_ction which ishdenr(])ted bé‘f(aj? :l.nn(x)' Iftf.h.as the inte_r- |
scribed in [36] provides an attractive alternative to the classic jiing property that the cardinal spiine coetlicients are simply

formulation dictated by Shannon’s sampling theorem [37]. ™ € sampled valugs_of the contlnu0L_|s functign:= f(hk)'.lt 'S
main idea is to use compactly supported basis functions—gn interpolator of infinite support which resembles the sinc func-

splines—which are much more convenient to handle than tH%n [44].' Thi? is an_other example Of. a \(alid_spline basis _func—
ideal sinc function which decays rather slowly. A good reasdiPnS: With th|§ pa}rt|cular b§3|s funcpon n mlnd,lone. can nter-
for using polynomial splines over other forms of interpolation iret the B-spline interpolation algorithm (recursive filtering) as

that they offer the best cost-performance tradeoff; this is a pro%_changg f_rom the cardinal s_pline b_asis (where the samples are
erty that is now well documented in the literature. In particula ’e coefficients) to the B-spline basis.

we refer to the extensive work of Meijering [30] who compared ) o

as many as 126 interpolators and concluded that splines werel-€ast-Squares Spline Approximation

significantly better in all cases. One theoretical explanation for This is a refinement on straightforward sampling; it is appli-
their superior performance is that B-splines are the shortest ajadhle whenever the input functigifz) is continuously defined.
smoothest functions that allow the reproduction of polynomialgere, the goal is to get the best spline representaftign) of

of degreen. This polynomial reproduction property is essentiaf (x) so that the integral of the square difference betwger)

in wavelet and approximation theory; it determines the approand f,(z) (L2-norm) is minimized. Mathematically, this cor-
imation order . = n +1); i.e., the rate of decay of the approxsesponds to the orthogonal projection fifr) onto the spline

imation error as a function of the sampling stef88], [39]. space with step sizk.
] ] The optimum expansion coefficients are determined from the
A. Polynomial Splines inner product with the dual basis functions (cf. [41])
Here, we will consider polynomial splines of degreale-
fined on a uniform grid with step size. These functions are ek = h- (f(), Gn(z — hE)) . (12)

made up of polynomial segments of degreand of sizeh

wh'ich are joined 'together. in a way that guarantees the confhe pasis functionp(z) and its dualj(z) (which is unique)
nuity of the functlor_1 and its derlvatlve_s up to Ofdﬂ_— L. A" form a bi-orthogonal basis system that fulfills the bi-orthogo-
fundamental _result is that any su_ch spline W_lth spadicgn be nality condition{y(xz), 3(z — k)) = &. Note that the com-
represented in terms of its B-spline expansion [40] putation of the inner products (12) is akin to applying a pre-
” filter to f(z) and sampling thereafter. The main advantages
fulz) = Z ek (@ — hk) 1D of Ieast-scgu;res approximation over interpolation-and-sampling
rez are a closer fit and a suppression of aliasing artifacts.
where the basis function§3} (x — hk)} are the shifted ver-  Interestingly, the role of basis functions and duals can be in-
sions of the B-splines at scatedefined in Section Il. The;  terchanged. This means that by performing the inner product
are the so-called B-spline coefficients; note that there is exactigtweenf(x) and the B-spline$s; (« — hk)}, one obtains the
one such coefficient per grid point. The same type of represdeast-squares coefficients ff(x) in terms of the dual B-splines
tation also applies in higher dimensions with separable (tendgt; (x — hk)}. This is a property that will be used in our algo-
product) B-splines. rithm because we know how to compute inner products with
Interestingly, there are also spline basis functior83-splines analytically. As the B-splines and the dual B-splines
other than the B-splines that yield a representation sirgpanthe same space, itis then possible to go back to the B-spline
ilar to (11). Any linear combination of the B-splinesbasis by performing a change of basis, which is equivalent to a
on(z) = > .czpk)B5(z — k) is acceptable as long asdigital filtering operation [45].
S ez p(k) = 1ando < m < |P(Cjw)|2 < M < +oo [42). Next, we will apply these principles to the discretization of
This ensures that the spline functign = ¢,,—; fulfills the the Radon transform and show how a suitable choice of target
partition of unity>", ., ¢(x — k) = 1 and that it is a Riesz and source basis functions allows to perform these calculations
basis [41]. exactly using the B-spline convolution kernels defined in Sec-

The basic question in B-spline signal processing is how to déan 1I-B.
termine the expansion coefficients in (11). There are essentially
two approaches: interpolation and least-squares approximation. IV. SPLINE-BASED RADON TRANSEORM

B. Spline Interpolation A. Radon Transform

This is the approach of choice when the signal is represented heRadon transforni, f [1], [2] of an imagef(7), ¥ € R?,
by its samplesf(hk). It is then possible to determine thg is the set of line integrals along the directiéat the distance
such that the model (11) interpolates the sampi{és:) exactly. from the origin
This involves the solution of a linear system of equations. This
problem is solved most effectively using the recursive filtering

algorithm described in [36] and [43]. (Rof) (8) = Ro{f(%)} = 1@ (t - 5) di (13)

ZER?
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wheres(t) is the Dirac impulse and = (cos #,sin6) is a unit D. Least-Squares Discretization
vector specifying the direction of the integration. Note tRalS 14 fing| step is to discretize the continuously defined expres-

called theprqjection opergto,rbecause it i_s the Radon transforrrgion of the Radon transform (16). The simplest approach would
for one particular projection angée R on its own stands for the |, ;4 sampley(t) at an appropriate sampling stepHere, we

complete Radon transform with all anglés want to be more sophisticated and approxinigte) by a poly-
The Radon transform is clearly a linear operator. Thus, ifymia| spline of degree, to minimize the approximation error
we represent the initial image as a sum of 2-D basis functiopShe 7, _sense. The solution is to compute the orthogonal pro-

(B-splines), we can compute its Radon transform exactly.ion as described in Section I1I-C. We denote this operation
provided we know the Radon transform of the initial basi

functions. Moreover, if we know the Radon transform of the In order to make use of our spline convolution kernels, it is

—

one prototypey(&), we can easily derive the Radon transform g, appropriate to use a representation in terms of dual B-spline

of all basis functions because of the shift-invariance propetgyy, .tions such that the analysis function is a B-spline. In other

Ro{p(Z — Zo)} = (Re)(t — to) Wherety = <9va> : words, we now evaluate the best approximatign(t) of the
sinogramgy (¢) as
B. Radon Transform of a B-Spline

We now consider the case where the basis functios a  9s,s(t) = Psge(t) = Zf (go(t), Bo=(t — is)) -2 (t — is)

separable B-Spline. icz oo

Proposition 2: Radon Transform of the 2-D B-splin€he a7
Radon transform of the 2-D separable B-splifi(x,y) = wheregy(t) is given by (16).
Br(x) - Bp(y) of degreen is Here, too, the operator is linear. Thus, to evaluate the inner

product we look at what happens to one of the individual terms
Reﬁg(t) = ﬁﬁcos 0| * [3;}|51n0|(t) = [3]7Z|7:05 0|,h|sin0|(t) (14) n (16)

wheret = 7§ andf = (cos 6, sin 6) with the projection angle P, {8, :" 1iuimel} (t - hET§) = s-digr- Bt —is)

g; it is precisely a spline bikernel whose explicit form is given icz
by (7) or (10). N (18)
The proof of Proposition 2 is easily derived using the Fouridfnere the coefficients; ¢ 1., are sampled values of tfigadon
Slice Theorem (see appendix I1). o kernel
Fig. 2 shows the Radon transform of the 2-D B-splines of N
degrees: € {0, 1, 3} and for various projection anglésIn the i 0,10 = (Bjoos 8] hjsins) (E — hiT6), 377 ( — i)

cases whereos ¢ =0 orsin# = 0, the Radon transform of the o _
2-D B-spline reduces to a one—dimensional (1-D) B-spline dfhis scalar product over the varialiiés equivalent to the con-
the same degree, aslim,,_.o 3;(x) = §(z). For angles where volution of the two scalar product factors evaluated at the cu-

lcosf| = |sinf| = 1/4/2, the Radon transform simplifies to Mulated shiftuk T4 — is. The Radon kernel is a spline trikernel
alD B-splineﬁi’/‘\%(az) of degree2n + 1. For the angles in .
between, the spline bikernels range between these two extremes dio k0 = Brlrsl jsino) - (hE 6 — is). (19)

(compare Figs. 1 and 2).
The identification of th&kadon kernek the key to our approach.

C. Radon Transform of the Image It allows for an efficient evaluation of the Radon transform and
yields an exact implementation of the least-squares algorithm.
The logical notation for the trikernel isuf, n1, no)-trikernel,
Where the first two integers stand for the spline degree incthe
andy directions of the image space and the last integer for the
~ spline degree of the sinogram space. In our case, the two degrees
(@) = Z craBy (f - hk) . (15) ofthe image space are equal; therefore, we simplify the notation

kiCZ to (n1, no)-trikernel, where the degrees refer to (19).

. . . o Putting everything together, we find that the least-squares co-
In practice, the B-spline coefficients,; are specified such that gicientse. 4 in (17) are given by

the model (15) interpolates the given pixel values exactly, as N
described in Section IlI-B. By using (14), (15), and the linearity

Let us now assume that the inputima&) is represented by
a polynomial spline as a sum of shifted B-spline basis functio
of degreen;

of the Radon transform, we obtain the analytical expression of i = Z il Chi S
its projection at anglé—the sinogramgg () kicz
e where s is the sampling step in the sinograd,is the sam-
90(t) =Rofu(t) = > cxiRof(t — hET6) pling step in the imagey, ; are the image coefficients (15), and
k,leZ d; ¢ 1,1 are the sampled values of the Radon kernels (19). Note
= Z ck:l/32/|lc7::0|,h|sin0| (t— h/?&), (16) thatthe spatial summation in (17) only extends over the domain

k,lcZ for which the trikernel is nonzero.
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i i i R ki 1 i i
E. Analysis of Least-Squares Approximation Error of the adon kernel approximation error

Radon Transform

The above least-squares solution is usually not exact and v 10
introduce some approximation error depending on the sampli
steps. The Radon transform of a 2-D B-splig@* (z) - 5™ (y)
of degreen; is a spline bikeme‘BEﬁTZﬁJcos ¢ Which is a nonuni- 10°

form polynomial of degree, = 2n; + 1. We compute the ap-
proximation error of the orthogonal projectign of the spline

Ive error

bikernel f(¢) = g+ (t) in the spline space with sam-%10°¢ }
i ] |sin 8],|cos 8| ] : o
pling steps using the general formula given in [38] o
1 [ ENE:
52(3) = ||f — fSHZZ = %/ E(SUJ) ‘f(UJ)‘ dUJ (20) 10-8 |
where f(w) is the Fourier transform of the spline bikernel
-10 R R N i
A . . w - |sin@ 10 08 05 1 2 3 4
f(w) =|sin 6] - sin¢ <%> Sinogram sampling rate 1/s
. w - |COS 9| Fig. 3. Approximation error (20) for various Radon kernel degrees and
- |cos 8] - sincu ! <T> sinogram sampling rates.
and E(w), the error kernel, is given by sponds to the direct discretization of the right-hand side of the
. 2 inversion formula R*¢q) [11].
fre (@)
Ew)=1-— 3 B. Spline-Convolution Filtered Back-Projection
S| Bre(w + 2k7r)‘ . o o
The spline-convolution filtered back-projection implements

.

" the inverse of the spline-convolution Radon transform. Except
with #"2(w) = sinc** (4£). The approximation error de- for the additional ramp prefiltering, the inverse method is a flow-
pends on four parameters: the degree of the image spatiee  graph transpose of the forward method. Because both the image
degree in the Radon spaeg, the sinogram sampling stepand  and the sinogram are modeled by splines, we can again base the
the projection anglé. Obviously, the approximation error canaigorithm on the evaluation of the Radon kernel. This time, the
be decreased by increasing the spline degrees and by redugifgted sinogram is approximated in the B-spline space, while
the sampling step (see Fig. 3), but at the expense of more comhe resulting image is in the dual-spline space. In the following,
putation complexity (see Section VI-D). Note that in Fig. 3, th@e give the necessary formulas for the three steps of our method.
kernels with a higher degree on the sinogram have lower errorsstep1’) Ramp filter:In the first step, each sinogram line
Especially the (1,3)-kernel and the (2,5)-kernel have local engf(w) = Fip{gs(t)} is filtered in the Fourier domain b§(w)
minima at sampling steps= 1/2 ands = 1/4.

V. SPLINE-BASED FILTERED BACK-PROJECTION _ S )
Step 2’) B-spline approximation of the sinogratm the

We will now see that we can use our B-spline convolutiog,.qnq step, the filtered sinogram(t) = Fi{ps(w)} is
kernels also to compute the inverse of the Radon transform. Tﬁli%red with 5’1 spline of step size b

yields a refined version of the FBP algorithm which is used for
the tomographic reconstruction. po.s(t) = Z coi - B2 (t — is). (22)

A. Filtered Back-Projection er

The basis for the inverse Radon transform is the WeII-knO\ATmiS can be done either using interpolation or projection (cf.

i i Section IlI).
dentity (cf. [2
! ity (cf. [2) Step 3’) Back-projection into the dual-spline spate:the

(@) = (R*(q+ Rf)) (D), (21) third step, the back-projectioy; {p, »(t)} is calculated and ap-
proximated in the image space, using dual-splines as basis func-
where each projectioR, f is convolved by a one-dimensionaltions
(1-D) ramp filterg defined in the Fourier domain lijw) = |w| .

The back-projection operatdt* is the adjoint ofR fr(@) = Z Gy - B (T — hk) (23)
77 kleZ
(Bg0) (@) = B {av(t)} = | 0o (7 -7) a0 where
wheregs(t) = Ref(t) is the sinogram line at ang The éa=h?- Z (Rype s(Z), B (% — hik)).

widely used filtered back-projection (FBP) algorithm corre- klez
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TABLE |
SUMMARY OF PROCEEDURE
Samplesd Hadon kernel: o) g g = qeelt —is) HpdP I — k- hoostf — [ - R=in )} Heqresentakion
| fhiEuf = :‘l_ b J Sk d I'I'I'l ¢ — Rk, 1 — Hdd W B g = he i .Il'l'l £ — Rk, iy — W fix wl ._ |'-l|||||'|-'
.- i
2 ge slt) = F . E g [Teft —is) where g =80 o dio ks Dhal-spline
17, palt) [ag weghif], w e l;'l.-\.- i L Cioplinaos
- e | Z.'.." Ta | 4], whEne Bia a0 1.0 F E&l I|.|.I.'|_.. |'|-'~|||||'|l'
[
. fulzmyl = By - Bz — bk y—hl), where E=h"-F .60 dipk. Lrual-spline

Explanation: The spline-convolution Radon transform is specified in steps 1 and 2. In step 1, the original image is approximated in the B-spin8tspa2ethe Radon transform

is calculated. The resulting sinogram is in the dual-spline space. The spline-convolution filtered back-projection is specified in stepsratt®alfapplication starts in Step 1’ with

a set of discrete measurement from the CT scapmpét). In Step 1’, the sinogram is ramp-filtered in the Fourier domain, then, in Step 2, the filtered sinogram is approximated in the
B-spline space. In the final Step 3’, the back-projection is performed and summed over alltrighesreconstructed image is in the dual-spline space.

Proposition 3: For any given angld, the following adjoint in the first line (interpolation). The algorithm loops over a dis-
relationship holds: crete set ofK projections angles and over all image coefficients
cx,. A point k= (k,1) in the image projects at the position
t = hk T on the sinogram. The relative shift- i determines
the points at which the trikernel is evaluated. The lines of the
sinogram are changed from the dual-spline to the cardinal spline
representation to get the sample values at the very end.

(f, Bo9) = (Rof, 9)

wheref stands for the image andfor the sinogram. The proof
of Proposition 3 is given in Appendix III.
Using Proposition 3, the coefficients ; are written as
Gnai= Y coih? (B2 (t —is), Ryt (t — hE ), (24)
17,6 ~ ~

Algorithm 1 Spline-convolution Radon transform:

BsplCoeff=ComputeBsplineCoeff (Image, m1)
for 7:=0 to K -1
hy = sin(8[j]) - h

hy = cos(0[4]) - h

di 6.k,

_ gniana,ng DT s\
whered; o.x,1 = 3, cos&|,h|sin€{,s(hk 6§ —is) is the same Radon
uti

kernel asinthe spline-convolution Radon transform (19). Agai

the spline spaces were chosen such that spline trikernels cc
be used. In practice, the sinogram is specified by its sam)
values. Thus, we can combine steps 1 and 2 into a single

tering operation in the Fourier domain using a slightly modifie
discrete ramp filtef. In Appendix 1V, we derive the frequency
responseH (¢’~) of the modified ramp filter that is optimized

for our spline framework.

VI. IMPLEMENTATION

The important formulas are summarized in Table I. The ke
is the sampledrkadon kernelwhich is a convolution of three
B-splines of various widths. In the first column of the table

Support=TriKernelSupport (ni,n1,ns2, hi, he,s)
for k:=0 to N; -1
for [:=0 to N, —1
t =xfk] - h1 +y[l] - b2
[fnin, tnax] =GetConcernedIndices (t, Support)
for i:=inin O tmax
RadonDualli, j|+=TriKernel (n1,n1, M2,
|1l |Ral, s, — ). BsplCoefflk,l]
end
end
end
Radon(:,j]l=ComputeCardCoeff (RadonDuall:,j],n2)

we give the formulas to get the continuous functions from the:

coefficients. The coefficients are listed in the second column. In
the third column, we specify the type of basis functions used fBr Spline-Convolution Filtered Back-Projection
the representation. Whenever the Radon kernel is used, we stag{|gorithm 2 describes the spline-convolution filtered back-

with B-splines and compute an approximation in terms of dugdrgjection: It sums the back-projections of a sefoprojection
splines. At the very end, the results are provided in the carding{gles. First, each sinogram line is filtered by the modified ramp
basis (pixel values) which involves an additional postfilteringjter 7, in the Fourier domain to yield the B-spline coefficients
step (resampling of the spline model). of the filtered projection. Note that, we apply four-times zero-
padding to suppress dishing artifacts (see [26]). Second, the loop
over all image coefficients is performed. The Radon kernels are
Algorithm 1 describes the spline-convolution Radon tranfhe same as in algorithm 1, with one exception: The data is trans-
form: the image representation is changed to the B-spline spéaened in the opposite direction, from the Radon space to the

A. Spline-Convolution Radon Transform
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image space. Finally, the reconstructed image is divided by the Computational Complexity
numberk of summed back-projections and changed to the car-tne computational complexity of the spline-convolution al-

dinal spline representation. gorithm is proportional to the number of evaluated image coef-
ficients and to the support of the Radon kernel.
Algorithm 2 Spline-convolution back-projection: Support of the Radon-kernellThe support of the Radon

kernel varies with the projection angleas
for j:=0 to K -1

Proj = Radonl|:,j] SUpPH /5 ;Llllc?:slétidsinﬂ,s) =h-(|cosf| + |sinf]) - (n1 + 1)

FiltProjBsplCoeff= ts (n2 + 1)' (25)
FilterInFourier (Proj, 'SplineRamp’)

hy = sin(0]j]) - h The rounded-up support is equivalent to the number of sino-

hy = cos(6[j]) - h gram points contributing to the projection. The average of the

Support=TriKernelSupport (n1,m1,n2, k1, ha, s) rounded-up supports over all projection angles is proportional

for k:=0 to N; -1 to the computational complexity as

for 1:=0 to Ny -1

t=alk] hi+yll]-h K

] [] 1 y[ ] 2 ] Wfiﬁnl’nl’nz ) _ i Z Supq[jnhnhnz )
[Znin, tnax ) =GetConcernedIndices (¢, Support) h|cos 8|,h|sin 8],s K h|cos 8;|,h|sin8;],s .
for ¢ .= iy tO fnax = (26)

ImageDuallk,l]+=TriKernel (n1,n1,n2,

T } . The averaged support increases with the sinogram degree
|h1l, |h2l|, 8,t — ¢) -FiltProjBsplCoeff (%]

and—by ad /7 greater factor—with the image degree.

:nd Complexity of the spline-convolution Radon transform and of
en its inverse: The computational complexity of the spline-convo-
end . .. .

end lution Radon transform (and of its inverse) depends on the image

size (V,, IV,), the number of projection anglés, the sinogram
sampling ste, the image sampling stepand the support of
the spline trikernel. The computation time is proportional to

Image=ComputeCardCoeff (ImageDual,n1)
Image=7/K -Image

C. Efficient Computation of B-Spline Convolution Kernels N, N, K- £y <sup;{/3”’1’"1’"’2 )+ c) 27
S

h|cos 8|,h|sinb],s
The evaluation of spline:-kernels in (7) requires the com-
putation of polynomials. It gets more expensive when the dehere the constant stands for some overhead. The averaged
gree increases or when the support (8) of the splifieernel in-  support (26) of the Radon kernel lies between three (for the (0,
creases. If the same splinekernel needs to be evaluated man@)-kernel) up to ten (for the (2, 5)-kernel).
times, it is efficient to precalculate the spline-kernel.
In the case of the Radon transform, we precompute the Radon VIl. EXPERIMENTS

kernel—a spline trikernel—for various projection ang#éand |, this section, we evaluate the performance of the proposed
store them in a lookup table (LUT). The Radon kernels are pr§§|ine-convo|ution Radon transforfand of its inverse * "
computed forVs angles between 0 ang/4 and for V.. values e took the analytical Shepp—Logan phantom definition as a
of = between 0 and half the support of the Radon kernel. TQg, iing point for the evaluation of our algorithms. It consists of
values for other angles or negativecan be deduced from theyep, gjlinses whose Radon transform (projections) can be com-
following symmetry properties of the Radon kernels: puted analytically [26]. All our algorithms take discrete values
gm.m.na (2) as input, but assume an implicit continuous function defined by
[sinél,| cosl,s the interpolation of the samples by a B-Spline model. To avoid

/Jrl*’zl;"zeﬂ fin 5 -0)| (z), forf <<% aliasing, those samples were taken such that the error between
o cos( & — ,|sin{ 5 — ,8 . . . .
= prerne (), forz<f<n the underlying spline and the analytical phantom (respectively,

|sin(6—3)|.|eos(6~%)].5 the analytical projection) was minimized. This was done by
/3;;11;;2;; () = /3;;11;;2;33 (—z), forz < 0. over-sampling the analytical phantom (respectively, projection)
T T by a factor of four and then reducing it using the-pyramid

The lookup table method can introduce errors if the table siapproach [45] which ensured optimal approximation in the
N, x Ny is too small. The spline-convolution algorithm wad.,-sense.
tested with Radon-kernel lookup tables with two different table For the comparison, the standards were the analytical con-
resolutions: At a LUT resolution of 100 100, the PSNR [de- tinuous Shepp and Logan phantom projections for the Radon
fined in (28)] of the reconstructed images decreases by apprtransform and the phantom itself for the FBP. While all our al-
imately 1%. At a LUT resolution of 1000 1000, the error is gorithms return discrete pixel or projection values, they also cor-
insignificant (< 0.001%). This has important practical impli- respond to an underlying continuous spline representation of the
cations as we found that the precalculated LUTSs allows for tlselution. We took advantage of this property to evaluate our so-
acceleration of the trikernel-based Radon transforms by ondution against the analytical one (universal gold standard) in the
two orders of magnitudes. continuous domain using tle,-norm. Specifically, we used the



HORBELT et al. DISCRETIZATION OF THE RADON TRANSFORM AND OF ITS INVERSE BY SPLINE CONVOLUTIONS 371

TABLE I TABLE Il
SPLINE-CONVOLUTION-BASED (a) RADON STANDARD (INTERPOLATION AND SAMPLING) ()
TRANSFORM AND (b) FBP: RROJECTION AND RADON TRANSFORM AND (b) FBP: FRROJECTION
RECONSTRUCTIONERROR AND RECONSTRUCTIONERROR
i 1 ] i e ii /] ] 1
[ 35,70 [ 38000 | OB | aEak | asTd 1] Ebe | A6 | UAEG | M550 | R
1.4 L RN AULS2 HLikd L0 il 5] | i 1 | 15T
3 T3z | 307 | dodn | 40uT3 | 40086 || 24 | 15 | | TED | 1515
T || 3. | JUEd | aiGl | angT | dlve | 3000 | 3Ra6 | 0 | andZ | S0Ad
1 151 | auEy | A0S | G0 | dneez 4 J : X | d0a | 40063
) (@)
] ] : : 1 i 1 i i
23,54 =] B = T H 1] p .t | 1] i Pl T 2
28,44 | 24,04 K I H .3 1 1.4 T
L i L
' i 4 i3 (i1 1t P |
r | d.e | 2820 | n | 2 | i . TR R - -
.73 | 25.32 | 3637 | .5 | EA . el : :
: 1 ! 1 Il L= 1] 1
1 2082 | .58 | 36,41 | 3643 | 35.45
() (b)

Experimental conditions: Shepp-Logan phantom of size
N = 128, recovered frord{ = 256 projections, and
sampling step = 1. n; denotes the degree in the im-
ages space angy in the Radon transform space.

Experimental conditions: Shepp-Logan phantom of size
N = 128 with K = 256 projections and sampling
steps = 1. The indexny € {0,1,2, 3,4} on the

left indicates the degree of the 2-D spline space in the
image domain and the index. C {0, 1, 2, 3,4} on

top indicates the degree of the 1-D spline-space in the
Radon transform domain and the trikernel is given by that for the Radon transform it is better to use a degree on the

8";1“’;‘1 ‘:gs 61,1 (1) The bold numbers indicate solu- . that i | ior to the d the i
tions that lie on the quality-speed optimal curve in Figs. 5 sinogram that Is equal or su_per_lor 0 the daegree on the Image,
and 6. whereas for FBP the opposite is true. In summary, the degree

of the target space should be equal or higher than the degree of
following definition of the PSNR for the comparison of the rethe input space.
constructed image:

B. Comparison With Standard Technique

PSNR= 10loe (max{f} — min{f})* 28) The main difference between our implementation and the
B 510 1 Hf _ J;H standard technique is twofold: First, we use better interpolation
Area Lo models (higher order splines); second, we use a least-squares

discretization technique instead of straightforward resampling.
wheref andf are the reference and the reconstructed solution "To answer the question of whether this is really worth the
respectively. For the Radon transform, the denominator is tBffort, we present results for the standard implementation, but
averagel-error over the set of computed projections and thgith the same models as in our previous experiment to facil-
max and min are the extrema of the analytical Radon transforfiate the comparison (cf. Table 11l). To implement the Radon
Practica”y, thd/Q'norm in the denominator was estimated frorﬂ'ansform according to the standard method, we resamp'ed (15)
the averagé;-error of the oversampled versions of the referengg get the values of the sinogram. Likewise, we resampled the
using an oversampling factor of four. spline-interpolated sinogram (22) to compute the back-projec-
In the following sections, we investigate the relation betwegbn To answer the question of whether this is really worth the
the spline degrees on the image and on the sinogram, the keggjrt, we present results for the standard implementation, but
support, the sinogram spatial and angular sampling, as welh@ the same models as in our previous experiment to facil-
the influences of these parameters on the image quality, on fhge the comparison (cf. Table Ill). To implement the Radon
computational complexity and on the runtime of the algorithmgansform according to the standard method, we resampled (15)
The goal is to find the best set of parameters for the proposgdyet the values of the sinogram. Likewise, we resampled the
algorithms. spline-interpolated sinogram (22) to compute the back-projec-
tion.

Here, too, the performance improves with the order of the
Is it better to raise the degree of the spline model in thrmodel with atendency to saturation fo> 3. For example, one
image or in the sinogram? This experiment evaluates B®&ts almost 1 dB improvement if one uses cubic splines instead
different spline trikernels with all possible combinations obf the bilinear interpolation used in most implementations [cf.

spline degrees, no € {0,1,2,3,4} on the image and on Table lli(b)].

the sinogram. The experimental results are listed in Table ll(@)Now, if we compare Tables Il and Ill, we observe that the
for the Radon transform and Table ll(b) for FBP; some of theast-squares sampling provides an additional boost in perfor-
FBP error images are depicted in Fig. 4. The PSNR is plottethnce, especially for lower order models (up to 2.75 dB for the
versus the computation time in Figs. 5 and 6, respectively. TRadon transform, or up to 1.14 dB for FBP). Thus, it makes
envelope—a convex hull—represents the best compromisense to use the more sophisticated methods if the goal is to get
between computation time and image quality. We concludlee best possible images.

A. Degree on Sinogram Versus Degree on Image
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Original image = Reconstrucied image 1 Error image

-SilL].?]J Logan ];h.j.mm (0,0} - inkemel 2254 dB
Details /\}
Jec zoO0OIM w;

b

(3,1) - mkemel 25.32dB

Fig. 4. Spline-convolution filtered back-projection. The displayed error images are amplified by a factor of 3.

C. Predictions Versus Measurements: Runtime and Image kernels of higher degree quickly reach an upper-quality limit.
Quality Already for a quadric kernel degree, there is hardly a difference

The predicted computation time (27) approximates well t etween two-times and four-times sinogram oversampling.

measured computation time from Fig. 6 with the paramétes erefore, we can recommend to use either high-degree kernels
— 128 K — 256 S': 1. ande ~ 1.23: the at the sampling step = 1, or at least the (1,0)-trikernel with a

1,s=1,N, =N, =
correlation coefficient is 0.9994. From the analytical expressi Iqmpllng step o = 1/2. Four-times sinogram oversampling
= 1/4) results in insignificant improvements only.

(20) of the approximation error for a B-spline, we can estima &=
the expected image quality BJSNR = 10log (255/¢%(s)). g, Fgp: Angular Resolution Versus Sinogram Sampling Step
Fig. 7 depicts the estimated PSNR versus the estimated compu-

tation time. A similar envelope as in Fig. 6 is reproduced. Is it better to use a finer angular or a finer sinogram sampling
step? In the FBP literature [18], the customary rule is to use

four-times over-sampling on the sinogram and twice as many
angles as the size of the image along one dimension. Our ex-
Is it better to raise the spline trikernel degrees or to refim@riments refines this rule and suggests similar rules for higher
the sinogram sampling step? The answer is provided by Fig.a@proximation orders. In a large FBP experiment (Table V), we
It shows the reconstruction error (PSNR) and the computatibave evaluated the image quality and computation time for nu-
time. The analytical projection of the Shepp-Logan headerous projection angled e {128,192, 256,384,512} and
phantom is back-projected by the spline-convolution FBP. Tlséhogram sampling steps, € {1,1/2,1/4}, for trikernels of
sinogram sampling steps asec {1,1/2,1/4} and the spline degrees taken from the envelope of Fig. 6.
trikernel degrees are taken from the envelope of Fig. 6 (bestWe draw three conclusions from Table IV first, higher kernel
cost/performance compromise). When the sampling step degrees give the best improvement in image quality for compa-
the sinogram lines gets finer, the image quality increases, Ioable small costs. Second, itis faster and slightly better to double
the computation time rises as well. One can see that a (2,1)-tiike sampling rates(= 1/2 instead ofs = 1) while halving the
ernel at sampling step = 1 is nearly as good and fast as thengular resolutionX = N instead ofK = 2N). Third, in-
(1,0)-trikernel at the finer sampling step= 1/2. But a finer creasing the angular sampling abokfe > 2N or decreasing
sampling step requires that more sinogram data is acquired. frer sampling step < 1/2 does not improve the quality signif-
a fixed amount of sinogram data, e.g., measurements fronicantly.
CT scanner, itis clear that a higher kernel degree yields a bettem additional experiments, we have verified that the presented
quality of the reconstructed image. For finer sampling steps ttesults reproduce as well for larger image sizes and the same

D. FBP: Smaller Sampling Step on the Sinogram Lines
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Radon transform: N=128, K=256, s=1 @8 Simulation
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Fig. 7. Prediction of speed-quality optimal solutions of the spline-based
Fig. 5. Speed-quality evaluation of the spline-based Radon transforRadon transform: The image quality is plotted versus the computation time.
Comparison of PSNR versus computation time for eaeh, (z2)-trikernel  The predicted envelope is similar to the one found for the measured values
0 < ny < 4,0 < ny < 4. By convention, the time is set to 1 for the (0, (compare with Fig. 5). In reality, the quality will be upper-bounded by
0)-kernel. The first number represents the degre@n the image and the last additional approximation errors, e.g., due to the angular sampling or the ramp
the degreer. on the sinogram. For the (0, 0)-kernel, the absolute runtime fitering. These errors were not taken into account here.
5.5s (on Mac G3N = 128, K = 256, s = 1). The envelope is the best

compromise between speed and quality. FBP: N =128, K = 256, s = 1, 1/2, 1/4
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©.0 : : . Fig.8. Reconstruction quality (in PSNR) as a function of the computation time

1 1:5 é 2:5 ;'; 3:5 4 and of the sampling stepon the sinogram lines. The time scale is normalized
Computation Time, AU to 1 for the routine with the lowest trikernel degree (0,0). The first number
represents the degrees on the image and the last the degree on the sinogram.

22,

Fig. 6. Speed-quality evaluation of the spline-based filtered-back projection: ) ) o
Comparison of PSNR versus computation time for eagh 12 )-trikernel. For In practice, the resolution of the measured CT data is limited

the (0,0)-kernel, the absolute runtime is 6 s (on Mac G3= 128,k = 256, py the maximum sinogram sampling rate and the maximum an-
ands = 1). The envelope is the best compromise between speed and quahté. | uti fthe CT nner. There i lity trade-off
ular resolution of the scanne ere is a quality trade-o
between the number of given angular projections and the achiev-
ratio between the angle resolution and the image resoluti@ile resolution of the reconstructed image. First, a higher kernel
The improvements in image quality are marginal for kernels degree preserves image quality even when the acquisition sam-
higher degrees, no > 2. We conclude that for the spline-con-pling rate is halved (less angles and/or less samples per projec-
volution FBP, the best compromise between speed and quatitn), which might imply a speed-up of the acquisition system
is obtained with a trikernel of degreés;, n.) = (3,1) at sino- (compare Table IV). Second, a higher kernel degree also allows
gram sampling steg = 1 and as many angle& = N as a finer reconstruction resolution without quality degradations.
the image sizeV. The highest quality is achieved already aBut if the reconstructed image is too larg€ ¢~ K), then arti-
s =1/2andK = 1.5N. facts—due to angular under-sampling—occur in the borders.
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TABLE IV
COMPARISON FOR THESPLINE-CONVOLUTION FBP OF ANGULAR RESOLUTION /' VERSUS
SINOGRAM SAMPLING STEP s

PEMNIE an B (Comperiatson time {Arksirary umita)), 5§ = L38, K=mumber of nngles

“irikernel maEn|. &L H =128 o= 102 K = 256

L [ & =1/l | 35D (DLE) | = ZER(IN) | X

(ELAIN] &= 113 2207 ([LA) ZLOE (1.0)

[ELRTN] s =14 ZE06 (2.8)

LG | &=/ 24,40 [ILT) 24 [1.4)

(1 5 3 25,40 (1.2) AT (2.9)

1 i 14 dual (21) 2o 14.1)

(LI | ==1/1 2480 (0.9) | 3 8 | 6 (1.7 | 24

11,14 = 13 LS | 11.5) | =557 (2.8)

I1,1) e 174 2640 (2. 20.0H (D) | 2558 14.4)

A1 [s=1/1 EE.28 (1.2) | 0500 (L5 | 255F (2.4) | 1T A

14,1 oo 10 LA (L) ALK L) | BAOL [4.1) {52} AL 00 [H.2)

13,11 &= 1 2505 (3.8 6.0 (58] | PEOFEIT.0) [10.3) | AR (14

The Shepp-Logan phantom’s image sizeMs= 128. The time scale is normalized to 1 for the (0,0)-trikernel and
K = 256. The best tradeoff between quality and speed is indicated by the bold values.

VIII. CONCLUSION Next, we consider the convolution of iterated finite difference

. - . operators
We derived an explicit formula for the convolution of mul- P

tiple B-splines, which we called B-spline convolution kernels. AZH - A}L Kok A}L-

We imposed a continuous B-spline model on the image and —_—

its Radon transform. We showed that the Radon transform of

the basis function (a tensor-product B-spline) is a spline bikhe transfer function (Fourier transform) of this convolution op-
ernel. The approximation of the spline bikernel in the duagrator is

n+1 terms

spline space corresponds to the sampled convolution of three s _jen\ P
B-splines, the so-called Radon kernel. With it, the Radon trans- &ZH(‘U) — <6 e’ )
form and its inverse are consistently and efficiently discretized h
using B-spline signal processing. : .
The approximation power of our method increases with tﬁ%h'Ch can be expanded to yield
degree of the splines. The best compromise between computa- ntl 1\ edeh (k)
tional complexity and approximation accuracy is achieved with ~ A7 (w) = Z(_l)k < k ) ol (30)
Radon kernels with a higher degree on the target space. The k=0

upper image-quality bound is already reached at two-times sine explicit time-domain formula (4) is then obtained by inter-
gram oversampling. This makes the commonly recommendggting the complex exponentials of (30) as time shifts. Com-
four-times oversampling superfluous and allows for better regming (29) and (4), then yields (5).

olution of the reconstructed image for a fixed sinogram resolu- Using the B-spline formula (5) and the commutativity of con-

tion. volution operators, we can now express the splinkernel as
We suggest to use the spline-convolution Radon transform

and FBP with Radon kernels of degrees,(r1) of at least (1,1), Brasnm () = <AZI+1 « ﬁ) . <Azm+1 . aﬁm>
together with up to two-times sinogram oversampling 1/2 i ' ni! ” T !
and an angular resolutiof < 2N less than twice the image _ (Amﬂ .y A"m+1) . <£ Q;Jr/mf) '

size N along one axis. & o n! T !

Thanks to (29), this can be rewritten as

APPENDIX | A

n TMom "
PROOF OFPROPOSITION B (@) = (A e AR« S (3D)

me

First, it is easy to establish that L .
which is equivalent to (7). O
nei,.0 _ [ -1y _ T} APPENDIX ||
Ty FTy _/0 i dr= PROOF OFPROPOSITION2

Let go(t) = Ry3™(¢t) be the Radon transform of the tensor
product of two B-splines. The Fourier Slice Theorem states the
equivalence between the 1-D Fourier transform of a parallel pro-

By induction, we find that

0 o T jection and a 1-D cut in the 2-D Fourier transform of an image
Ty koo kg = (29)
n+1 terms f‘lD {Rgf()} (CU) = FQD {f(? )} (w COS(9)7 w Sln(e)) (32)
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By performing a 1-D inverse Fourier transform on both sides @fhose Fourier transform is
(32) and from the scaling properties and convolution propernes

of the Fourier Transform, we deduce flw) = C(&*) - ¢(w), with C(e’) Z e, (34)
kcz

n _ 1 i an an - iwt
Ref"(t) =5, /_Oo P(weos) - f(wsin )" dw We will apply the ramp filterg(w) = |w]| to this function
1 . . . . and then approximate the result as a linear combination of
<|COS 9|> <|81119|> *)

- |cos ] - |sin 6] {o2(2 = F)}cr

:/3(205 0| * ﬁgmﬂ(t)

= arpa(z — k). (35)
Therefore, the Radon transform of a 2-D B-spline can be written kez
as a 1-D convolution of two scaled B-splines. A further scalm_?
of this results by: yields the result in Proposition 2. he coefficientsa; in (35) that provide the least-squares ap-

proximation ofg « f are given by

APPENDIX Il ~
PROOF OFPROPOSITION3 ar = (g * f,2(- — k))

Without loss of generality, we assume in this proof that thghereg, is the dual ofp,. Clearly, thea,, are the integer sam-
projection directiorf = (0,1) of the Radon projectiofky and ples ofg f+3»(—x) whose Fourier transform s f( ) (w)

of its inverselij is aligned with the coordinate system, (/).  The Fourier transform af;, then follows by simple periodiza-
Otherwise, the coordinate system has to be rotated by an anglg

—6. Let f be the image and the sinogram.

We take a Cartesian coordinate systemy) that is aligned o) = Z ap e
with the projection directiod = (0,1) = («,y) of the Radon
projectioniy and of its inverse;. Let f be the image and
the sinogram.

Then,(Re f)(x) = [ f(z,y)dy and(Rjg)(x, y) = g(x) Vy.
The 2-D scalar product oy g and f is

= Z |w + 2k~ f(w+27r)$;(w+2k7r).
kez kez

Replacingf(w) by its expression in (34) we get
A(e?€) = H(e?*) - O(e#*)

(Rog, J) = (Fag)( )’ S,y whereH (¢/“) is the frequency response of the digital filter we
//f (R3g)(z,y) dedy are looking for, which is given by

/ f(z,y) - g(x) dedy H(ej“") = Z |w + 2kn| <p2(w +2m)p(w + 2k7).

keZ
=/ f(z,y) dy - g(z) d _ _ _ _
The choice of the basis functions that are relevant for our im-

:/(Rgf)(x) - g(x) dz plementation are the cardinal spliggz) = »™ (z) and the
B-spline s () = "2 (x). The Fourier transforms of the car-
=((Rof) (@), 9(x)) dinal and the dual B-splines are (cf. [44] and [45])
= <R9f7 g> - 41 ( )
N . sinc" ™ (=
- Bla) =" (@) = 2,
We have shown that the 2-D scalar product in the image do- > pra(k)eiwk
main between a back-projected sinogram line and an image is k=—n1/2
equivalent to the 1-D scalar product of the projected image and = _jne sind> ! (;7)
the sinogram line. Po(x) =p" () = — o
E /32n2+1(k)6—]wk
k=7n2
APPENDIX IV
THE SPLINE RAMP FILTER Thus. the optimized digital ramp filter for our implementation
We propose an implementation of a ramp filter that is cofs
sistent with our B-spline framework. We consider a function
f(x) that is given by its expansion in a shift-invariant basié (¢’ .
{o(@ = F)}rez > |w 4 2kn|sing T2 F (;_ﬁ)

kCZ

+nq/2

flx) = Z exp(z — k) (33) < ST pm (k)@—jwk> . < %2 /32n2+1(k)6—jwk>

k=—nq/2 k=—no
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