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Discretization of the Radon Transform and of its
Inverse by Spline Convolutions
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Abstract—We present an explicit formula for B-spline con-
volution kernels; these are defined as the convolution of several
B-splines of variable widths and degrees . We apply our
results to derive spline-convolution-based algorithms for two
closely related problems: the computation of the Radon transform
and of its inverse. First, we present an efficient discrete implemen-
tation of the Radon transform that is optimal in the least-squares
sense. We then consider the reverse problem and introduce a new
spline-convolution version of the filtered back-projection algo-
rithm for tomographic reconstruction. In both cases, our explicit
kernel formula allows for the use of high-degree splines; these
offer better approximation performance than the conventional
lower-degree formulations (e.g., piecewise constant or piecewise
linear models). We present multiple experiments to validate our
approach and to find the parameters that give the best tradeoff be-
tween image quality and computational complexity. In particular,
we find that it can be computationally more efficient to increase
the approximation degree than to increase the sampling rate.

Index Terms—B-spline convolution kernel, computer tomog-
raphy, filtered back-projection, Radon transform.

I. INTRODUCTION

T HE Radon transform of a two-dimensional (2-D) function
is given by the collection of its line-integrals (or projec-

tions); each ray is indexed by its distanceto the origin and
its angle [1], [2]. The Radon transform plays a crucial role in
medical imaging because it constitutes a good model of the to-
mographic acquisition process [3]–[5]. For instance, the forward
step—or re-projection—that is required in some iterative recon-
struction algorithms is similar to the computation of a Radon
transform. Re-projection is also used explicitly for beam-hard-
ening correction [6], streak suppression [7], and the removal
of artifacts caused by the presence of radio-opaque material
such as metallic implants [8]. Other applications of the Radon
transform in image processing are the detection of lines (Hough
transform) [9] and the recently proposed ridgelet transform [10],
which is essentially a wavelet transform applied in the Radon
domain.

An attractive feature of the continuously defined Radon trans-
form is that it has an exact inversion formula [2]. The digital
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implementation of this analytical formula leads to the standard
filtered back-projection (FBP) algorithm, which goes back to
the early 1970s [11]. Despite the considerable research efforts
devoted to alternative reconstruction techniques—in particular,
algebraic (ART) [4] and statistical ones, including maximum
likelihood [12] and Bayesian [13]–[16]—FBP is still the method
of choice used in commercial CT scanners. It owes its success
to the fact that it is direct, fast, and reasonably simple to imple-
ment. Even though the standard implementation uses a rather
rudimentary discretization—at least by modern standards, it has
not been much improved over the years, except for the aspect
of filter design [17]. One noteworthy exception is the work of
Guédonet al.who derived an optimal reconstruction filter based
on a piecewise-constant model of the image [18]. Some wavelet
approaches can also be viewed as multi-scale variations on FBP
[19]–[21]. In this paper, we are not dealing with the problem of
noise which is better treated statistically. However, even in the
presence of noise it makes good sense to apply a good algorithm
for noiseless data first and to reduce noise afterwards by suitable
nonlinear wavelet denoising; Kalifaet al. [22] have shown that
this two-step approach is essentially as good as a regularized re-
construction during FBP and much easier to implement.

The practical computation of the Radon transform or of its in-
verse necessarily involves some form of interpolation because
the underlying mathematical objects are defined in the contin-
uous domain. The same holds true for Fourier-based reconstruc-
tion techniques [23]–[25]. For efficiency, practitioners tend to
use relatively simple techniques such as piecewise constant or
linear interpolation. One of the arguments that is often made
in favor of FBP is that it is less sensitive to interpolation er-
rors than direct Fourier-based reconstruction [26], [27]. Thus,
there appears to be a general perception that the role of inter-
polation is not predominant. Our purpose in this paper is to
investigate this issue in greater details and determine the ex-
tent to which the use of high quality interpolation models to-
gether with an optimal discretization can improve performance.
Indeed, we will see that a careful design—i.e., the use of a good
model and a sampling method that is optimal in the least-squares
sense—can make quite a difference. We have chosen to base
our approach on splines because this type of representation of-
fers the best cost-performance tradeoff for interpolation; this is
a finding that was confirmed recently by three research groups
in medical imaging [28]–[31].

The novelty of our approach, which uses splines both in the
image and the Radon domains, is fourfold: first, our Radon
kernel is applicable in both directions for the computation of the
Radon transform and of its inverse—in fact, the direct and the
inverse algorithms are duals of each other. Second, we explicitly
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fit a continuously defined spline model to the sinogram (respec-
tively, to the image), instead of determining the values by resam-
pling, as is done usually. Third, we select the spline basis func-
tion in a way that allows for an explicit solution with B-spline
convolution kernels and, therefore, an optimal discretization of
the Radon transform. Finally, the method is general and works
for splines of any degree. Choosing a larger degree (typically,

) results in better quality, but it also implies more compu-
tation. Thus, there is a compromise to be found.

The paper is organized as follows: In Section II, we review
classical B-splines and derive explicit formulas for the multiple
B-spline convolution kernels that will be used in our algorithms.
In Section III, we briefly recall the basics of B-spline signal pro-
cessing and generalized sampling. In Section IV, we use these
results to derive our spline-based implementation of a Radon
transform which is optimal in the least-squares sense. In Sec-
tion V, we introduce a Radon-based version of a FBP algorithm
that also uses spline kernels. In Section VI, we discuss imple-
mentation issues for both algorithms (direct and inverse). Fi-
nally, in Section VII, we present experimental results for each of
the algorithms. In particular, we investigate the influence of the
various parameters (degrees of the splines, spatial and angular
sampling steps) on the overall performance. We determine the
best tradeoff between computation time and image quality.

While we believe that our spline-formulation of FBP and
the Radon transform is original, we are aware of three other
instances where splines have been used for tomographic re-
construction. The first is a finite-element formulation of the
problem using splines as basis functions [32]; it is essentially an
algebraic method that requires solving a large system of linear
equations. The second applies box splines—a multidimensional
extension of B-splines—for improved approximation in an algo-
rithm based on Fourier reconstruction [33]. The third is an ap-
proach where the ramp-filtering is evaluated analytically based
on the continuously defined derivative of the projection data
[34]. Finally, it is interesting to note that the benefit of bi-cubic
interpolation—albeit not splines—has been demonstrated in-
directly in rotation-based methods for iterative reconstruction
[35].

II. B-SPLINE CONVOLUTION KERNELS

A. The B-Spline Function

We define the centered B-spline of degreeand of width
as the ( )fold convolution of the normalized box function
of size

for
otherwise

(1)

(2)

Note that these functions are normalized to have a unit integral;
this implies that

Let us also define the one-sided power function

and
and

otherwise
(3)

and the centered ( )th finite-difference operator scaled at
width

terms

(4)

Using this notation, can also be written as the central finite
difference of the Heaviside step function

Thus, we may rewrite in terms of the following convolu-
tion operators:

Using the commutativity of convolution operators, we get

which, as shown in the first part of Appendix I, can be expressed
in the more succinct form

(5)

where and are given by (4) and (3), respectively.
Yet another way to define the centered B-spline is by its

Fourier transform

sinc

where sinc .

B. B-Spline Convolution Kernels

To implement the Radon transform, we will need to convolve
several B-splines of variable widths (see Figs. 1 and 2). The
splinebikernel is defined as the convolution of two
B-splines of degrees , and widths ,

(6)

In the same way, we define the spline-kernel, which is the
convolution of different B-splines of degrees and
widths , by

Proposition 1: The spline -kernel can be computed as

(7)

where is the convolution of
several finite-difference operators as defined in (4) and where

.
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Fig. 1. Spline bikernels by convolution of two causal B-splines� � � (x)
with n = f0; 1; 3g andh 2 [0:1]. The kernels generate a smooth transition
between B-splines of degreen and degree2n+ 1. Forh = 0 andh = 1, the
kernels are B-splines, aslim � � � (x) = � (x) and� � � (x) =
� (x).

The spline -kernel is a nonuniform spline of degree and
its support is the sum of the supports of the convolved B-splines

supp

(8)

The proof of Proposition 1 is given in Appendix I.
In the case where the are equal, the compound finite dif-

ference operator simplifies to

(9)

We can use (7) and (9) to derive the well-known convolution
property of two B-splines

The spline -kernel formula (7) expanded by (4) leads to a
closed-form expression. For instance, with , we get the
following explicit formula for the splinebikernel

(10)

(a)

(b)

(c)

Fig. 2. Spline flowers. The Radon transform of the 2-D B-spline� (x)�� (y)
is a B-spline convolution kernel. We show several examples. They are plotted
on the floor, for various projection angles�. At angles that are multiples of�=4,
the B-spline convolution kernel simplifies to an ordinary B-spline. (a)n = 0.
(b) n = 1. (c)n = 3.
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III. L EAST-SQUARESSAMPLING

Continuous signals have to be sampled into discrete signals
before they can be processed digitally. The spline formalism de-
scribed in [36] provides an attractive alternative to the classical
formulation dictated by Shannon’s sampling theorem [37]. The
main idea is to use compactly supported basis functions—B-
splines—which are much more convenient to handle than the
ideal sinc function which decays rather slowly. A good reason
for using polynomial splines over other forms of interpolation is
that they offer the best cost-performance tradeoff; this is a prop-
erty that is now well documented in the literature. In particular,
we refer to the extensive work of Meijering [30] who compared
as many as 126 interpolators and concluded that splines were
significantly better in all cases. One theoretical explanation for
their superior performance is that B-splines are the shortest and
smoothest functions that allow the reproduction of polynomials
of degree . This polynomial reproduction property is essential
in wavelet and approximation theory; it determines the approx-
imation order ( ; i.e., the rate of decay of the approx-
imation error as a function of the sampling step[38], [39].

A. Polynomial Splines

Here, we will consider polynomial splines of degreede-
fined on a uniform grid with step size. These functions are
made up of polynomial segments of degreeand of size
which are joined together in a way that guarantees the conti-
nuity of the function and its derivatives up to order . A
fundamental result is that any such spline with spacingcan be
represented in terms of its B-spline expansion [40]

(11)

where the basis functions are the shifted ver-
sions of the B-splines at scaledefined in Section II. The
are the so-called B-spline coefficients; note that there is exactly
one such coefficient per grid point. The same type of represen-
tation also applies in higher dimensions with separable (tensor
product) B-splines.

Interestingly, there are also spline basis functions
other than the B-splines that yield a representation sim-
ilar to (11). Any linear combination of the B-splines

is acceptable as long as

and [42].
This ensures that the spline function fulfills the
partition of unity and that it is a Riesz
basis [41].

The basic question in B-spline signal processing is how to de-
termine the expansion coefficients in (11). There are essentially
two approaches: interpolation and least-squares approximation.

B. Spline Interpolation

This is the approach of choice when the signal is represented
by its samples . It is then possible to determine the
such that the model (11) interpolates the samples exactly.
This involves the solution of a linear system of equations. This
problem is solved most effectively using the recursive filtering
algorithm described in [36] and [43].

By applying this spline interpolation to a Kronecker delta
(unit impulse at origin), one obtains the so-called cardinal spline
function which is denoted by . It has the inter-
esting property that the cardinal spline coefficients are simply
the sampled values of the continuous function: . It is
an interpolator of infinite support which resembles the sinc func-
tion [44]. This is another example of a valid spline basis func-
tions. With this particular basis function in mind, one can inter-
pret the B-spline interpolation algorithm (recursive filtering) as
a change from the cardinal spline basis (where the samples are
the coefficients) to the B-spline basis.

C. Least-Squares Spline Approximation

This is a refinement on straightforward sampling; it is appli-
cable whenever the input function is continuously defined.
Here, the goal is to get the best spline representation of

so that the integral of the square difference between
and ( -norm) is minimized. Mathematically, this cor-
responds to the orthogonal projection of onto the spline
space with step size.

The optimum expansion coefficients are determined from the
inner product with the dual basis functions (cf. [41])

(12)

The basis function and its dual (which is unique)
form a bi-orthogonal basis system that fulfills the bi-orthogo-
nality condition . Note that the com-
putation of the inner products (12) is akin to applying a pre-
filter to and sampling thereafter. The main advantages
of least-squares approximation over interpolation-and-sampling
are a closer fit and a suppression of aliasing artifacts.

Interestingly, the role of basis functions and duals can be in-
terchanged. This means that by performing the inner product
between and the B-splines , one obtains the
least-squares coefficients of in terms of the dual B-splines

. This is a property that will be used in our algo-
rithm because we know how to compute inner products with
B-splines analytically. As the B-splines and the dual B-splines
span the same space, it is then possible to go back to the B-spline
basis by performing a change of basis, which is equivalent to a
digital filtering operation [45].

Next, we will apply these principles to the discretization of
the Radon transform and show how a suitable choice of target
and source basis functions allows to perform these calculations
exactly using the B-spline convolution kernels defined in Sec-
tion II-B.

IV. SPLINE-BASED RADON TRANSFORM

A. Radon Transform

TheRadon transform [1], [2] of an image ,
is the set of line integrals along the directionat the distance
from the origin

(13)
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where is the Dirac impulse and is a unit
vector specifying the direction of the integration. Note thatis
called theprojection operator, because it is the Radon transform
for one particular projection angle; on its own stands for the
complete Radon transform with all angles.

The Radon transform is clearly a linear operator. Thus, if
we represent the initial image as a sum of 2-D basis functions
(B-splines), we can compute its Radon transform exactly
provided we know the Radon transform of the initial basis
functions. Moreover, if we know the Radon transform of the
one prototype , we can easily derive the Radon transform
of all basis functions because of the shift-invariance property

where

B. Radon Transform of a B-Spline

We now consider the case where the basis functionis a
separable B-Spline.

Proposition 2: Radon Transform of the 2-D B-spline:The
Radon transform of the 2-D separable B-spline

of degree is

(14)

where and with the projection angle
; it is precisely a spline bikernel whose explicit form is given

by (7) or (10).
The proof of Proposition 2 is easily derived using the Fourier

Slice Theorem (see appendix II).
Fig. 2 shows the Radon transform of the 2-D B-splines of

degrees and for various projection angles. In the
cases where 0 or 0 , the Radon transform of the
2-D B-spline reduces to a one–dimensional (1-D) B-spline of
the same degree, as . For angles where

, the Radon transform simplifies to
a 1-D B-spline of degree . For the angles in
between, the spline bikernels range between these two extremes
(compare Figs. 1 and 2).

C. Radon Transform of the Image

Let us now assume that the input image is represented by
a polynomial spline as a sum of shifted B-spline basis functions
of degree

(15)

In practice, the B-spline coefficients are specified such that
the model (15) interpolates the given pixel values exactly, as
described in Section III-B. By using (14), (15), and the linearity
of the Radon transform, we obtain the analytical expression of
its projection at angle—thesinogram

(16)

D. Least-Squares Discretization

The final step is to discretize the continuously defined expres-
sion of the Radon transform (16). The simplest approach would
be to sample at an appropriate sampling step. Here, we
want to be more sophisticated and approximate by a poly-
nomial spline of degree to minimize the approximation error
in the -sense. The solution is to compute the orthogonal pro-
jection as described in Section III-C. We denote this operation
by .

In order to make use of our spline convolution kernels, it is
now appropriate to use a representation in terms of dual B-spline
functions such that the analysis function is a B-spline. In other
words, we now evaluate the best approximation of the
sinogram as

(17)
where is given by (16).

Here, too, the operator is linear. Thus, to evaluate the inner
product we look at what happens to one of the individual terms
in (16)

(18)
where the coefficients are sampled values of theRadon
kernel

This scalar product over the variableis equivalent to the con-
volution of the two scalar product factors evaluated at the cu-
mulated shift . The Radon kernel is a spline trikernel

(19)

The identification of theRadon kernelis the key to our approach.
It allows for an efficient evaluation of the Radon transform and
yields an exact implementation of the least-squares algorithm.
The logical notation for the trikernel is ( )-trikernel,
where the first two integers stand for the spline degree in the
and directions of the image space and the last integer for the
spline degree of the sinogram space. In our case, the two degrees
of the image space are equal; therefore, we simplify the notation
to ( )-trikernel, where the degrees refer to (19).

Putting everything together, we find that the least-squares co-
efficients in (17) are given by

where is the sampling step in the sinogram,is the sam-
pling step in the image, are the image coefficients (15), and

are the sampled values of the Radon kernels (19). Note
that the spatial summation in (17) only extends over the domain
for which the trikernel is nonzero.
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E. Analysis of Least-Squares Approximation Error of the
Radon Transform

The above least-squares solution is usually not exact and will
introduce some approximation error depending on the sampling
step . The Radon transform of a 2-D B-spline
of degree is a spline bikernel which is a nonuni-
form polynomial of degree . We compute the ap-
proximation error of the orthogonal projection of the spline
bikernel in the spline space with sam-
pling step using the general formula given in [38]

(20)

where is the Fourier transform of the spline bikernel

sinc

sinc

and , the error kernel, is given by

with sinc . The approximation error de-
pends on four parameters: the degree of the image space, the
degree in the Radon space, the sinogram sampling step, and
the projection angle. Obviously, the approximation error can
be decreased by increasing the spline degrees and by reducing
the sampling step(see Fig. 3), but at the expense of more com-
putation complexity (see Section VI-D). Note that in Fig. 3, the
kernels with a higher degree on the sinogram have lower errors.
Especially the (1,3)-kernel and the (2,5)-kernel have local error
minima at sampling steps 1/2 and 1/4.

V. SPLINE-BASED FILTERED BACK-PROJECTION

We will now see that we can use our B-spline convolution
kernels also to compute the inverse of the Radon transform. This
yields a refined version of the FBP algorithm which is used for
the tomographic reconstruction.

A. Filtered Back-Projection

The basis for the inverse Radon transform is the well-known
identity (cf. [2])

(21)

where each projection is convolved by a one-dimensional
(1-D) ramp filter defined in the Fourier domain by
The back-projection operator is the adjoint of

where is the sinogram line at angle. The
widely used filtered back-projection (FBP) algorithm corre-

Fig. 3. Approximation error (20) for various Radon kernel degrees and
sinogram sampling rates.

sponds to the direct discretization of the right-hand side of the
inversion formula ( ) [11].

B. Spline-Convolution Filtered Back-Projection

The spline-convolution filtered back-projection implements
the inverse of the spline-convolution Radon transform. Except
for the additional ramp prefiltering, the inverse method is a flow-
graph transpose of the forward method. Because both the image
and the sinogram are modeled by splines, we can again base the
algorithm on the evaluation of the Radon kernel. This time, the
filtered sinogram is approximated in the B-spline space, while
the resulting image is in the dual-spline space. In the following,
we give the necessary formulas for the three steps of our method.

Step1’) Ramp filter:In the first step, each sinogram line
is filtered in the Fourier domain by

Step 2’) B-spline approximation of the sinogram:In the
second step, the filtered sinogram is
filtered with a spline of step size

(22)

This can be done either using interpolation or projection (cf.
Section III).

Step 3’) Back-projection into the dual-spline space:In the
third step, the back-projection is calculated and ap-
proximated in the image space, using dual-splines as basis func-
tions

(23)

where
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TABLE I
SUMMARY OF PROCEEDURE

Explanation: The spline-convolution Radon transform is specified in steps 1 and 2. In step 1, the original image is approximated in the B-spline space. In Step 2, the Radon transform
is calculated. The resulting sinogram is in the dual-spline space. The spline-convolution filtered back-projection is specified in steps 1’–3’. A practical application starts in Step 1’ with
a set of discrete measurement from the CT scanner . In Step 1’, the sinogram is ramp-filtered in the Fourier domain, then, in Step 2’, the filtered sinogram is approximated in the
B-spline space. In the final Step 3’, the back-projection is performed and summed over all angles. The reconstructed image is in the dual-spline space.

Proposition 3: For any given angle, the following adjoint
relationship holds:

where stands for the image andfor the sinogram. The proof
of Proposition 3 is given in Appendix III.

Using Proposition 3, the coefficients are written as

(24)

where is the same Radon
kernel as in the spline-convolution Radon transform (19). Again,
the spline spaces were chosen such that spline trikernels could
be used. In practice, the sinogram is specified by its sample
values. Thus, we can combine steps 1 and 2 into a single fil-
tering operation in the Fourier domain using a slightly modified
discrete ramp filter . In Appendix IV, we derive the frequency
response of the modified ramp filter that is optimized
for our spline framework.

VI. I MPLEMENTATION

The important formulas are summarized in Table I. The key
is the sampledRadon kernel, which is a convolution of three
B-splines of various widths. In the first column of the table,
we give the formulas to get the continuous functions from the
coefficients. The coefficients are listed in the second column. In
the third column, we specify the type of basis functions used for
the representation. Whenever the Radon kernel is used, we start
with B-splines and compute an approximation in terms of dual-
splines. At the very end, the results are provided in the cardinal
basis (pixel values) which involves an additional postfiltering
step (resampling of the spline model).

A. Spline-Convolution Radon Transform

Algorithm 1 describes the spline-convolution Radon trans-
form: the image representation is changed to the B-spline space

in the first line (interpolation). The algorithm loops over a dis-
crete set of projections angles and over all image coefficients

. A point in the image projects at the position
on the sinogram. The relative shift determines

the points at which the trikernel is evaluated. The lines of the
sinogram are changed from the dual-spline to the cardinal spline
representation to get the sample values at the very end.

Algorithm 1 Spline-convolution Radon transform:

B. Spline-Convolution Filtered Back-Projection

Algorithm 2 describes the spline-convolution filtered back-
projection: It sums the back-projections of a set ofprojection
angles. First, each sinogram line is filtered by the modified ramp
filter in the Fourier domain to yield the B-spline coefficients
of the filtered projection. Note that, we apply four-times zero-
padding to suppress dishing artifacts (see [26]). Second, the loop
over all image coefficients is performed. The Radon kernels are
the same as in algorithm 1, with one exception: The data is trans-
formed in the opposite direction, from the Radon space to the
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image space. Finally, the reconstructed image is divided by the
number of summed back-projections and changed to the car-
dinal spline representation.

Algorithm 2 Spline-convolution back-projection:

C. Efficient Computation of B-Spline Convolution Kernels

The evaluation of spline -kernels in (7) requires the com-
putation of polynomials. It gets more expensive when the de-
gree increases or when the support (8) of the spline-kernel in-
creases. If the same spline-kernel needs to be evaluated many
times, it is efficient to precalculate the spline-kernel.

In the case of the Radon transform, we precompute the Radon
kernel—a spline trikernel—for various projection anglesand
store them in a lookup table (LUT). The Radon kernels are pre-
computed for angles between 0 and and for values
of between 0 and half the support of the Radon kernel. The
values for other angles or negativecan be deduced from the
following symmetry properties of the Radon kernels:

for

for

for

The lookup table method can introduce errors if the table size
is too small. The spline-convolution algorithm was

tested with Radon-kernel lookup tables with two different table
resolutions: At a LUT resolution of 100 100, the PSNR [de-
fined in (28)] of the reconstructed images decreases by approx-
imately 1%. At a LUT resolution of 1000 1000, the error is
insignificant ( 0.001 ). This has important practical impli-
cations as we found that the precalculated LUTs allows for the
acceleration of the trikernel-based Radon transforms by one to
two orders of magnitudes.

D. Computational Complexity

The computational complexity of the spline-convolution al-
gorithm is proportional to the number of evaluated image coef-
ficients and to the support of the Radon kernel.

Support of the Radon-kernel:The support of the Radon
kernel varies with the projection angleas

supp

(25)

The rounded-up support is equivalent to the number of sino-
gram points contributing to the projection. The average of the
rounded-up supports over all projection angles is proportional
to the computational complexity as

supp supp

(26)
The averaged support increases with the sinogram degree
and—by a greater factor—with the image degree.

Complexity of the spline-convolution Radon transform and of
its inverse: The computational complexity of the spline-convo-
lution Radon transform (and of its inverse) depends on the image
size ( ), the number of projection angles, the sinogram
sampling step , the image sampling stepand the support of
the spline trikernel. The computation time is proportional to

supp (27)

where the constant stands for some overhead. The averaged
support (26) of the Radon kernel lies between three (for the (0,
0)-kernel) up to ten (for the (2, 5)-kernel).

VII. EXPERIMENTS

In this section, we evaluate the performance of the proposed
spline-convolution Radon transformand of its inverse .
We took the analytical Shepp–Logan phantom definition as a
starting point for the evaluation of our algorithms. It consists of
ten ellipses whose Radon transform (projections) can be com-
puted analytically [26]. All our algorithms take discrete values
as input, but assume an implicit continuous function defined by
the interpolation of the samples by a B-Spline model. To avoid
aliasing, those samples were taken such that the error between
the underlying spline and the analytical phantom (respectively,
the analytical projection) was minimized. This was done by
over-sampling the analytical phantom (respectively, projection)
by a factor of four and then reducing it using the-pyramid
approach [45] which ensured optimal approximation in the

-sense.
For the comparison, the standards were the analytical con-

tinuous Shepp and Logan phantom projections for the Radon
transform and the phantom itself for the FBP. While all our al-
gorithms return discrete pixel or projection values, they also cor-
respond to an underlying continuous spline representation of the
solution. We took advantage of this property to evaluate our so-
lution against the analytical one (universal gold standard) in the
continuous domain using the -norm. Specifically, we used the
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TABLE II
SPLINE-CONVOLUTION-BASED (a) RADON

TRANSFORM AND (b) FBP: PROJECTION AND

RECONSTRUCTIONERROR

(a)

(b)

Experimental conditions: Shepp–Logan phantom of size
128 with 256 projections and sampling

step . The index on the
left indicates the degree of the 2-D spline space in the
image domain and the index on
top indicates the degree of the 1-D spline-space in the
Radon transform domain and the trikernel is given by

. The bold numbers indicate solu-
tions that lie on the quality-speed optimal curve in Figs. 5
and 6.

following definition of the PSNR for the comparison of the re-
constructed image:

PSNR

Area

(28)

where and are the reference and the reconstructed solution,
respectively. For the Radon transform, the denominator is the
average -error over the set of computed projections and the
max and min are the extrema of the analytical Radon transform.
Practically, the -norm in the denominator was estimated from
the average -error of the oversampled versions of the reference
using an oversampling factor of four.

In the following sections, we investigate the relation between
the spline degrees on the image and on the sinogram, the kernel
support, the sinogram spatial and angular sampling, as well as
the influences of these parameters on the image quality, on the
computational complexity and on the runtime of the algorithms.
The goal is to find the best set of parameters for the proposed
algorithms.

A. Degree on Sinogram Versus Degree on Image

Is it better to raise the degree of the spline model in the
image or in the sinogram? This experiment evaluates 25
different spline trikernels with all possible combinations of
spline degrees , on the image and on
the sinogram. The experimental results are listed in Table II(a)
for the Radon transform and Table II(b) for FBP; some of the
FBP error images are depicted in Fig. 4. The PSNR is plotted
versus the computation time in Figs. 5 and 6, respectively. The
envelope—a convex hull—represents the best compromise
between computation time and image quality. We conclude

TABLE III
STANDARD (INTERPOLATION AND SAMPLING) (a)
RADON TRANSFORM AND(b) FBP: PROJECTION

AND RECONSTRUCTIONERROR

(a)

(b)

Experimental conditions: Shepp-Logan phantom of size
128, recovered from 256 projections, and

sampling step 1. denotes the degree in the im-
ages space and in the Radon transform space.

that for the Radon transform it is better to use a degree on the
sinogram that is equal or superior to the degree on the image,
whereas for FBP the opposite is true. In summary, the degree
of the target space should be equal or higher than the degree of
the input space.

B. Comparison With Standard Technique

The main difference between our implementation and the
standard technique is twofold: First, we use better interpolation
models (higher order splines); second, we use a least-squares
discretization technique instead of straightforward resampling.

To answer the question of whether this is really worth the
effort, we present results for the standard implementation, but
with the same models as in our previous experiment to facil-
itate the comparison (cf. Table III). To implement the Radon
transform according to the standard method, we resampled (15)
to get the values of the sinogram. Likewise, we resampled the
spline-interpolated sinogram (22) to compute the back-projec-
tion.To answer the question of whether this is really worth the
effort, we present results for the standard implementation, but
with the same models as in our previous experiment to facil-
itate the comparison (cf. Table III). To implement the Radon
transform according to the standard method, we resampled (15)
to get the values of the sinogram. Likewise, we resampled the
spline-interpolated sinogram (22) to compute the back-projec-
tion.

Here, too, the performance improves with the order of the
model with a tendency to saturation for . For example, one
gets almost 1 dB improvement if one uses cubic splines instead
of the bilinear interpolation used in most implementations [cf.
Table III(b)].

Now, if we compare Tables II and III, we observe that the
least-squares sampling provides an additional boost in perfor-
mance, especially for lower order models (up to 2.75 dB for the
Radon transform, or up to 1.14 dB for FBP). Thus, it makes
sense to use the more sophisticated methods if the goal is to get
the best possible images.
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Fig. 4. Spline-convolution filtered back-projection. The displayed error images are amplified by a factor of 3.

C. Predictions Versus Measurements: Runtime and Image
Quality

The predicted computation time (27) approximates well the
measured computation time from Fig. 6 with the parameters
1, 1, 128, 256, 1, and 1.23; the
correlation coefficient is 0.9994. From the analytical expression
(20) of the approximation error for a B-spline, we can estimate
the expected image quality byPSNR .
Fig. 7 depicts the estimated PSNR versus the estimated compu-
tation time. A similar envelope as in Fig. 6 is reproduced.

D. FBP: Smaller Sampling Step on the Sinogram Lines

Is it better to raise the spline trikernel degrees or to refine
the sinogram sampling step? The answer is provided by Fig. 8.
It shows the reconstruction error (PSNR) and the computation
time. The analytical projection of the Shepp-Logan head
phantom is back-projected by the spline-convolution FBP. The
sinogram sampling steps are and the spline
trikernel degrees are taken from the envelope of Fig. 6 (best
cost/performance compromise). When the sampling stepon
the sinogram lines gets finer, the image quality increases, but
the computation time rises as well. One can see that a (2,1)-trik-
ernel at sampling step 1 is nearly as good and fast as the
(1,0)-trikernel at the finer sampling step 1/2. But a finer
sampling step requires that more sinogram data is acquired. For
a fixed amount of sinogram data, e.g., measurements from a
CT scanner, it is clear that a higher kernel degree yields a better
quality of the reconstructed image. For finer sampling steps the

kernels of higher degree quickly reach an upper-quality limit.
Already for a quadric kernel degree, there is hardly a difference
between two-times and four-times sinogram oversampling.
Therefore, we can recommend to use either high-degree kernels
at the sampling step 1, or at least the (1,0)-trikernel with a
sampling step of 1/2. Four-times sinogram oversampling
( 1/4) results in insignificant improvements only.

E. FBP: Angular Resolution Versus Sinogram Sampling Step

Is it better to use a finer angular or a finer sinogram sampling
step? In the FBP literature [18], the customary rule is to use
four-times over-sampling on the sinogram and twice as many
angles as the size of the image along one dimension. Our ex-
periments refines this rule and suggests similar rules for higher
approximation orders. In a large FBP experiment (Table IV), we
have evaluated the image quality and computation time for nu-
merous projection angles, and
sinogram sampling steps, , for trikernels of
degrees taken from the envelope of Fig. 6.

We draw three conclusions from Table IV: first, higher kernel
degrees give the best improvement in image quality for compa-
rable small costs. Second, it is faster and slightly better to double
the sampling rate ( instead of 1) while halving the
angular resolution ( instead of ). Third, in-
creasing the angular sampling above or decreasing
the sampling step does not improve the quality signif-
icantly.

In additional experiments, we have verified that the presented
results reproduce as well for larger image sizes and the same
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Fig. 5. Speed-quality evaluation of the spline-based Radon transform:
Comparison of PSNR versus computation time for each (n , n )-trikernel
0 � n < 4, 0 � n < 4. By convention, the time is set to 1 for the (0,
0)-kernel. The first number represents the degreen on the image and the last
the degreen on the sinogram. For the (0, 0)-kernel, the absolute runtime is
5.5 s (on Mac G3,N = 128,K = 256, s = 1). The envelope is the best
compromise between speed and quality.

Fig. 6. Speed-quality evaluation of the spline-based filtered-back projection:
Comparison of PSNR versus computation time for each (n , n )-trikernel. For
the (0,0)-kernel, the absolute runtime is 6 s (on Mac G3,N = 128,K = 256,
ands = 1). The envelope is the best compromise between speed and quality.

ratio between the angle resolution and the image resolution.
The improvements in image quality are marginal for kernels of
higher degrees . We conclude that for the spline-con-
volution FBP, the best compromise between speed and quality
is obtained with a trikernel of degrees at sino-
gram sampling step 1 and as many angles as
the image size . The highest quality is achieved already at

and 1.5 .

Fig. 7. Prediction of speed-quality optimal solutions of the spline-based
Radon transform: The image quality is plotted versus the computation time.
The predicted envelope is similar to the one found for the measured values
(compare with Fig. 5). In reality, the quality will be upper-bounded by
additional approximation errors, e.g., due to the angular sampling or the ramp
filtering. These errors were not taken into account here.

Fig. 8. Reconstruction quality (in PSNR) as a function of the computation time
and of the sampling steps on the sinogram lines. The time scale is normalized
to 1 for the routine with the lowest trikernel degree (0,0). The first number
represents the degrees on the image and the last the degree on the sinogram.

In practice, the resolution of the measured CT data is limited
by the maximum sinogram sampling rate and the maximum an-
gular resolution of the CT scanner. There is a quality trade-off
between the number of given angular projections and the achiev-
able resolution of the reconstructed image. First, a higher kernel
degree preserves image quality even when the acquisition sam-
pling rate is halved (less angles and/or less samples per projec-
tion), which might imply a speed-up of the acquisition system
(compare Table IV). Second, a higher kernel degree also allows
a finer reconstruction resolution without quality degradations.
But if the reconstructed image is too large ( ), then arti-
facts—due to angular under-sampling—occur in the borders.
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TABLE IV
COMPARISON FOR THESPLINE-CONVOLUTION FBPOF ANGULAR RESOLUTIONK VERSUS

SINOGRAM SAMPLING STEP s

The Shepp-Logan phantom’s image size is 128. The time scale is normalized to 1 for the (0,0)-trikernel and
256. The best tradeoff between quality and speed is indicated by the bold values.

VIII. C ONCLUSION

We derived an explicit formula for the convolution of mul-
tiple B-splines, which we called B-spline convolution kernels.
We imposed a continuous B-spline model on the image and
its Radon transform. We showed that the Radon transform of
the basis function (a tensor-product B-spline) is a spline bik-
ernel. The approximation of the spline bikernel in the dual-
spline space corresponds to the sampled convolution of three
B-splines, the so-called Radon kernel. With it, the Radon trans-
form and its inverse are consistently and efficiently discretized
using B-spline signal processing.

The approximation power of our method increases with the
degree of the splines. The best compromise between computa-
tional complexity and approximation accuracy is achieved with
Radon kernels with a higher degree on the target space. The
upper image-quality bound is already reached at two-times sino-
gram oversampling. This makes the commonly recommended
four-times oversampling superfluous and allows for better res-
olution of the reconstructed image for a fixed sinogram resolu-
tion.

We suggest to use the spline-convolution Radon transform
and FBP with Radon kernels of degrees (, ) of at least (1,1),
together with up to two-times sinogram oversampling
and an angular resolution less than twice the image
size along one axis.

APPENDIX I
PROOF OFPROPOSITION1

First, it is easy to establish that

d

By induction, we find that

(29)

Next, we consider the convolution of iterated finite difference
operators

The transfer function (Fourier transform) of this convolution op-
erator is

which can be expanded to yield

(30)

The explicit time-domain formula (4) is then obtained by inter-
preting the complex exponentials of (30) as time shifts. Com-
bining (29) and (4), then yields (5).

Using the B-spline formula (5) and the commutativity of con-
volution operators, we can now express the spline-kernel as

Thanks to (29), this can be rewritten as

(31)

which is equivalent to (7).

APPENDIX II
PROOF OFPROPOSITION2

Let be the Radon transform of the tensor
product of two B-splines. The Fourier Slice Theorem states the
equivalence between the 1-D Fourier transform of a parallel pro-
jection and a 1-D cut in the 2-D Fourier transform of an image

(32)
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By performing a 1-D inverse Fourier transform on both sides of
(32) and from the scaling properties and convolution properties
of the Fourier Transform, we deduce

Therefore, the Radon transform of a 2-D B-spline can be written
as a 1-D convolution of two scaled B-splines. A further scaling
of this results by yields the result in Proposition 2.

APPENDIX III
PROOF OFPROPOSITION3

Without loss of generality, we assume in this proof that the
projection direction of the Radon projection and
of its inverse is aligned with the coordinate system (, ).
Otherwise, the coordinate system has to be rotated by an angle

. Let be the image and the sinogram.
We take a Cartesian coordinate system (, ) that is aligned

with the projection direction of the Radon
projection and of its inverse . Let be the image and
the sinogram.

Then, and .
The 2-D scalar product of and is

d d

d d

d d

d

We have shown that the 2-D scalar product in the image do-
main between a back-projected sinogram line and an image is
equivalent to the 1-D scalar product of the projected image and
the sinogram line.

APPENDIX IV
THE SPLINE RAMP FILTER

We propose an implementation of a ramp filter that is con-
sistent with our B-spline framework. We consider a function

that is given by its expansion in a shift-invariant basis

(33)

whose Fourier transform is

with (34)

We will apply the ramp filter to this function
and then approximate the result as a linear combination of

(35)

The coefficients in (35) that provide the least-squares ap-
proximation of are given by

where is the dual of . Clearly, the are the integer sam-
ples of whose Fourier transform is .
The Fourier transform of then follows by simple periodiza-
tion

Replacing by its expression in (34) we get

where is the frequency response of the digital filter we
are looking for, which is given by

The choice of the basis functions that are relevant for our im-
plementation are the cardinal spline and the
B-spline . The Fourier transforms of the car-
dinal and the dual B-splines are (cf. [44] and [45])

sinc

sinc

Thus. the optimized digital ramp filter for our implementation
is

sinc
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