
Striking a New Balance Between Program
Instrumentation and Debugging Time

Olivier Crameri
EPFL

olivier.crameri@epfl.ch

Ricardo Bianchini
Rutgers University

ricardob@cs.rutgers.edu

Willy Zwaenepoel
EPFL

willy.zwaenepoel@epfl.ch

Abstract
Although they are helpful in many cases, state-of-the-art
bug reporting systems may impose excessive overhead on
users, leak private information, or provide little help to the
developer in locating the problem. In this paper, we explore
a new approach to bug reporting that uses partial logging of
branches to record the path leading to a bug. We use static
and dynamic analysis (both in isolation and in tandem) to
identify the branches that need to be logged. When a bug
is encountered, the system uses symbolic execution along
the partial branch trace to reproduce the problem and find
a set of inputs that activate the bug. The partial branch log
drastically reduces the number of paths that would otherwise
need to be explored by the symbolic execution engine. We
study the tradeoff between instrumentation overhead and
debugging time using an open-source Web server, the diff
utility, and four coreutils programs. Our results show that the
instrumentation method that combines static and dynamic
analysis strikes the best compromise, as it limits both the
overhead of branch logging and the bug reproduction time.
We conclude that our techniques represent an important step
in improving bug reporting and making symbolic execution
more practical for bug reproduction.

Categories and Subject Descriptors D.2.5 [Software]:
Testing and Debugging

General Terms Design, Experimentation, Reliability

Keywords Debugging, Bug Reporting, Symbolic Execu-
tion, Static Analysis

1. Introduction
Despite considerable advances in testing and verification,
programs routinely ship with a number of undiscovered

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

bugs. Some of those bugs are later uncovered and reported
by users. Debugging is an arduous task in general, and it is
even harder when bugs are uncovered by users. Before the
developer can start working on a fix, the problem must be
reproduced. Reporting systems are meant to help with this
task, but they need to strike a balance between privacy con-
cerns, recording overhead at the user site, and time for the
developer to reproduce the cause of the bug.

Reporting systems. The current commercial state of the
art is represented by the Windows Error Reporting System
[Glerum 2009], which automatically generates a bug report
when an application crashes. The bug report includes a per-
thread stack trace, the values of some registers, the name
of the libraries loaded, and portions of the heap. While that
information is helpful, the developer must manually find the
path to the bug among an exponential number of possible
paths.

Furthermore, the information contained in the report may
leak private information, which is undesirable and in cer-
tain circumstances prevents the use of the tool altogether.
Recently, Zamfir and Candea have shown that symbolic ex-
ecution can be used to partially automate the search for the
path to the bug. However, as the manual approach, symbolic
execution suffers from a potentially exponential number of
paths to be explored [Zamfir 2010].

An alternative is to record the inputs to the program at
the user site. Inputs leading to failures can be transmitted
to the developer, who uses them to replay the program to
the occurrence of the bug. While avoiding the problem of
having to search for the path to the bug, divulging user inputs
is often considered unacceptable from a privacy viewpoint.
Castro et al. generate a set of inputs that is different from the
original input but still leads to the same bug [Castro 2008].
Their approach does not transfer the original input to the
developer, but requires input logging, whole-program replay,
and invocation of a constraint solver at the user site.

A more direct approach is to record the path to the bug at
the user site, for instance, by instrumenting the program to
record the direction of all branches taken. In its naive form,
this approach is infeasible because of the CPU, storage and
transmission overhead incurred, but in this paper we demon-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147969686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1i n t main (i n t argc , char ∗∗ a rgv) {
2char o p t i o n = r e a d o p t i o n (i n p u t) ;
3i n t r e s u l t = 0
4i f (o p t i o n == ’ a ’)
5r e s u l t = f i b o n a c c i (2 0) ;
6e l s e i f (o p t i o n == ’ b ’)
7r e s u l t = f i b o n a c c i (4 0) ;
8
9p r i n t f (” R e s u l t : %d\n ” , r e s u l t) .
10re turn 0 ;
11}

Listing 1. A simple program computing the fibonacci se-
quence.

strate that the approach can be optimized by instrumenting
only a limited number of branches.

Our approach. We base our work on the following three
observations. First, a large number of branches do not de-
pend on the program input, and therefore their outcome
need not be logged, because it is known a priori. We de-
note branches whose outcome depends on program input as
symbolic. Other branches are denoted as concrete.

Consider the example program in Listing 1. Depending
on the input parameter, the program computes the fibonacci
number Fn for one of two different values of n. The only in-
put to this program is the parameter that indicates for which
value to compute the fibonacci number. While this program
may have many branches (especially in the fibonacci func-
tion, not shown for conciseness), it is sufficient to know the
outcome of the branches at line 4 and 6 to fully determine the
behavior of the program. Indeed, those two branches are the
only symbolic ones, and it suffices to record their outcome.

A second, related observation is that application branches
are typically either always symbolic or always concrete. In
other words, it is rare that a particular branch at some point
in the execution depends on input and at other points does
not. An example of this can also be seen in Listing 1. The
branches at lines 4 and 6 always depend on input, the others
never do. This property is almost always true for branches
in the application, and often, albeit not always, true for
branches in the libraries.

Restricting our attention to branches that do depend on
the input, the third observation is that it is not strictly neces-
sary to record the outcome of all of those. When we record
all such branches, the result is a unique program path, and
therefore no search is required at the developer’s site. When
we record a subset of those branches, their outcomes no
longer define a unique path but a set of possible paths, among
which the developer has to search to find the path to the bug.
In other words, there is a spectrum of possibilities between
(1) no recording at the user site and a search at the developer
site among all possible paths, and (2) complete recording of
the outcome of all branches at the user site and no search at
the developer site. Various points in this spectrum constitute
different tradeoffs between instrumentation overhead at the
user and bug reproduction time at the developer site. (We de-

fine bug reproduction as finding a set of inputs that leads the
execution to the bug, or, equivalently, finding the direction
of all branches taken so that they lead the execution to the
bug.) It is this tradeoff that is explored further in this paper.

In particular, we propose three approaches for deciding
the set of branches to instrument. The first approach uses dy-
namic analysis to determine the set of branches that depend
on input. This approach is constrained in its effectiveness by
the limited coverage of the program that the symbolic execu-
tion engine used for dynamic analysis can achieve in a given
amount of time. It tends to under-estimate the number of
branches that need to be instrumented, therefore leading to
reduced instrumentation cost but increased bug reproduction
time. The time that the symbolic execution engine is allowed
to execute gives the developer an additional tuning knob in
the tradeoff: the more time invested in symbolic execution,
the better the coverage can be, and therefore the more precise
the analysis. The second approach is based on static analy-
sis of the program. Data flow analysis is used to determine
the set of branches that depend on the input. This approach
is limited by the precision of the static analysis, and in gen-
eral tends to over-estimate the number of branches to be in-
strumented. Thus, this approach favors increased instrumen-
tation cost in exchange for reduced bug reproduction time.
The third approach combines the above two. It uses sym-
bolic execution for a given amount of time, and then marks
the branches that have not yet been visited according to the
outcome of the static analysis.

When a bug in the program occurs, the developer runs
the program in a modified symbolic execution engine that
takes the partial branch trace as input. At each instrumented
branch, the symbolic execution engine forces the execution
to follow the branch direction specified by the log. In case
a symbolic branch has not been logged, the engine explores
both alternatives. Symbolic execution along the incorrect al-
ternative eventually causes a further branch to take a direc-
tion different from the one recorded in the log. The symbolic
execution engine then aborts the exploration of this alterna-
tive, and turns its attention to the other, correct branch direc-
tion.

Non-deterministic events add another dimension to the
tradeoff between logging overhead and bug reproduction
time. Either we log all non-deterministic events during ex-
ecution so that we can reproduce them exactly during re-
play, but we add overhead at runtime. Or we do not log all of
them, but then a non-deterministic event during replay may
produce an outcome different from the one during actual ex-
ecution. The importance of this tradeoff is amplified if some
branches are not logged. If all branches are logged, then with
high likelihood a different outcome of a non-deterministic
event during replay is detected quickly, because a subse-
quent branch takes a direction different from the one logged
during execution. If, however, not all branches are logged
and in particular branches that follow the non-deterministic

event are not logged, then the replay may require consider-
able searching to discover the path followed during the ac-
tual execution. We explore this tradeoff for system calls, one
of the principal sources of non-determinism during sequen-
tial execution.

Overview of results. We have implemented the three branch
instrumentation methods described above, in addition to the
naive approach that logs all branches. We explore the trade-
off between instrumentation overhead and bug reproduction
time using an open-source Web server, the diff utility, and
four coreutils programs. We find that the combined approach
strikes a better balance between instrumentation overhead
and bug reproduction time than the other two. Moreover, it
enables bug reproduction times that are only slightly higher
than those for the approach based solely on static analysis.
In contrast, this latter approach only marginally reduces log-
ging overhead compared to logging all branches, whereas
the approach based solely on dynamic analysis leads to ex-
cessively long times to reproduce bugs. More concretely, our
results show that the combined approach reduces instrumen-
tation overhead between 10% and 92%, compared to the ap-
proach based solely on static analysis. At the same time, it
always reproduces the bugs we considered within the allot-
ted time (1 hour), whereas the dynamic approach fails to do
so in 6 out of 16 cases. In all circumstances, we find that se-
lectively logging the results of system calls is advantageous:
it limits bug reproduction time, and adds only marginally to
instrumentation overhead.

Contributions. The contributions of this paper are:

1. The use of symbolic execution prior to shipping the pro-
gram to discover which branches depend on input and
which not.

2. An optimized approach to symbolic execution for bug
reproduction that is guided by a symbolic branch log
collected at the user’s site.

3. The exploration of the tradeoffs between the amount
of pre-deployment symbolic execution, the instrumen-
tation overhead resulting from logging the outcome of
branches, and the time necessary to reproduce a bug at
the developer’s site.

4. A combined static-dynamic method for deciding which
branches to instrument. The method leads to a better
tradeoff than previous systems, making the approach of
logging branches more practical and reducing the debug-
ging time.

5. A quantification of the impact of logging the result of se-
lected system calls, demonstrating that it only marginally
increases the instrumentation overhead, but considerably
shortens the bug reproduction time.

Roadmap. The rest of this paper is organized as follows.
Section 2 describes the program analysis and instrumenta-
tion methods we study. Section 3 shows how we modify a

symbolic execution engine to take as input a partial branch
recorded at the user site to reproduce a bug. Section 4 de-
scribes some implementation details and our experimental
methodology. Section 5 presents the results for an open-
source Web server, diff, four coreutils programs, and two
microbenchmarks. Section 6 discusses the results and our
future work. Section 7 summarizes the related work. Finally,
Section 8 concludes the paper.

2. Program Analysis and Instrumentation
Our approach involves analyzing the program to find the
symbolic branches and instrument them for logging. We
study both dynamic and static analyses. Our instrumentation
may use the results of the dynamic analysis only, those of the
static analysis only, or combine the results of both analyses.
Next, we describe our analyses and instrumentation meth-
ods.

2.1 Dynamic Analysis
Our dynamic analysis is based on symbolic execution. We
mark input to the program as symbolic and then use sym-
bolic execution to determine whether or not a branch condi-
tion depends on input.

Symbolic execution repeatedly and systematically ex-
plores all paths (and thus branches) in a program. In the
particular form of symbolic execution used in this paper
(sometimes called concolic execution [Sen 2005]), the sym-
bolic engine executes a number of runs of the program, each
with a different concrete input. Initially, it starts with a ran-
domly chosen set of values for the input and proceeds down
the execution path of the program. At each symbolic branch,
it computes the branch condition for the direction of the
branch followed, and adds this condition to the constraint
set for this run. When the run terminates, the overall con-
straint set describes the set of branch conditions that have to
be true for the program to follow the path that occurred in
this particular run. One of the conditions is then negated, the
constraint set is solved to obtain a new input, and a new run
is started.

We initially mark argv as symbolic, as well as the return
values of any functions that return input. During symbolic
execution, we track which variables depend on input vari-
ables, and mark those as symbolic as well. When we execute
a branch for the first time, we label it symbolic if any of
the variables on which the branch condition depends is sym-
bolic, and concrete otherwise. If during further symbolic ex-
ecution we revisit a branch labeled symbolic, it stays that
way. If, however, we revisit a branch labeled concrete, and
now its branch condition depends on at least one symbolic
variable, we relabel that branch as symbolic.

Symbolic execution tries to explore all program paths,
and is therefore very time-consuming. If it is able to explore
all paths, then all branches are visited, with some marked
symbolic and some marked concrete. However, this usually

can only be done for very small programs. For others, it is
necessary to cut off symbolic execution after some amount
of time. As a result, at the end of the analysis, in addition
to branches labeled symbolic and concrete, some branches
remain unlabeled.

All branches marked symbolic are indeed symbolic,
but some branches marked concrete may actually be sym-
bolic, because symbolic execution was terminated before
the branch was visited with a condition depending on input.
The unvisited branches may be either symbolic or concrete.

2.2 Static Analysis
We use interprocedural, path-sensitive static analysis, in
which we use a combination of dataflow and points-to analy-
sis. The basic idea of the algorithm is to identify the sources
of input (typically I/O functions or arguments to the pro-
gram), and construct a list of variables whose values depend
on input and are thus symbolic. Symbolic branches are then
identified as the branches whose condition depends on at
least one symbolic variable.

The algorithm works by maintaining a queue of functions
to analyze. Initially, the queue only contains the main func-
tion. New entries are queued in as function calls are discov-
ered. The set of symbolic variables is initialized to argv. In
the initialization, the functions that are normally used to read
input are marked as returning symbolic values.

Algorithms 1 and 2 show a simplified version of the
algorithm that analyzes each function. Each instruction in
the program is visited, and the doInst method is called. The
dataflow algorithm takes care of loops by using a fixed-point
algorithm so that instructions in a loop body are revisited
(and doInst is called) only as long as the algorithm output
changes.

For an assignment instruction (i.e., an instruction of the
form variable = expression;), doInstr resolves the vari-
ables to which the expression may be pointing, and checks
whether any of these is already known to be symbolic. If this
is the case, it adds variable to the list of symbolic variables,
otherwise it continues. If the instruction is a function call,
the algorithm first checks whether the function has already
been analyzed or not. If it has, it looks up the results to deter-
mine whether with the current set of parameters the function
can propagate symbolic memory or not, and updates the list
of symbolic variables accordingly. If the function has not yet
been visited 1, the algorithm enqueues it for analysis with a
reference to the current instruction, so that analysis of the
current function can resume when the function has been vis-
ited.

The doStatment method in algorithm 2 is called by
the dataflow framework on each control flow statement. For
if statements, it resolves the list of variables to which the

1 More precisely, if the function has not been visited with the particular
combination of symbolic and concrete parameters encountered here.

Algorithm 1: Static analysis algorithm propagating
symbolic information (simplified)
/* called on each instruction in the program

as many times as required by the fixed

point dataflow algorithm */

1 method doInstr(instruction i):;
2 begin
3 match i with begin

/* assignment */

4 case target variable = expression;
5 begin

/* If any of the variables

referenced by expression symbolic

is symbolic mark targe variable
symbolic */

6 if isSymbolic(e) then
7 makeSymbolic(target variable);
8 end
9 end

/* function call */

10 case: target variable = fun name(parameters);
11 begin
12 symbolic params =

getSymbolicParameters(parameters);
/* If we already visited fun name

with this combination of symbolic

parameters, propagate symbolic

flag */

13 if alreadyV isited(fun name,
symbolic params) then

14 if returnsSymbolicMemory(fun name)
then

15 makeSymbolic(target variable);
16 end
17 end
18 else

/* fun name not visited yet.

Queue it and stop analysis of

current function. The

algorithm will return to this

location once fun name has

been visited */

19 queueFunction(fun name,
symbolic parameters, i);

20 return abort
21 end
22 end
23 end
24 return continue
25 end

condition expression may be pointing. If any of them is
symbolic, the branch is labeled symbolic.

While the algorithm in Figure 1 is simplified for the sake
of clarity, our actual implementation handles the fact (1) that
symbolic variables can be propagated to global variables; (2)

Algorithm 2: Static analysis algorithm identifying sym-
bolic branches (simplified)
/* called on each control flow statement of

the program. */

1 method doStatement(statement s): begin
2 match s with;
3 begin
4 Branch(condition expression) begin
5 if isSymbolic(condition expression) then
6 logThisBranch();
7 end
8 end
9 end

10 return continue;
11 end

that the state of global variables changes depending on the
path that is being analyzed; and (3) that functions may prop-
agate symbolic variables not only to their return variables,
but also to their parameters (passed by reference) or to global
variables.

Static analysis is imprecise because the points-to analysis
tends to over-estimate the set of aliases to which a variable
may point. As a result, all symbolic branches in the program
are labeled symbolic by the static analysis, but some con-
crete branches may also be labeled symbolic. All branches
labeled concrete are indeed concrete.

2.3 Program Instrumentation
The developer instruments the branches in the program be-
fore the code is shipped. We consider four methods for in-
strumentation:

• dynamic instruments branches according to dynamic
analysis.

• static instruments branches according to static analysis.
• dynamic+static instruments branches according to a

combination of dynamic and static analysis.
• all branches instruments all branches.

Regardless of which method is used, the list of instrumented
branches is retained by the developer, because it is needed to
reproduce the bug (Section 3).

Dynamic method. After dynamic analysis, branches are la-
beled symbolic or concrete, or remain unlabeled. The dy-
namic method only instruments the branches labeled as sym-
bolic. By the nature of the dynamic analysis, we are cer-
tain that these branches are symbolic. We do not instrument
the branches labeled as concrete, since application branches
are typically either always symbolic or always concrete.
We also do not instrument the unlabeled branches. The dy-
namic method thus potentially underestimates the number of
branches that need to be instrumented. In essence, dynamic
favors reducing instrumentation overhead at the expense of
increased bug reproduction time.

Static method. After static analysis, branches are labeled
symbolic or concrete. We instrument the branches labeled as
symbolic. By the nature of static analysis, the static method
guarantees that all symbolic branches are instrumented, but
it may instrument a number of concrete branches as well.
Static therefore favors bug reproduction time at the expense
of increased instrumentation overhead.

Dynamic+static method. In the combined method, we run
both the static and the dynamic analysis, the latter for a
limited time. The dynamic analysis labels branches as sym-
bolic or concrete, or they may remain unlabeled. The static
analysis labels branches as symbolic or concrete. The com-
bined method instruments the branches (1) that are labeled
symbolic by the dynamic analysis, and (2) that are labeled
symbolic by the static analysis, with the exception of those
labeled concrete by the dynamic analysis. In other words,
when a branch is not visited by dynamic analysis, we instru-
ment it based on the outcome of the static analysis, because
this is the only information about this branch. When a branch
is visited by dynamic analysis, we instrument it based on the
outcome of this analysis. For branches labeled symbolic by
dynamic analysis, this is obvious as they are guaranteed to
be symbolic and have been labeled symbolic by static analy-
sis as well. For branches labeled concrete by dynamic anal-
ysis, this means that we potentially override the outcome of
static analysis which may have labeled these branches sym-
bolic. The reasons for this decision are that (1) static anal-
ysis may conservatively label concrete branches symbolic,
due to an imprecise points-to analysis, and (2) application
branches are typically always concrete or always symbolic,
as mentioned above.

Dynamic+static may be imprecise in two ways. Symbolic
branches may or may not be instrumented. The latter case
occurs if they are left concrete by the symbolic execution
(for instance, due to the limited coverage of the symbolic
execution). Concrete branches may or may not be instru-
mented. The former case occurs when the static analysis
mistakenly labels them as symbolic and they are not visited
during symbolic execution.

Although seemingly suffering from a greater degree of
imprecision than the other methods, our evaluation shows
that this method actually leads to the best tradeoff between
instrumentation overhead and time necessary to reproduce
the bug.

Logging system calls. In addition to deciding which branches
to instrument, we also consider the choice of whether or not
to log the results of certain system calls. Doing so adds to
the runtime overhead, but can be very beneficial for system
calls that can produce a large number of possible outcomes
during replay. For example, consider a select() system call
for reading from any of N file descriptors. Without infor-
mation about which descriptors became ready and when,
symbolic execution during replay would have to explore all

combinations of N available descriptors upon each return
from select(). To avoid having to explore all possible com-
binations, we instrument the code to log the descriptors that
are available when a call to select() returns. During replay,
we simply re-create these conditions. For the same reasons,
it makes sense to instrument calls to read to log the number
of bytes read.

We log the results of all system calls for which logging
considerably simplifies replay, including select() and read().
The input data itself is never logged. In principle, all instru-
mentation methods can be combined with logging system
calls.

3. Reproducing a Bug
3.1 Replay Algorithm
We use a modified symbolic execution engine [Crameri
2009] to reproduce bugs. The following information is avail-
able to the engine prior to bug reproduction: a list of all
instrumented branches (saved when the program was instru-
mented – see Section 2.3), and the bitvector indicating which
way the instrumented branches were taken (one bit for each
instrumented branch taken during execution at the user site).
When the symbolic execution engine encounters a branch, it
immediately knows whether or not the branch is symbolic,
because it can check whether the branch condition depends
on the input.

We refer to a run of the symbolic execution engine as the
execution of the engine with a single set of inputs, until it
either finds the path to the bug or aborts. A run is aborted
when the engine discovers that it is on a path that deviates
from the path described by the received bitvector. Each run
is started with the bitvector as received from the user site. A
constraint set is associated with each run, describing the path
followed by the run through the program, and consisting of
the conjunction of the conditions for the branch directions
taken so far in the run. To later explore alternative paths
should the current run abort, the engine also maintains a
list of pending constraint sets, describing these alternative
unexplored paths.

The engine performs a number of these runs. The initial
run is done with random inputs. Subsequent runs use an
input resulting from the solution of a constraint set by the
constraint solver.

For example, in Listing 1, the set of constraints: {not
(option == ’a’); option == ’b’} needs to be solved to take
the program in the else if branch at line 6.

When visiting the else if branch at line 6, the engine
puts in the pending list the following constraint set: {not
(option == ’a’); not (option == ’b’)}.

During a run, the engine proceeds normally for instruc-
tions other than branches. For branches, because of the im-
precision of the decision of which branches to instrument,
the following four cases have to be distinguished.

1. The branch is symbolic and not instrumented. The
constraint for the particular direction of the branch taken
is added to the constraint set for the run, and symbolic
execution proceeds. In addition, a new constraint set is
formed by adding the negated constraint to the constraint
set for the run. The new constraint set is put on the list of
pending constraint sets. The bitvector is left untouched.

2. The branch is symbolic and instrumented: The engine
takes the next bit out of the bitvector, and compares the
direction that was taken during recorded execution to
the direction the symbolic execution would take with its
input.
(a) If the two are the same, the constraint is added to the

constraint set for the run, and the symbolic execution
proceeds.

(b) If not, the constraint implied by the direction of the
branch taken during recorded execution is negated and
added to the constraint set for the run. This constraint
set is added to the list of pending constraint sets, and
the run aborts.

3. The branch is concrete and instrumented: The engine
takes the next bit out of the bitvector, and compares if the
direction that was taken during recorded execution is the
same as the direction the symbolic execution would take
with the current input.
(a) If yes, it proceeds further.
(b) If not, this run of the symbolic execution is aborted.
The latter case can only occur as a result of the run ear-
lier having taken the wrong direction on a branch that
(because of insufficient instrumentation) was not instru-
mented but should have been.

4. The branch is concrete and not instrumented: The
engine proceeds. The bitvector is left untouched.

When a run is aborted, the engine looks at the pending list
of constraint sets, picks one, solves it, and starts another run
with the input resulting from the solver. When this new run
passes the branch at which it was produced, the new input,
by construction, causes the symbolic execution to take the
direction opposite from the one followed in the run during
which the constraint set was produced.

3.2 Replay Under Different Instrumentation Methods
The all branches instrumentation method instruments all
symbolic branches (and all concrete ones as well). Thus,
cases 1 and 4 above cannot occur with this method. Further-
more, case 3(b) cannot occur either. The reason is that the
engine always proceeds past a symbolic branch in the same
direction as recorded during execution. When the run hits a
concrete branch, since this branch does not depend on input,
the engine is bound to follow the correct direction.

The static method also instruments all symbolic branches,
since imprecision in the points-to analysis is resolved con-
servatively (if a pointer might depend on input, it is flagged

symbolic). Under this method, cases 1 and 3(b) cannot occur.
The latter case cannot occur for the same reason above.

The dynamic method may not instrument all symbolic
branches, because it may not run long enough to find them.
Similarly, the dynamic+static method may fail to instrument
all symbolic branches, but only when symbolic execution
does not run long enough and static analysis is inaccurate. In
these cases, a run can take the wrong direction at a symbolic
branch that was not instrumented, and later hit a concrete
branch for which the input fails to satisfy the branch condi-
tion. In this case, the engine needs to back up and explore
an alternative direction at a symbolic but uninstrumented
branch. The constraint sets for these alternative directions
reside on the pending list. The search can use any heuristic
for deciding which constraint set to pick from the pending
list. We currently use a simple depth-first approach.

3.3 Replaying System Calls
As mentioned in Section 2.3, we consider scenarios with
and without instrumentation for logging the results of certain
system calls.

When these system calls are not logged, we replay them
using models of their behavior. The models use symbolic
variables to allow the engine to reproduce any behavior
that may be produced by the kernel. For instance, for the
read() system call, we use a symbolic variable for the return
value that determines how much input is read. This symbolic
variable is constrained to be between −1 and the amount
of input requested. During replay, a program executing the
read() call initially returns the amount of (symbolic) input
requested, and execution carries on. Because the return value
of the system call is symbolic, if the program checks it in a
branch and if the branch has been logged, the log specifies
which direction needs to be taken. If that direction fails, the
symbolic execution engine aborts the run. Eventually, the
number of bytes actually read at the user’s site is found.

When these system calls are logged, we replay their exe-
cution based on the logs. During replay, the calls for which
there are logged results always return exactly the recorded
value. Thus, the symbolic execution engine need not search
for the actual call results.

4. Implementation and Methodology
Software. For program instrumentation and analysis, we use
CIL (C Intermediate Language [Necula 2002]), which is a
collection of tools that allow simple analysis and modifica-
tion of C code.

For static analysis we start by merging all the source code
files of the program in one large C file. This allows us to run
the analysis on the whole program, making the results more
accurate.

We then use two CIL plug-ins for the dataflow and points-
to analysis.

For symbolic execution, we use a home-grown concolic
execution engine for C programs [Crameri 2009]. The en-
gine instruments the C program and links it with a runtime
library for logging constraints.

We also use CIL to instrument the branches in the pro-
gram. The instrumentation simply uses a bit per branch in
a large buffer, and flushes the buffer to disk when it is full.
We use a buffer of 4KB in order to avoid writing to disk
too often. We do not use any form of online compression,
as this would impose additional CPU overhead. Moreover,
we could have used a simple branch prediction algorithm to
avoid logging all instrumented branches, but this would have
required recording the program location for each logged
branch. This approach would have required at least another
32 bits of storage per branch, probably ruining any savings
obtained by the prediction algorithm.

Benchmarks. We first evaluate the instrumentation over-
head in isolation using two microbenchmarks. Next, we re-
produce real bugs previously reported in the coreutils pro-
grams [Cadar 2008]. Then, we evaluate the tradeoff between
instrumentation overhead and bug reproduction time using
an open-source Web server, the uServer [Pariag 2007]. The
uServer was designed for conducting performance experi-
ments related to Internet service and operating system de-
sign and implementation. We use version 0.6.0, which has
approximately 32K lines of code. In our final experiment,
we again evaluate the tradeoff between instrumentation over-
head and bug reproduction, but this time with the diff util-
ity. Diff is an input-intensive application that pinpoints the
differences between two files provided as input. It contains
about 22K lines of code. For all experiments we link the pro-
grams with the uClibc library [uClibc].

We study five configurations of each benchmark: four re-
sulting from our four instrumentation methods plus a config-
uration called none, which involves no instrumentation. For
the instrumented benchmarks, unless mentioned otherwise,
selective system call logging is turned on.

Hardware. Our experimental setup consists of two ma-
chines with two quad-core 2.27-GHz Xeon CPUs, 24 GBytes
of memory, and a 160-GByte 7200rpm hard disk drive.

5. Evaluation
5.1 Microbenchmarks
We evaluate the cost of the instrumentation by using two
simple microbenchmarks. The first microbenchmark com-
prises a loop that increments a counter 1 billion times. The
loop condition (checking the loop bound) consists of a single
branch, executing as many times as there are iterations.

We compare the none (no instrumentation) and all branches
versions of this microbenchmark using the Linux perf pro-
filer. The results show that the branch logging instrumenta-
tion takes 17 instructions on average, including the periodic
flushing of the log to disk. In terms of running time, we see

an average cost of 3 nanoseconds per instrumented branch
(with an average of 2.1 instructions per cycle), for a total
overhead of 107%. While considerable, this overhead is still
lower than that reported in ODR [Altekar 2009] (about 200%
just for the branch recording). The most likely reason is that
our instrumentation only logs one bit per branch, while ODR
uses a more complicated branch prediction algorithm.

We run a second microbenchmark consisting of the ex-
ample in Listing 1, which computes the fibonacci sequence
for one of two numbers. We instrument this program using
the four configurations of our system. Not surprisingly, the
configurations other than all branches instrument only the
symbolic branches corresponding to lines 4 and 6. The re-
sults are consistent with our previous microbenchmark: an
average overhead of 17 instructions per instrumented branch
or about 3 nanoseconds. The all branches configuration suf-
fers from a total overhead of 110%, whereas the three oth-
ers do not incur any noticeable overhead because only two
branches are logged.

5.2 Coreutils
We now evaluate our approaches using four real bugs in dif-
ferent programs from the Unix coreutils set: mkdir, mknod,
mkfifo, and paste. We ran the programs with up to 10 argu-
ments, each 100 bytes long.

Branch behavior. Recall that our approach is based on two
assumptions about branches: (1) that there are many (con-
crete) branches whose outcomes do not depend on input,
and (2) that if a branch is executed once with a concrete
(symbolic) branch condition, it is most likely always exe-
cuted with a concrete (symbolic) condition.

To check these assumptions, we modify our symbolic
execution engine to run with concrete inputs (instead of
generating concrete inputs itself to explore different paths).
In addition, at each executed branch, we record whether it is
executed with a symbolic or a concrete branch condition.

We show the results of a sample run of mkdir in Figure
1; the graphs for the other 3 programs are similar. The figure
shows per-branch-location statistics for this experiment. We
use the term “branch location” to mean the location of a
branch in the source code, and “branch execution” to mean
the actual execution of a branch location during run time.
Each point on the x axis denotes a branch location that is
executed at least once. The y axis shows how many times
each branch is executed. The gray bars denote the overall
number of branch executions, whereas the black bars denote
the number of executions with a symbolic condition. The
black bars are therefore a subset of the gray bars.

As the figure illustrates, only a limited number of branch
locations is responsible for all the symbolic branch execu-
tions. Furthermore, where black bars are present, they com-
pletely cover the gray bars. This shows that a particular
branch is executed either always with concrete conditions or

always with symbolic conditions. These observations sup-
port our two assumptions.

0

5

10

15

20

25

30
All branches
Symbolic branches

Figure 1. Number of executions of each branch in a sample
run of mkdir. The overlaid black bars represent the branches
executed with symbolic conditions.

dynamic

dynamic+static

static

all branches

0 20 40 60 80 100 120 140

cpu time (%)

Figure 2. CPU time of mkdir instrumented with the four
configurations of our system. Results are normalized to the
non-instrumented version.

Instrumentation overhead. Figure 2 shows the CPU time
associated with the instrumentation for mkdir (again, the
results for the other programs are similar). Those results are
obtained by running the program in the symbolic execution
engine for one hour. The figure shows that the time is almost
identical for the dynamic, dynamic+static, and static config-
urations. The static and dynamic analyses produce accurate
results in those programs. The all branches configuration is
the slowest, with an overhead of 31%.

Reproducing bugs. Each program suffers a crash bug that
only manifest itself when a very specific combination of
arguments is used. For instance, the bug in paste occurs with
the following command line:

paste -d\\ abcdefghijklmnopqrstuvwxyz

Table 1 shows the time needed to reproduce the crash
bugs in the four programs. The programs being relatively
small, symbolic execution is able to cover most of the im-
portant branches in a very short amount of time, and static
analysis produces accurate results. Thus, we can reproduce

the bug in less than two seconds in all of the four instru-
mented configurations.

Program Replay time
mkdir 1 sec
mknod 1 sec
mkfifo 1 sec
paste 1.5 sec

Table 1. Time needed to replay a real bug in four coreutils
programs. The results are the same with all four configura-
tions of our system.

These bugs have also been used to evaluate ESD [Zamfir
2010]. Interestingly, ESD took significantly more time to
reproduce the bugs (between 10 and 15 seconds, albeit with
no runtime overhead). This can be attributed to the fact
that our system essentially knows the exact path to the bug
(during bug reproduction), whereas ESD needs to search
many paths.

5.3 uServer
We further evaluate our system using a much larger appli-
cation (32K lines of code), the uServer [Pariag 2007], an
open-source Web server sometimes used for performance
studies. Unlike the coreutils programs, which are very small,
this benchmark elucidates the differences between the ap-
proaches for deciding which branches to instrument, and the
tradeoff between instrumentation overhead and bug repro-
duction time.

Branch behavior. We run the uServer in our modified sym-
bolic execution environment with 5,000 HTTP requests to
demonstrate the nature of the branches (symbolic or con-
crete). In total, approximately 18 million branches are ex-
ecuted, out of which only 1.8 million or roughly 10% are
symbolic. These 1.8 million symbolic branches correspond
to multiple executions of the same 53 branch locations in the
program.

Figure 3 shows per-branch-location statistics for this ex-
periment. As we can see, most of the black bars entirely
cover their corresponding gray bars. This means that these
particular branch locations are executed either always with
concrete conditions, or always with symbolic conditions.
However, the situation is slightly different for the branches
in uClibc, where in some cases the black bars almost but not
completely cover the gray bars. This situation corresponds
to library functions that are sometimes called with concrete
values. In this experiment, the number of those cases was
very small.

The figure also shows that most branches are executed
in the library (81%). However, only 28% of the symbolic
branches are executed in the library.

Version

LC HC
dynamic 78 246
dynamic + static 1654 1490
static
all branches

2104
5104

of instrumented branch
locations

Table 2. Number of branch locations instrumented in the
uServer with the different configurations of our system.

Identifying symbolic branch locations. In total, there are
5104 branch locations in the uServer code (and 8516 in
uClibc).

Table 2 shows the number of instrumented branches in the
uServer for each configuration of our system. We symboli-
cally execute the uServer using 200 bytes of symbolic mem-
ory for each accepted connection, and for each file descrip-
tor. We stop the symbolic execution phase after one hour
and two hours, obtaining a coverage of 20% (denoted LC for
lower coverage) and 33% (HC for higher coverage), respec-
tively. Running longer does not significantly improve branch
coverage.

Out of a total of 5104 branches, static marks 2104 as
symbolic, dynamic 246, and dynamic+static 1490, in the
HC configuration. In addition, with dynamic, 1434 branches
are marked as concrete, and the remaining branches are not
visited.

For the static analysis tool, we need to merge all the
source files of both the application and the library. Unfor-
tunately, doing so resulted in a file too large for the points-
to analysis to handle.2 Therefore we perform static analysis
only on the uServer application code. All branches in the
library are treated as symbolic by the static analysis.

With less coverage, there are more branches left unvis-
ited, and therefore more opportunity for the static phase to
mark them symbolic. This is why there are fewer instru-
mented branches in the dynamic configuration and more in
the dynamic+static configuration. Those numbers are used
to highlight the effect of branch coverage in our approach.

Instrumentation overhead. We use the httperf [Mosberger
1998] benchmarking tool to compare the performance of the
configurations for the uServer. We run httperf with a static
workload saturating the CPU core on which the uServer is
running. We consider three performance metrics: number
of instrumented branches executed, CPU time, and storage
requirement of the instrumentation. All three are roughly
proportional to each other.

Figure 4(a) shows CPU time (relative to the non-instrumented
version). As we can see, the overhead of all branches is sig-
nificant. The results of static are only marginally better, since
it instruments all branches in the uClibc library.

2 After six hours, the analysis had made little progress and we aborted it.

1

10

100

1000

10000

100000

1000000
All branches
Symbolic branches

branches located in the uClibc code branches located in the uServer code

Figure 3. Number of executions of each branch location in a sample run of the uServer. The y axis is in log scale.

dynamic (lc)

dynamic (hc)

dynamic+static (lc)

dynamic+static (hc)

static

all branches

0 50
100

150
200

250
300

350
400

450

dynamic (lc)

dynamic (hc)

dynamic+static (lc)

dynamic+static (hc)

static

all branches

0 100 200 300 400 500

cpu time (%) storage (bytes)

(a)

dynamic (lc)

dynamic (hc)

dynamic+static (lc)

dynamic+static (hc)

static

all branches

0 50
100

150
200

250
300

350

dynamic (lc)

dynamic (hc)

dynamic+static (lc)

dynamic+static (hc)

static

all branches

0 100 200 300 400 500

cpu time (%) storage (bytes)

(b)

Figure 4. CPU time (a) and storage requirement (b) of the uServer instrumented with the four configurations of our system.

The two configurations using dynamic analysis perform
notably better. The overhead is 17% and 20%, respectively,
for the dynamic and dynamic+static configurations. This
is not surprising for dynamic, as it instruments only 284
branch locations. The dynamic+static configuration instru-
ments many more branch locations, but still far fewer than
all or static.

The coverage obtained with symbolic execution affects
the instrumentation overhead of dynamic and dynamic+static.
Increased coverage increases the overhead of dynamic, since
symbolic execution instruments more branches. In contrast,
increased coverage leads to reduced instrumentation in dy-
namic+static, corresponding to branches marked symbolic
by the static analysis, left unvisited by the dynamic analy-
sis with low coverage, and marked concrete by the dynamic
analysis with high coverage.

Figure 4(b) shows the storage requirements per HTTP
request processed by the Web server. The storage overhead
is reasonable; around 50 bytes per request in the dynamic
and dynamic+static configurations. This is roughly the same

number of bytes in a typical entry in the access log of the
Web server.

Both the processing and storage overheads are more sig-
nificant in the static and all branches configurations. These
configurations represent worst-case scenarios for the areas
of the code that are not covered by the symbolic execution.

When a bug occurs, the branch log has to be transferred
to the developer. Compression can be used to reduce the
transfer time. We observe a compression ratio of 10-20x
using gzip. In Section 6, we discuss how to deal with long-
running executions, which could generate extremely large
branch logs.

Reproducing bugs. To evaluate the amount of effort re-
quired to reproduce a bug, we run the uServer with five dif-
ferent input scenarios. To demonstrate the impact of code
coverage on our approach, we design those scenarios to hit
different code areas of the HTTP parser. More specifically,
we use HTTP queries of various lengths (between 5 to 400
bytes), with different HTTP methods (e.g., GET, POST) and
parameters (e.g., Cookies, Content-Length). We crash the

Version
LC HC LC HC LC HC LC HC LC HC

dynamic 27s 27s 2877s 79s ! 170s ! 287s ! 168s
dynamic+static 27s 27s 79s 79s 532s 170s 175s 175s 248s 168s
static
all branches

Version
LC HC LC HC

dynamic 112s 112s ! 712s
dynamic+static 112s 112s 991s 694s
static
all branches

Exp. 1 Exp. 4

87s 362s
56s 343s

175s
175s

168s
168s

27s
27s

79s
79s

170s
170s

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Table 3. Time in seconds needed to reproduce each of the five input scenarios to the uServer with the four instrumented
configurations of our system. The infinity symbol means that the experiment did not terminate in one hour.

Version

LC HC LC HC
dynamic 18 / 112 18 / 112 0 0
dynamic+static 18 / 112 18 / 112 0 0
static
all branches
dynamic 25 / 129913 39 / 2215 11 / 23062 0
dynamic+static 36 / 2105 39 / 2215 3 / 110 0
static
all branches
dynamic 25 / 554617 42 / 28848 17 / 48485 0
dynamic+static 45 / 10971 42 / 28848 3 / 1023 0
static
all branches
dynamic 24 / 236608 43 / 24012 21 / 185945 6 / 268
dynamic+static 46 / 11089 48 / 12111 3 / 1023 1 / 1
static
all branches
dynamic 25 / 410723 44 / 29136 15 / 45706 0
dynamic+static 46 / 54539 44 / 28785 3 / 3391 0
static
all branches

Ex
p.

 1

0

0

Ex
p.

 5
Ex

p.
 4

Ex
p.

 3
Ex

p.
 2

39 / 2215

0

0
0

0
0

0

42 / 28848
42 / 28848

49 / 12112
49 / 12112

44 / 28785
44 / 28785

of symbolic branch locations logged /
corresponding # of executions

of symbolic branch locations NOT
logged / corresponding # of executions

18 / 112
18 / 112

39 / 2215

0
0

Table 4. Number of symbolic branch locations and symbolic branch executions logged and not logged for each configuration
of each experiment of Table 3.

server by sending it a SEGFAULT signal after sending it the
input, making sure it crashes at the same location in the code
for all four versions. After replay, we verify that each con-
figuration produced input that correctly leads to the same
location.

Table 3 shows the bug reproduction times for all four in-
strumented versions of the five scenarios. Table 4 shows the
corresponding number of symbolic branch locations logged
and not logged, as well as the number of actual symbolic
branch executions. Both tables include the configuration
with low coverage (LC) and high coverage (HC).

Unsurprisingly, the all branches and static versions,
which instrument all symbolic branches, perform best. Of
course, these versions do so at high runtime and storage
overheads (Figure 4).

Dynamic+static in most cases performs only slightly
worse than static, despite the much lower instrumentation
overhead of the former configuration. Dynamic comes last,
with many LC experiments not finishing in one hour. This is
not surprising, as the number of branches identified as sym-
bolic, and therefore the amount of logging, is very low. In
fact, Tables 3 and 4 show that the number of symbolic branch
locations not logged is well correlated with the replay time.
As soon as replay encounters more than a dozen symbolic
branch locations that are not instrumented, the replay time
exceeds one hour. An approach that does not instrument the
code at all, would result in even longer bug reproduction
times.

Dynamic+static obtains similar results regardless of cov-
erage. The reason is that symbolic execution may incorrectly

Version
LC HC LC HC LC HC LC HC LC HC

dynamic 27s 27s 2877s 79s ! 170s ! 287s ! 168s
dynamic+static 27s 27s 79s 79s 532s 170s 175s 175s 248s 168s
static
all branches

Version
LC HC LC HC

dynamic 112s 112s ! 712s
dynamic+static 112s 112s 991s 694s
static
all branches

Exp. 1 Exp. 4

87s 362s
56s 343s

175s
175s

168s
168s

27s
27s

79s
79s

170s
170s

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Table 5. Time in seconds needed to reproduce two input
scenarios with the uServer when not logging system call
results. The infinity symbol means that the experiment did
not terminate in one hour.

classify some branches as concrete, and thus slow down the
search. When running longer, those branches may later be
marked symbolic, therefore correcting the error. In our ex-
periment, those differences have a marginal effect on dy-
namic+static, which again suggests that this does not hap-
pen frequently.

Impact of logging system calls.
By default, we log the results for some key system calls

(Section 2.3). For instance, we log the return value of the
read() system call and the order of ready file descriptors
from select() calls.

The measurements in Figure 4 include the overhead of
logging these return values. As we only log a limited num-
ber of values for a few system calls, logging these values
introduces little extra work compared to the logging of the
branches. As a result, when not logging system call results,
the overhead is reduced by a marginal 0.2%.

Tables 5 and 8 present the bug reproduction times of two
of our experiments without logging any system calls (we
omit the three other experiments for brevity; their results are
similar). All configurations of our system take significantly
longer to replay, as the symbolic execution engine needs
to determine the exact return values of the selected system
calls. The dynamic and dynamic+static configurations are
further penalized, since the back-tracking needed by the
unlogged symbolic branches compounds the search for the
return values. Interestingly, the static configuration performs
slightly slower than all branches, whereas when logging
system calls it performs identically. The reason is that fewer
concrete branches are logged, therefore the engine takes
slightly more time to realize a wrong turn due to a system
call.

5.4 Diff
We now consider the diff utility. Diff is more challenging
than the uServer for our dynamic analysis, as its behavior de-
pends more heavily on input. Moreover, diff generates very
long constraint sets, placing a heavy burden on the constraint
solver. For these reasons, dynamic analysis attains a cover-
age of only 20% of branches, during 1 hour of symbolic ex-
ecution. In total, there are 8840 branches in the program. dy-

dynamic
dynamic+static

static
all branches

0 50 100 150 200
cpu time (%)

Figure 5. CPU time of diff instrumented with the four con-
figurations of our system. Results are normalized to the non-
instrumented version.

Version Exp. 1 Exp. 2
dynamic ! !
dynamic + static 1s 12s
static 1s 12s
all branches 1s 12s

Table 6. Time in seconds needed to reproduce two input
scenarios to diff. The infinity symbol means that the experi-
ment did not terminate in one hour.

Version symbolic branch
locations logged /

corresponding
executions

symbolic branch
locations NOT

logged /
corresponding

executions
dynamic 3 / 2125686 32 / 2369765
dyn.+static 13 / 904 0
static 13 / 904 0
all branches 13 / 904 0
dynamic 3 / 2478280 24 / 2102506
dyn.+static 21 / 54623 0
static 21 / 54623 0
all branches 21 / 54623 0

Ex
p.

 1
Ex

p.
 2

Table 7. Number of symbolic branch locations and sym-
bolic branch executions logged and not logged for two input
scenarios to diff.

namic identifies 440 of them as being symbolic, static 4292,
and dynamic+static 3432.

Instrumentation overheads. We run diff on two sample text
files. Figure 5 shows the CPU time of the four configurations
of our system, normalized against the non-instrumented ex-
ecution. Consistent with our prior results, dynamic and dy-
namic+static perform best with an overhead of approxi-
mately 35%.

Reproducing bugs. We replay two executions of diff com-
paring relatively small but different text files. Tables 6 and
7 list the results of these experiments. Because the coverage
obtained during dynamic analysis is relatively low, the dy-
namic configuration is unable to finish the experiments in 1

Version

LC HC LC HC
dynamic 40 / 722 43 / 725 8 / 173 5 / 170
dynamic+static 40 / 722 43 / 725 8 / 173 5 / 170
static
all branches
dynamic 43 / 245017 65031 (61) 21 / 107650 7 /1950
dynamic+static 64 / 88739 64612 (67) 3 / 7397 1 / 1021
static
all branches

of symbolic branch locations logged /
corresponding # of executions

Ex
p.

 4

50 / 39581 0
50 / 37346 0

of symbolic branch locations NOT
logged / corresponding # of executions

Ex
p.

 1

49 / 871 0
49 / 465 0

Table 8. Number of symbolic branch locations and symbolic branch executions logged and not logged for two input scenarios
with the uServer when not logging system call results.

hour. The few tens of unlogged symbolic branch locations
quickly create a very large number of paths to explore, mak-
ing it impossible for this approach to finish within the allot-
ted time. In contrast, the three other configurations, and in
particular dynamic+static, do not suffer from any unlogged
symbolic branches and therefore replay quickly.

Collectively, these results again demonstrate that dyna-
mic+static strikes the best balance between instrumentation
overhead and bug reproduction time.

6. Discussion and Future Work
Branch coverage. Our current results suggest that using a
branch trace, even partial, is effective at reducing the amount
of searching needed to reproduce a specific buggy execu-
tion path. To maintain low instrumentation overhead, it is
necessary to obtain sufficient coverage with the initial sym-
bolic execution phase. This problem has received attention
in the literature ([Cadar 2008; Godefroid 2008]), and sig-
nificant progress has been made in recent years. While it
is not always possible to achieve 100% coverage, this is a
typical goal when testing an application prior to shipping.
Therefore, the testing effort can be leveraged to identify the
symbolic branches at the same time. Moreover, manual test
cases can be used in conjunction with symbolic execution
to boost code coverage, and many applications already have
test suites covering most of their codes.

Constraint solving. Symbolic execution is limited by the
ability to solve the resulting constraints. In particular, certain
types of programs generate constraints that current state of
the art solvers cannot solve. Constraint solving is an active
research topic and our approach should directly benefit from
any advances in this field.

Non-determinism. Two approaches exist for dealing with
non-determinism, resulting, for instance, from system calls
or random number generators. One can either log the out-
come of the non-deterministic event or one can treat it as
(symbolic) input during replay. In this paper, we strike a
middle ground between these approaches, logging the out-

come of non-deterministic events that are likely to cause a
great deal of search during replay. The results in Section 5
validate this approach, but a more comprehensive treatment
of non-deterministic events could be explored.

Multithreading. We can extend our system to support multi-
threaded applications by modifying it in two ways. First, the
branch trace needs to be split into multiple traces, one per
thread. Second, the ordering of thread execution needs to
be recorded as well. Implementing the first modification is
trivial, and is unlikely to impose any significant additional
overhead. The second modification is more difficult. Others
[Altekar 2009; Zamfir 2010] have experimented with ideas
for recreating a suitable thread scheduling to find race con-
ditions. Our approach of logging a partial trace of branches
is complementary to those efforts and could considerably
speed up the replay of multi-threaded programs with races.

Long-running applications. The storage overhead and re-
play time of long-running applications can be problematic.
Consider, for example, the case of a Web server running
for weeks before crashing. Our current approach reduces
storage overhead as much as possible, but with these ap-
plications this overhead may still be high. Furthermore, re-
playing such a long trace may be infeasible, as it will be
longer than the original run. Pushing the concept of a partial
branch trace further, our approach could be extended to sim-
plify this problem by implementing support for checkpoint-
ing. An instrumented application could periodically take a
checkpoint of its state and discard the current branch log.
Logging branches would then continue from the checkpoint
only. The checkpoint would include enough information on
the data structures of the program (but not its content). With
this information, a symbolic execution engine can treat their
content as symbolic, and replay the branch log starting from
there. We leave the implementation and the associated re-
search questions of the checkpointing mechanism for future
work.

Concolic vs. symbolic. The particular form of symbolic exe-
cution we use in this paper is called concolic execution [Sen

2005]. The main difference from pure symbolic execution
(as in [Cadar 2008], for instance) is that the engine repeat-
edly executes the program from beginning to end with con-
crete inputs, instead of exploring multiple paths in parallel.
This implementation difference has no fundamental impact
on our system, as in both cases the engine can select the
paths in the same order. On one hand, the fact that the ap-
plication is rerun from the beginning for every path imposes
some additional overhead. On the other hand, because con-
crete inputs are always used, it makes the work of the solver
easier. In many instances, branch conditions are already sat-
isfied by the random input chosen. To the best of our knowl-
edge, no comparative studies of the impact of the different
implementations have been published yet.

7. Related Work
At one end of the spectrum between instrumentation over-
head and bug reproduction effort are record-replay systems
that try to capture the interactions between the program and
its environment. Different systems capture interactions at
different levels. Most systems capture them at the system
call or library level. For example, ReVirt [Dunlap 2002] logs
interactions at the virtual machine level. All record-replay
systems suffer from the overhead of logging the interactions.
To reduce this overhead, R2 [Guo 2008] asks the developer
to manually specify at what interfaces to capture the pro-
gram’s interactions with its environment.

At the other end of the spectrum are conventional bug
reporting systems, which provide a coredump, but no indi-
cation of how the program arrived at the buggy state. Obvi-
ously, there is no recording overhead, but it takes consider-
able manual search to find out how the problem came about.

ESD (Execution Synthesis Debugger [Zamfir 2010]) is
an attempt to automate some of that search. It tries to do
so without recording any information about the program
execution. Instead, it uses the stack trace at the time of the
program crash, and symbolically executes the program to
find the path to the bug location. Although it uses static
analysis and other optimizations to reduce the number of
paths it needs to explore, it remains fundamentally limited by
the exponential path explosion of symbolic execution. Our
approach instead performs logging of a set of judiciously
chosen branches. This allows us to speed up the automated
search with limited runtime overhead. As our results with
the coreutils show, our methods reproduce bugs faster, albeit
at some modest cost in runtime.

BBR (Better Bug Reporting, [Castro 2008]) investigates
the same tradeoff, although more from the perspective of
maintaining privacy when a bug is reported to the developer.
During execution it logs the program’s inputs. After a crash,
it replays the entire execution on the user machine based on
those inputs. Replay uses an instrumented version of the pro-
gram that collects the constraints implied by the direction of
the branches taken in the program. An input set that satis-

fies these constraints is then returned to the developer. Un-
like BBR, we do not log the users’ inputs, or require whole-
program replay and the execution of a constraint solver on
the user machine. Instead, we incur limited logging overhead
at the user site and some exploration of alternative paths at
the developer site.

Another approach for maintaining privacy is explored by
the Panalyst system [Wang 2008]. After a runtime error,
the user initially reports only public information. The devel-
oper tries to exploit this information using symbolic execu-
tion, but can query the user for additional information. The
user can choose whether or not to respond to the developer
queries. In the limit, Panalyst’s effectiveness is constrained
by the exponential cost of symbolic execution.

Triage [Tucek 2006] explores yet another way of debug-
ging errors at user sites. It periodically checkpoints pro-
grams, and after a failure, it restarts the program from a
checkpoint. Heavyweight instrumentation, exploration of al-
ternatives (delta-debugging), and speculative execution may
be used during replay. Some applications were successfully
debugged using this approach, but the checkpoint may have
to be far back in time to allow meaningful exploration.

The same tradeoff between instrumentation overhead and
bug reproduction time has also been explored for debug-
ging multithreaded programs. To faithfully replay the execu-
tion of a thread, the shared memory interactions with other
threads need to be logged.

The cost of doing so is very high, and therefore the PRES
[Park 2009] debugger selectively omits logging certain inter-
actions, but requires multiple replay runs before it can recre-
ate a path to a bug. Similarly, in order to avoid logging all
shared memory accesses, ODR [Altekar 2009] allows some
degree of inconsistency between the actual execution and the
replay, provided that the inconsistencies do not affect the
output of the program. The techniques used by PRES and
ODR could be combined with partial logging of branches as
presented in this paper.

Logging of branches has been used to report a program’s
behavior before a bug in Traceback [Ayers 2005]. The sys-
tem uses this behavior to reconstruct the control flow lead-
ing to the problem. To reduce the instrumentation overhead,
Traceback uses static analysis to minimize the number of in-
structions required to instrument branches, and only logs the
most recent branches. Our system goes further by combining
dynamic and static analyses to reduce the number of instru-
mented branches, and reproducing the entire path to the bug.

Symbolic execution for program testing was proposed
as far back as 1976 [King 1976], but has recently received
renewed attention as increased compute power and new
optimizations offer opportunities to tackle the path explo-
sion problem. Klee [Cadar 2008] has been used to symboli-
cally execute the coreutils, and whitebox fuzzing [Godefroid
2008] has been used to allow programs with extensive input
parsing to be executed symbolically. We present a new use

for symbolic execution, namely to discover which branches
in a program are symbolic. In addition, we propose to speed
up symbolic execution for bug reproduction by using a sym-
bolic branch log collected at the user site.

8. Conclusion
In this paper, we consider the problem of instrumenting
programs to reproduce bugs effectively, while keeping user
data private. In particular, we focus on the tradeoff between
the instrumentation overhead experienced by the user and
the time it takes the developer to reproduce a bug in the
program.

We explore this tradeoff by studying approaches for se-
lecting a partial set of branches to log during the program’s
execution in the field. Specifically, we propose to use static
analysis (dataflow and points-to analysis) and/or dynamic
analysis (time-constrained symbolic execution) to find the
branches that depend on input. Our instrumentation methods
log only those branches to limit the instrumentation over-
head. When a user encounters a bug, the developer uses the
partial branch log to drive a symbolic execution engine in
efficiently reproducing the bug.

Our results show that the instrumentation method that
combines static and dynamic analyses strikes the best com-
promise between instrumentation overhead and bug repro-
duction time. For the programs we consider, this combined
method reduces the instrumentation overhead by up to 92%
(compared to using static analysis only), while limiting the
bug reproduction time (compared to using dynamic analysis
only).

We conclude that our characterization of this tradeoff and
our combined instrumentation method represent important
steps in improving bug reporting and optimizing symbolic
execution for bug reproduction.

References
[Altekar 2009] Gautam Altekar and Ion Stoica. ODR: Output-

deterministic Replay for Multicore Debugging. In SOSP ’09:
Proceedings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles, pages 193–206, 2009.

[Ayers 2005] Andrew Ayers et al. TraceBack: First Fault Diagnosis
by Reconstruction of Distributed Control Flow. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming language design and implementation, pages 201–212,
2005.

[Cadar 2008] Cristian Cadar, Daniel Dunbar, and Dawson R. En-
gler. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In Proceedings
of the 8th USENIX Conference on Operating systems design and
implementation, pages 209–224, 2008.

[Castro 2008] Miguel Castro, Manuel Costa, and Jean-Philippe
Martin. Better Bug Reporting with Better Privacy. In ASPLOS
XIII: Proceedings of the 13th International Conference on Ar-
chitectural support for Programming Languages and Operating
Systems, pages 319–328, 2008.

[Crameri 2009] Olivier Crameri et al. Oasis: Concolic Execution
Driven by Test Suites and Code Modifications. Technical report,
EPFL, 2009.

[Dunlap 2002] George W. Dunlap et al. ReVirt: Enabling Intru-
sion Analysis Through Virtual-Machine Logging and Replay.
SIGOPS Oper. Syst. Rev., 36(SI):211–224, 2002.

[Glerum 2009] Kirk Glerum et al. Debugging in the (Very) Large:
Ten Years of Implementation and Experience. In SOSP ’09:
Proceedings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles, pages 103–116, 2009.

[Godefroid 2008] Patrice Godefroid, Adam Kiezun, and Michael Y.
Levin. Grammar-based Whitebox Fuzzing. SIGPLAN Not., 43:
206–215, June 2008.

[Guo 2008] Zhenyu Guo et al. R2: an Application-level Kernel for
Record and Replay. In OSDI’08: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation,
pages 193–208, 2008.

[King 1976] James C. King. Symbolic Execution and Program
Testing. Commun. ACM, 19(7):385–394, 1976.

[Mosberger 1998] D. Mosberger and T. Jin. httperf: A Tool for
Measuring Web Server Performance. In The First Workshop on
Internet Server Performance, pages 59—67, June 1998.

[Necula 2002] George C. Necula et al. CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In
Proceedings of Conference on Compilier Construction, 2002.

[Pariag 2007] David Pariag et al. Comparing the Performance of
Web Server Architectures. In EuroSys ’07: Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, pages 231–243, 2007.

[Park 2009] Soyeon Park et al. PRES: Probabilistic Replay with
Execution Sketching on Multiprocessors. In SOSP ’09: Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating
systems principles, pages 177–192, 2009.

[Sen 2005] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a
Concolic Unit Testing Engine for C. In ESEC/FSE-13: Proceed-
ings of the 10th European Software Engineering Conference,
pages 263–272, 2005.

[Tucek 2006] Joseph Tucek et al. Automatic On-line Failure Diag-
nosis at the End-user Site. In HOTDEP’06: Proceedings of the
2nd Conference on Hot Topics in System Dependability, pages
4–4, 2006.

[uClibc] uClibc. The uClibc Library, a C Library for Linux.
http://www.uclibc.org/.

[Wang 2008] Rui Wang, XiaoFeng Wang, and Zhuowei Li. Pana-
lyst: Privacy-aware Remote Error Analysis on Commodity soft-
ware. In SS’08: Proceedings of the 17th Conference on Security
Symposium, pages 291–306, 2008.

[Zamfir 2010] Cristian Zamfir and George Candea. Execution
Synthesis: a Technique for Automated Software Debugging. In
EuroSys ’10: Proceedings of the 5th European Conference on
Computer Systems, pages 321–334, 2010.

	Introduction
	Program Analysis and Instrumentation
	Dynamic Analysis
	Static Analysis
	Program Instrumentation

	Reproducing a Bug
	Replay Algorithm
	Replay Under Different Instrumentation Methods
	Replaying System Calls

	Implementation and Methodology
	Evaluation
	Microbenchmarks
	Coreutils
	uServer
	Diff

	Discussion and Future Work
	Related Work
	Conclusion

