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Abstract This paper presents an original approach for
shape-based analysis of ancient Maya hieroglyphs based
on an interdisciplinary collaboration between computer vi-
sion and archeology. Our work is guided by realistic needs
of archaeologists and scholars who critically need support
for search and retrieval tasks in large Maya imagery col-
lections. Our paper has three main contributions. First, we
introduce an overview of our interdisciplinary approach to-
wards the improvement of the documentation, analysis, and
preservation of Maya pictographic data. Second, we present
an objective evaluation of the performance of two state-of-
the-art shape-based contextual descriptors (Shape Context
and Generalized Shape Context) in retrieval tasks, using
two datasets of syllabic Maya glyphs. Based on the iden-
tification of their limitations, we propose a new shape de-
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scriptor named Histogram of Orientation Shape Context
(HOOSC), which is more robust and suitable for descrip-
tion of Maya hieroglyphs. Third, we present what to our
knowledge constitutes the first automatic analysis of visual
variability of syllabic glyphs along historical periods and
across geographic regions of the ancient Maya world via the
HOOSC descriptor. Overall, our approach is promising, as
it improves performance on the retrieval task, has been suc-
cessfully validated under an epigraphic viewpoint, and has
the potential of offering both novel insights in archeology
and practical solutions for real daily scholar needs.

Keywords Cultural heritage · Maya civilization ·
Archeology · Epigraphy · Image retrieval · Visual
similarity · Shape descriptor · Histogram of orientation

1 Introduction

The study of invaluable historical materials with digital tech-
nologies is a field of multidisciplinary nature and significant
to the society at large. Automatic and semi-automatic vision
algorithms embedded in search and browsing tools can sig-
nificantly facilitate the daily work of scholars in the humani-
ties and the arts, including historians, archaeologists, anthro-
pologists, linguists, curators, and photographers, who often
need to consult, annotate, and catalog pictographic docu-
ments or photographed pieces. Furthermore, computer vi-
sion algorithms have the potential of providing new insights
about existing theories in the humanities through the recog-
nition and discovery of patterns and connections within and
across pieces in a digital collection. Finally, visual search
and browsing could boost the creation of educational sys-
tems useful for both professionals and the general public.

The ancient Maya civilization is regarded as one of
the major cultural developments that took place in the
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Fig. 1 The Maya region with
main sites in larger font

New World, as reflected by their impressive achievements,
encompassing the artistic, architectural, astronomical, and
agricultural realms. Paramount among these is their refine-
ment of a fully phonetic writing system, which ranks among
the most visually sophisticated ever created in world history.
Maya hieroglyphs have been studied by western scholars for
over two centuries, and today the field of Maya iconographic
and hieroglyphic (epigraphic) analysis remains very active
worldwide, given the complexity of the Maya writing sys-
tem and the high frequency rate with which new archaeolog-
ical sites and monuments continue to be discovered, which
in turn increases the availability of source material for the
research community devoted to its study, thus providing ad-
ditional depth and richness to our knowledge of this ancient
culture.

Our paper contains three contributions. First, we describe
our interdisciplinary approach, which aims at developing au-
tomated techniques to work on a series of problems related
to the analysis, documentation, and preservation of Maya
pictographic data, tasks that to our knowledge have not been
previously attempted and that integrate work in computer vi-
sion and archeology. Our source of data is the Hieroglyphic
and Iconographic Maya Heritage project (AJIMAYA), an
ongoing project under the auspices of Mexico’s leading in-
stitution on Cultural Heritage management and research, the
National Institute of Anthropology and History (INAH). As
such, AJIMAYA is focused on collecting images and manual

line drawings of all known hieroglyphic Maya monuments
within the Mexican territory, thus representing one of the
largest Maya pictorial collections and image data bases ever
gathered. This project is currently working in archaeological
sites located on three Mexican states (Tabasco, Chiapas, and
Campeche, shown in Fig. 1).

Second, we analyze two versions of the Shape Context
(SC) (Belongie et al. 2002; Mori et al. 2005), a shape de-
scriptor successfully used for several other sources of shape
data; and introduce the Histogram of Orientation Shape
Context (HOOSC), a new shape-based descriptor that is bet-
ter suited for the description of Maya glyphs. The Shape
Context (Belongie et al. 2000) creates a robust, point-based
description of global shape by encoding proximity and ori-
entation relations of both adjacent and distant points, thus
building a compact description that can be used to estimate
visual similarity and perform matching between shapes. The
Generalized Shape Context (GSC) (Mori et al. 2005) com-
bines the discriminative power of the SC with the bag-
of-words approach which results in a computationally ef-
ficient technique to compute glyph similarity. In turn, the
HOOSC extends the GSC using a histogram of orientations
and distance-based normalization to better describe the kind
of rough thick contours often found in Maya glyphs, which
also allows for reliably description of low resolution im-
ages. Our proposed method is evaluated in the context of
automatic analysis of Maya syllabic phonetic signs (syllabo-
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grams), which constitute one of the main building blocks
within ancient Maya scripts. We demonstrate that the in-
vestigated shape-based descriptors are overall a promising
methodology to handle Maya glyphs, which are very chal-
lenging by nature due to the complexity and wide variety of
their pictorial content. We also show that our method leads
to a more robust and computationally efficient representa-
tion of glyph shapes.

Third, we evaluate the proposed glyph descriptors based
on real and current cultural heritage needs. We first do so
with a retrieval task which uses two glyph datasets gen-
erated by different definitions of visual and semantic rele-
vance. In archeology, glyph retrieval is useful to rank glyphs
in a digital catalog for search purposes, a common task for
epigraphy students and researchers whose time for execu-
tion would thus be ameliorated. Later, we analyze the vi-
sual variability of glyphs over three historical periods and
four geographical regions of the Maya territory. A current
research question in Maya epigraphy concerns the evolution
of writing styles over temporal and geographical boundaries.
Our analysis shows that glyphs present different degrees of
variation, and that certain periods and regions appear to have
wider variability than others, thus providing valuable infor-
mation compared to what is currently known about this sub-
ject in archeology.

The paper is organized as follows. Section 2 describes
our interdisciplinary approach. Section 3 describes related
work. Section 4 presents the Shape Context algorithm. Sec-
tion 5 introduces the HOOSC descriptor proposed in this
paper. Section 6 describes the datasets used for experiments.
Section 7 presents the experimental protocol. Section 8 dis-
cusses our results. Finally, Sect. 9 offers some concluding
remarks and discusses open problems.

2 Our Interdisciplinary Project

The invention of writing was a rare event in world’s history,
only witnessed five different times: in Egypt, the Indus val-
ley, Mesopotamia, China, and the Americas. In one way or
another, all other writing systems derive from these regions.

Over 200 years of scholarly tradition focused on the
Maya system have revealed many of its secrets, through a
progression started with its mathematical cycles and astro-
nomical tables, reaching its underlying phonetic keys and
intimate functioning (Justeson et al. 1985), which in turn
opened the gate to the study of Maya history (Berlin 1958;
Proskouriakoff 1960), and derived aspects such as ancient
geopolitics (Martin and Grube 2000) and religion (Taube
1992).

2.1 The Maya Writing System

The Maya culture originated some time during the transition
period from the middle to the late Preclassic period (c.a.,

1,500–400 BC) in parts of present-day Mexico, Guatemala,
Belize, and Honduras, arguably reaching its cultural peak
during the late Classic period (c.a., 600–900 AD).

Maya writing was not an isolated phenomenon, but stems
from a larger phonetic tradition that developed in southern
Mesoamerica (Stuart et al. 2005). Some of the earliest Maya
inscriptions date from the late Preclassic (c.a., 400 BC–250
AD), and originated in the Guatemalan Petén district, the
Salama Valley, and the Pacific coastal region, and at sites
such as San Bartolo, Takalik Abaj and El Baul. The script
remained operational during at least 17 or 18 centuries. It
was until later that it spread into the western and northern
lowlands (the Usumacinta, Campeche, Belize-Quintana Roo
and Yucatan). By late-Classic times (c.a., 600–900 AD), the
usage of the Maya script became commonplace through-
out the entire Maya lowlands, and has been detected on a
few but steadily growing number of transitional lowland-
highland sites as well. During the Terminal Classic (c.a.,
800–950 AD), writing and scribal traditions continued, al-
beit on a fairly diminished capacity, with the exception of
new and revitalized northern centers like Chichen Itza, Ux-
mal, Mayapan, and Santa Rita Corozal, all of which contin-
ued to operate after the so-called “Maya Collapse” (Sharer
1996).

The Maya script belongs to the family of the so-called
logosyllabic writing systems. This term describes systems
composed of two functionally distinct types of phonetic
signs: logographs (word signs with meaning) and syllabic
signs or syllabograms (used only to convey sound with-
out meaning). In practice, several signs of both types could
be arranged inside a single glyph-block, where usually lo-
gographs are phonetically complemented by syllables, ei-
ther on initial position (i.e., as a prefix or superfix) or in
final position (i.e., as a postfix or suffix). In general terms,
syllables have a consonant-vowel structure (denoted as CV,
for instance b’a, which is a sound with no meaning) while
logographs alternate between consonant-vowel-consonant
(CVC) and different compounds (i.e., CVC–VC, CVC–
CVC, etc., for instance B’AHLAM meaning “jaguar”). Even
though approximately 1,000 distinct signs have been identi-
fied thus far, only a maximum of 800 were used at any given
time, of which approximately 80–85% have been deciphered
and are readable today.

For the research described in this paper we focus on syl-
labograms, thus excluding logographs. The reason is that
logographs comprise over 80% of all known signs, thus
presenting a far greater degree of variability, both through
time (diachronic variation) and geography (synchronic vari-
ation). Conversely, working with syllabograms allows for
very challenging, yet more manageable sample that presents
increased consistency. To exemplify the degree of complex-
ity that makes such a strategy desirable, as our knowledge of
the governing principles of the Maya script has advanced, so
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Fig. 2 Examples of complexity in the Maya writing system

Fig. 3 Paired columnar format for reading order of Maya inscriptions,
where letters designate the columns and numbers the rows

has our awareness of a number of its underlying non-linear
possibilities, which include resources like conflation (when
two signs are visually fused, retaining each its same relative
size); infixation (when a sign is reduced in size and inserted
within another); superimposition (when one sign partially
covers another which main elements remain visible as back-
ground); and pars pro toto (when only a fraction containing
diagnostic features of any given sign replaces the whole).
Examples of these phenomena are shown in Fig. 2.

Typically, Maya glyphs are arranged on a paired colum-
nar format which is referred to as the system of coordi-
nates, where letters designate the columns and numbers the
rows. In such a grid, a standard reading order for a text of 4
columns and 2 rows would be: A1, B1, A2, B2, C1, D1, C2,
D2, as exemplified in Fig. 3. Longer texts usually conform
to the same general pattern (with occasional exceptions).

2.2 Work in Data Collection

For some sites, the AJIMAYA project has already compiled
a full photographic record of monuments, each of which has
to undergo an eight-fold methodological treatment that gen-
erated some of the data used in this paper. Figure 4 shows
the first and second steps of such a process consisting in:

1. Digital photographs, taken at night under raking-light il-
lumination to bring out the level of detail that facilitates
the study of eroded monuments.

2. Line drawings, traced on top of multiple layers of en-
hanced photographs under different light conditions, to

Fig. 4 Example of the first and second steps in the digitalization
process for Maya photographs

capture the inner features that are diagnostic towards
their subsequent identification.

3. Manual identification of glyphic signs with the aid of ex-
isting glyphic catalogs.

4. Manual transcription, i.e., rendering the phonetic value
of each Maya sign into alphabetical conventions.

5. Transliteration, which involves representing ancient
Maya speech into alphabetic form.

6. Morphological segmentation, which breaks down record-
ed Maya words into their minimal grammatical con-
stituents (morphemes and lexemes).

7. Grammatical analysis, which uses common conventions
to the fields of historical and structural linguistics, to in-
dicate the function of each segmented element.

8. Translation, which involves rendering ancient Maya text
on a modern target language, e.g., English.

2.3 Goals of the Collaboration

AJIMAYA’s substantive goals encompass the safekeeping,
preservation, study, and dissemination of monuments and
written records from Mexico’s Maya archaeological and cul-
tural heritage. This project has been partially inspired by the
pioneering work of Ian Graham (Graham 1975), who along
with his collaborators at Harvard University’s Peabody Mu-
seum of Archeology and Ethnology, provided the scholarly
community with a comprehensive repository of photographs
and drawings of such cultural items.

Our collaboration inserts itself as part of the general goals
mentioned above. We target the application of computer vi-
sion technology in order to support Maya hieroglyphic de-
cipherment. As a result of this fusion between technologi-
cal and cultural heritage studies, we hope to obtain an ar-
ray of research tools tailored-made to meet specific research
needs for archeology. One of such useful tools would ad-
dress one of modern decipherment’s strongest needs: de-
veloping a more refined and updated hieroglyphic catalog,
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which could be periodically updated, with the ability to in-
corporate input from multiple colleagues working in differ-
ent parts of the world. Despite pioneering efforts on this re-
gard by Thompson (1962) and Macri and Looper (2003),
one of the challenges that limits the potential of existing
catalogs operates at the taxonomic level: epigraphy needs
an upgraded system for classifying the 800+ known signs,
which separates the consensually deciphered from the unde-
ciphered ones, where the authorship of each specific deci-
pherment is unambiguously indicated, and where all known
contexts of occurrence of each particular sign are readily
accessible, in order to better assess its function within the
script as a whole.

In order to succeed in creating these and other research
tools, one of the basic abilities that needs to be developed
is that of performing queries of a particular glyph, which
could retrieve the contexts where equivalent instances oc-
cur. Taking a step further, we would like to develop the abil-
ity of automatically detecting not only specific instances of
particular signs, but also their variants, such as their allo-
graphs (different signs indicating the same phonetic value),
their homophones (signs with similar sound, which meaning
could differ), and their polivalencies (signs that could take
more than one phonetic value, depending on the context).

Among the most exciting long-term goals envisioned is
to develop a tool sensitive enough to compare at a glance
thousands of inscriptions, and to detect meaningful patterns
that could then be correlated with phonetic substitutions. If
such a resource could be implemented, it could become one
of the primary tools used by researchers for the decipher-
ment of the remaining 15–20% of the signs whose phonetic
values remain unknown within the hieroglyphic corpus.

3 Related Work

The work in this paper relates to both the use of computer
vision techniques for cultural heritage preservation or analy-
sis, and to the development of computer vision techniques
for shape analysis and retrieval. In the following, we discuss
related works in those areas.

3.1 Automatic Visual Analysis of Cultural Heritage

The use of computer vision techniques for automatic index-
ing and retrieval of 2-D imagery in cultural heritage has been
the topic of important research in the past recent years. One
of the most representative works in this domain is Lewis et
al. (2004), in which a system for retrieval of paintings and
photos of art objects, using content and metadata, was de-
veloped by a multidisciplinary team involving a group of
European museums. The project identified two relevant user
tasks for specialists: query by example, and cross-collection

search, and proposed algorithms based on adaptation and ex-
tension of techniques developed in the mid-90s (e.g., color
coherence vectors). A discussion about variations of visual
query formulations in cultural heritage collections, and ideas
on how to approach them with region-of-interest queries ap-
pears in Boujemaa et al. (2002). Techniques that address
other relevant tasks, for instance the detection of visual pat-
terns and trends in image collections, like the characteri-
zation of ancient Chinese paintings by artist style (Li and
Wang 2003), have also been proposed. It is well known,
however, that classic content-based image retrieval (CBIR)
techniques are often limited to handle variations of illumi-
nation, appearance, and viewpoint (Smeulders et al. 2000).
In this work, we address the retrieval of complex shapes us-
ing more recent techniques for visual entity representation
(bag-of-words constructed from contextual shape features),
which are novel within this field.

3.2 Image and Shape Representations for Retrieval
Applications

The representation and matching of visual entities has ex-
perienced much progress since the invention of robust local
viewpoint-invariant features, computed over automatically
detected local areas, to represent objects and scenes (Miko-
lajczyk and Schmid 2004). The local character of these fea-
tures provides robustness to image clutter, partial visibil-
ity, and occlusion, while their invariant nature addresses
several issues related to changes in viewpoint and lighting
conditions. In this context, one research direction has fo-
cused on modeling objects by histograms of quantized local
descriptors (bags-of-visterms) (Sivic and Zisserman 2003;
Willamowski et al. 2004; Quelhas et al. 2005), which allows
for fast retrieval applications in large collections. However,
the main limitation of these approaches is that the spatial
information is lost given the assumptions for bag construc-
tion. In addition, the above works represent the visual con-
tent with appearance descriptors which might not be well
adapted to the shape/binary images used in our work.

Representation of shape has a long history. The work in
Zhang and Lu (2004) provides a recent review of this do-
main. Roughly speaking, shape descriptors differ accord-
ing to whether they are applied to contours or regions, and
whether the shapes are represented globally or by their local
structure. Global representations like Fourier or moment de-
scriptors are usually sensitive to variations in some regions
of the shape. Structural approaches, which represent shapes
by sets of local contour segments potentially organized as
trees do not suffer from this drawback (Zhu et al. 2008;
Lu et al. 2009). As an example, such a representation is
used by Zhu et al. (2008), where the search for a shape in
an image is formulated as a set-to-set matching problem, re-
lying on Shape Context descriptors (Belongie et al. 2000)
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built from control-points. The resulting hard combinator-
ial problem of matching control points and foreground con-
tour selection, is solved using linear programming optimiza-
tion methods. A similar matching formulation is used by
Lu et al. (2009) but is resolved in a particle filtering frame-
work. Despite the use of these recent optimization schemes,
the set representation quickly becomes large when dealing
with complex shapes like our glyphs, and make these tech-
niques computationally very expensive for shape compari-
son.

Recently, the use of shape to represent objects regained
attention. However, the focus is on tasks other than shape
retrieval, namely model learning from few training im-
ages (Jiang et al. 2009), shape discovery (Lee and Grau-
man 2009), model matching in images (Zhu et al. 2008;
Lu et al. 2009), or exemplar-dependent shape distance learn-
ing (Frome et al. 2007). In most cases, these works rely on
finding feature correspondences and/or shape alignment us-
ing techniques that are too slow for retrieval applications
in large databases (e.g., the thin plate spline robust point
matching algorithm; Jiang et al. 2009). In addition, due to
their different goals, they mainly address the representa-
tion of images of 3-D real objects, currently handling object
categories with limited complexity, like apple logos, mugs,
or bottle shapes, which are substantially different than our
Maya glyphs.

Taking inspiration from the success of the appearance-
based local descriptors for object representation, recent
work has investigated similar approaches to represent shape
information in images, by exploiting vocabularies of bound-
ary fragments in different ways (Shotton et al. 2005;
Opelt et al. 2006; Ferrari et al. 2008). As an example, Fer-
rari et al. (2008) used a quantized version of a local seg-
ment network (mainly segment pairs) as a structural shape
representation. However, these techniques were specifically
designed for object detection or classification, and are thus
associated with discriminant learning approaches (like ad-
aboost) and sliding-window or voting methods for local-
ization, and therefore do not provide appropriate explicit
matching scores for retrieval applications. In contrast, the
shape-context representation (Belongie et al. 2000, 2002)
provides a holistic shape representation through descriptors
that integrate shape and geometric discrepancy measures,
providing a good framework for shape comparison. In addi-
tion, its generalized version (Mori et al. 2005) uses contour
information and quantized descriptors, and lends itself to
fast retrieval implementations. We have followed this ap-
proach, proposing several improvements (a better contour
orientation representation, using an histogram constructed
with a kernel-based approach rather than a dominant ori-
entation descriptor, and a more appropriate normalization
scheme), which are shown to significantly improve retrieval
results.

4 Shape Context Algorithm

Here we summarize the Shape Context algorithm (Belongie
et al. 2000, 2002) which is the starting point for our work.

4.1 Descriptors

Shape Context (SC) takes as input a finite set of n 2-D
points, which represent the contours of a given shape, and
describes it as a set of n histograms. More precisely, for
each point pi of the shape P , its histogram scP

i , called shape
context descriptor, is computed as the distribution of the rel-
ative position of the n − 1 points with respect to pi . In other
words, the kth entry scP

i (k) of scP
i is defined as:

scP
i (k) = |P k

i |
|P | − 1

, k = 1, . . . ,K, (1)

where | · | denotes the set cardinality operator, K is the num-
ber of bins in scP

i , and P k
i denotes the set of points of P

falling in the spatial bin k with respect to the point pi :

P k
i = {pj ∈ P : pj �= pi, (pj − pi) ∈ bin(k)}, (2)

where pj −pi denotes vector difference. Such a histogram is
computed on 5 normalized distance intervals which in total
span twice the mean pairwise distance of all the points in the
image, and 12 angular intervals covering a complete perime-
ter around the reference point. This results in a histogram of
K = 60 bins, which are uniform in log-polar space, mak-
ing the descriptor more sensitive to nearby points than to
the farthest ones. The SC descriptor construction process is
illustrated in Figs. 5(a)–5(h).

According to Belongie et al. (2002), measuring similar-
ity between two shapes P and Q can be done using the χ2

statistics for each pair of points pi of P and qj of Q as:

Cij (pi, qj ) = χ2
(

scP
i , scQ

j

)

= 1

2

K∑
k=1

[scP
i (k) − scQ

j (k)]2

scP
i (k) + scQ

j (k)
. (3)

In Belongie et al. (2002), a distance between shape tangents
at points pi and qj was also exploited. In our experiments
however, it produced no improvement.

4.2 Point-to-Point Matching and Shape Similarity Index

A scalar measure of similarity (similarity index) between
two shapes P and Q can be obtained through point-to-point
correspondences. One way to do so, is to find the permuta-
tion � of the vector of points P that minimizes the sum of
the matching costs given by:

M(�) =
∑

i

C(πi, qi), (4)
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Fig. 5 Shape Context process for description and matching: (a) glyph
b’a01, (b) glyph ki01, both taken from Macri and Looper (2003).
(c) and (d) point representation of the contours of (a) at 2 sampling
rates, 10% and 5% respectively. (e) and (f) log-polar binning spaces

for two sample points. (g) and (h) the SC histogram descriptors for the
two sample points. (i) glyph ki01 sampled at rate 10%. (j) matching be-
tween b’a01 and ki01, correspondences are connected by a line while
dummy matches are presented by disconnected circles

where πi is the ith entry of the vector �.
A constraint to this minimization problem is that the

number of points should be the same for the two glyphs,
i.e., |P | = |Q| → |�| = |Q|. If the restriction is not sat-
isfied, one can make use of “dummy handlers”. Assuming
that |P | < |Q|, we can add dummy points to P to have
the same length in both vectors, and fill the correspond-
ing entries in matrix C with a dummy value εd . In this
way, points in Q with expensive matching cost are forced
to match dummy points in P . Nevertheless, all points in P

are still forced to have a real match in Q, which might not
be desirable in some cases. To allow outliers in P , we in-
troduce dummy handlers in both sets P and Q by increas-
ing the dimension of the cost matrix C up to �m(1 + ψ)�,
where m = max(|P |, |Q|) and ψ is the dummy rate, i.e., the
fraction of points in the biggest set allowed to have no real
match. Any new entry in C is then set to the value εd . Fig-
ure 5(j) illustrates the best point-to-point matching between
two similar glyphs.

By visual inspection on the several glyph retrieval ex-
periments, we noticed that the similarity index proposed in
Belongie et al. (2002) is not discriminative enough, as they
compute the average of the minimum pairwise matching
scores allowing one-to-multiple point matches. To alleviate
this issue we rather use the average of the matching costs
suggested in Roman-Rangel et al. (2009),

dsc = 1

�m(1 + ψ)�
�m(1+ψ)�∑

i=1

C(πi, qi) = M(�)

�m(1 + ψ)� . (5)

This function discriminates better between visually similar
and non-similar glyphs. It also takes into account all the
dummy assignments which might contribute significantly
to the score depending on the number of points in the two
shapes to be compared.

While the SC is a powerful descriptor, it is computation-
ally expensive and therefore other faster options are desir-
able. This motivated our proposed approach which is pre-
sented in the next section.

5 Our Approach

The need to optimize the permutation � of points to com-
pute the similarity between any two shapes does not lend the
original SC method to fast retrieval. In Mori et al. (2005)
this problem is alleviated working with a bag of quantized
descriptors (called Shapemes), which also improves the dis-
criminative ability of the descriptor by adding shape orien-
tation information. We describe this approach below dis-
cussing its limitations, and presenting the novelties we in-
troduce in our proposed method.

5.1 Generalized Shape Context (GSC)

Incorporating contour orientation in the cost function only
at the reference point as proposed by Belongie et al. (2002)
appears to be limited (Mori et al. 2005; Roman-Rangel et al.
2009). In contrast, replacing the simple counting of points
in each spatial bin k by the sum of the unit gradient vectors
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Fig. 6 (a) One instance of glyph b’a. (b) Opposite gradient directions
resulting from the double sides of wide contours

tj of all points pj falling within that bin, provides with a
richer description of shapes. This leads to the definition of
the Generalized Shape Context (GSC) descriptor gscP

i of a
point pi , in which each spatial bin k is described by its 2-D
dominant orientation vector gscP

i (k):

gscP
i (k) =

∑

pj ∈Pk
i

tj , (6)

where P k
i , the set of points falling into bin k relative to the

point pi , is defined in (2), and tj denotes the gradient vector.
As a result, using the same 60 spatial bins than in the SC
case, the resulting GSC has a dimension of 120.

5.2 Histogram of Orientation Shape-Context (HOOSC)

The GSC descriptor suffers from several limitations, some
due to the specific data we use, while others are more gen-
eral. We describe below the improvements we propose.

5.2.1 Edge Orientation Representation

Unlike other image sources where contours emerge from the
contrast between two object regions, Maya glyphs are fre-
quently drawn by traces in which internal and external con-
tours must be considered as the same part of a shape ele-
ment. Unfortunately, glyph shapes usually have very rough
contours as they come from photographs taken from stones
where the original inscription has very wide traces or is
eroded. Therefore, the extraction of the contours might re-
sult in double lines as illustrated in Fig. 6, one internal line
and one external line whose gradients will often have op-
posite direction and whose contribution to (6) cancel each
other, thus resulting in unreliable estimates. Very poor qual-
ity images may also produce the same effect.

To handle this issue, we only exploit information about
contour orientation, not contour direction. We thus normal-
ized the contour gradient using only angles between the in-
terval [0,π) to avoid term cancellations when summing the
gradients of the same “stroke” represented by double lines.

5.2.2 Histogram of Orientation

As a consequence of the above, the algebraic sum of gradi-
ent vectors in (6) does not make sense anymore, as modulo π

orientation vectors are difficult to add. In addition, in many
cases the notion of dominant orientation is not fine enough,
as spatial bins (especially outer ones, see for instance Fig. 5)
often contain sets of edges with different orientations. Thus,
following a successful trend in computer vision (e.g., SIFT
or HOG features), the contours in each bin can be more pre-
cisely represented using a histogram of local orientations.
To do so and to take into account uncertainty in orientation
estimation while avoiding hard binning effects, we propose
to consider the orientation measure as a probability distri-
bution instead of a point estimate, and to resort to an (un-
normalized) kernel-based approach for orientation density
estimation. That is, the density for angle θ in the spatial bin
k of point pi is estimated as:

f k
i (θ) =

∑

pj ∈Pk
i

N (θ; θj , σ
2), (7)

where N (θ;μ,σ 2) denotes the value at angle θ of a
Gaussian of mean μ and variance σ 2. Empirically σ = 10
degrees performs well. Then, the value of the orientation
histogram in bin [a, b] is simply obtained by integrating the
density f k

i (θ) within this interval (modulo π ). A new para-
meter Nθ is introduced to control the number of orientation
bins. Empirically, Nθ = 4 or Nθ = 8 bins allows for a suit-
able description, which given the 60 regions of the log-polar
spatial binning, leads to the definition of the HOOSC, a his-
togram of orientation shape-context descriptor of 240 or 480
dimensions for each point pi of the shape P , and denoted as
hooscP

i .

5.2.3 Normalization of the Histogram of Orientation

Finally, the radial distances of the spatial binning, which are
quantized in 5 intervals following a logarithmic law, produce
an important discrepancy between the unnormalized orien-
tation histograms computed in each spatial bin: as the area
of the central bins are much smaller than that of the bins
in the outer circles, the amount of observations (and thus
the magnitude of the corresponding histogram of orientation
entries) are much larger on the outer bins. Thus, when com-
paring two descriptors, too much emphasis is given to ob-
servations farther away from the reference point. The GSC
method suffers such an issue. To avoid it, we perform a local
and independent normalization for each of the distance in-
tervals of the descriptor referred from now on as rings (see
Fig. 5), meaning that the contribution of each point to the
full descriptor effectively depends on how far it is from the
reference point.
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5.3 Shapeme-Based Similarity Measure

We rely on a quantization approach in which all the consid-
ered shape descriptors are extracted and clustered, and then
represented by an index that points to the cluster they belong
to. Such an approach has been shown to allow the design of
fast retrieval applications (Sivic and Zisserman 2003). In the
context of shape retrieval, Mori et al. (2005) called the ob-
tained vocabulary of cluster centers as Shapemes.

In practice, for a given descriptor type (GSC or HOOSC),
we performed a K-means clustering into Nsh shapemes, and
then represented each glyph P by the normalized distribu-
tion of quantized descriptor indices over Nsh, called bag-of-
shapemes and denoted by boshP . To compare two glyphs
P and Q, we compute the distance between their bag-of-
shapemes according to the L1 norm, which empirically per-
formed better than other alternatives:

dsh(P,Q) = ‖boshP − boshQ‖1

=
Nsh∑
l=1

|boshP (l) − boshQ(l)|. (8)

6 Data

Two datasets of syllabic Maya glyphs are used in our work.
The first one is taken from a relatively well known catalog
of Maya hieroglyphs (Macri and Looper 2003), and the sec-
ond is provided by AJIMAYA. Several Maya syllables might
have more than one associated visual representation (vari-
ant or allograph), meaning that the same syllable could be
represented by two or more glyphs where visual similarity
is neither obvious nor necessarily found. Conversely, other
glyphs associated to distinct syllables could present visual
similarities among them.

6.1 Macri and Looper (M&L) Dataset

Our first dataset taken from Macri and Looper (2003), con-
sists in 297 syllabic Maya glyphs distributed over 80 sylla-
bles. Despite the fact that some syllables might be rendered
by different glyphs, each glyph itself is represented by a sin-
gle holistic instance, thus excluding multiple images for the
same instance. The glyphs are resized to fit 256 pixels in
their largest dimension while keeping proportionality in the
smallest axis. Since glyphs have tremendously varying de-
grees of detail and complexity, we decided to represent all
the contours not with a fixed number of points as in Belongie
et al. (2002), but with a percentage of the total number of
points in each of the raw images.

From the collection, we randomly selected the 22 glyphs
shown in Fig. 7 to use them as queries. For each of them,
we manually labeled as relevant all the similar glyphs found

Fig. 7 Set of 22 Maya syllabic query glyphs from M&L dataset with
names constructed using their corresponding sound, plus an identifying
number added at the end of each glyph

in the collection, purely based on visual similarity. Note that
the set of queries is diverse: glyphs are often considerably
different from each other.

6.2 INAH Dataset

The second dataset was manually extracted from files pro-
vided by INAH. Each file contains a table representing dif-
ferent instances of the same glyph, with variations along
temporal and regional axes. The synchronic or time dimen-
sion is divided in 3 periods: period 1 corresponding to the
Early Classic (200–500 AD), period 2 to the Late Classic
(600–800 AD), and period 3 to the Terminal Classic (800–
950 AD); while the diachronic or regional dimension is or-
ganized in 4 main regions: the central region (Petén), the
southern region (Motagua), the western region (Usumac-
inta), and the northern region (Yucatán peninsula) (refer to
Fig. 1), thus allowing for up to 12 possible instances per
glyph. The dataset consists in 84 images distributed over 8
glyphs. Figure 8 shows the 8 tables that form this dataset,
note that not all the entries in the tables are filled as some of
them either could not be found or would require much more
time to be located within the known corpus.

Although a majority of syllables could be arranged in
such a tabular form, it is advisable at this stage to focus
the analysis on signs with a very high rate of occurrence
within the hieroglyphic corpus, thus yielding glyph tables
with as few gaps as possible. As simple as it might sound,
the selection process of finding the most suitable candi-
dates for analysis can often prove overly difficult and time-
consuming, given that it relies almost entirely on specialized
epigraphic knowledge and abilities that take many years to
develop, such as visual memory. It is precisely because of
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Fig. 8 Glyph tables for the 8 syllables in the INAH dataset. The in-
stances correspond to the Early, Late and Terminal Classic Periods,
and to four main regions of the ancient Maya civilization. Missing in-

stances either could not be found or would require more time to be
located within the known corpus. Note that several instances are quite
noisy
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these difficulties that the field of Maya studies needs a re-
search tool which could automatically retrieve such candi-
dates.

The images in this set are roughly double the resolution
than those of M&L dataset. However, at this point it was
not possible to get a consistent high-quality from all of the
samples, due to the varying qualities of the source materi-
als within the AJIMAYA database and the different degrees
of erosion that each text presents, ranging from the almost
illegible to the fairly well preserved instances.

7 Experimental Protocol

In this section we describe three tasks we performed with the
two datasets described in Sect. 6 as well as with one extra
dataset constructed as a mixture of them.

1. Glyph retrieval in the M&L dataset. Using SC descrip-
tors and the index similarity in (5), we performed a series
of experiments to analyze the effects of the contour sam-
pling rate n and the dummy rate ψ . Later with (8), we
explored the impact of three parameters under the bag-
of-shapemes approach: the descriptors used to build the
vocabulary (GSC or HOOSC), the number of consecutive
rings used to build the descriptor, and the number Nsh of
words in the shapeme vocabulary. To evaluate retrieval
quality we made use of the mean average precision mea-
sure (mAP) (Baeza-Yates and Ribeiro-Neto 1999) in all
cases.

2. Glyph retrieval in a mixed dataset. To further evaluate
our HOOSC method, we extracted from the M&L dataset
the 8 glyphs that correspond to the syllables presented in
the INAH dataset, and used them as queries to retrieve
glyphs from the latter set. Our goal is to conduct a re-
trieval task where the relevance judgment of the queries
is not based only on visual similarity but on semantics;
i.e., the expert knowledge which establishes that all the
instances relevant to a query correspond to the same syl-
lable.

3. Assessing glyph variability across periods and regions.
The last task consists in analyzing trends of visual vari-
ability of the instances for the 8 glyphs in the INAH
dataset. Such an evaluation was done both at the intra
and interclass levels with the goal of finding out whether
there are glyphs showing more consistency across histor-
ical periods and regions, as well as being able to numeri-
cally characterize visual similarity among the glyphs.

We consider this evaluation important as it addresses
one of the main needs of scholars working on archaeo-
logical and epigraphic related studies; they look for au-
tomatic tools to help them classify known and new hi-
eroglyphs, as well as a better understanding of the vi-
sual relationship among instances of the same sign and

Table 1 Tested combinations with Shape Context. Values for sam-
pling rate n, dummy rate ψ , and mean Average Precision mAP com-
puted over the 22 queries. The best result obtained is shown in bold

Case n ψ (%) mAP

a max(100,5%) 0 0.301

b max(100,5%) 10 0.315

c max(100,5%) 20 0.319

d max(100,10%) 0 0.311

e max(100,10%) 10 0.319

f max(100,10%) 15 0.322

with respect to other signs. Examples of these needs can
be found in two seminal taxonomical and paleographical
contributions conducted by Grube (1989) and Lacadena
(1995), which constitute ground-breaking efforts to ac-
count for the amount of synchronic and diachronic vari-
ability found within the Maya script.

8 Results

In this section we present experimental results for each of
the tasks described in Sect. 7, along with a discussion about
the performance of our framework.

8.1 Results for Glyph Retrieval

In the initial stage of our experiments we did an analysis
to assess how well the glyph contours in the M&L dataset
are represented at different sampling rates. We tried repre-
senting the contours with 2%, 3%, 5%, 10% and 15% of
the number of points in the original shapes, and observed
that with ratios less than 5% many glyphs are represented
by less than 100 points, thus yielding rather poor represen-
tations. Conversely, while 10% and higher percentages pro-
duce robust representations, they also make the SC compu-
tation slower. Empirically, 5% is a good trade-off between
accurate representation and efficiency. For the experiments,
we decided to use both 5% and 10% sampling rates with a
minimum bound of 100 points, that is, n = max(100,5%)

and n = max(100,10%).

8.1.1 Shape Context

Table 1 shows the retrieval results for different parameter
values. In all cases, the dummy assignment cost was set to
εd = 0.25.

It is clear that a more populated representation of the con-
tours results in a more accurate description. Combinations a
and d correspond to the original SC, with dummy assign-
ments only in the smallest set of points but not in the largest
one. From then on we can see that adding dummy assign-
ments in both shapes increases the precision, and the more
we add the higher it is, i.e., mAP(a) < mAP(b) < mAP(c),
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Table 2 Estimated mAP computed over 22 queries in the M&L dataset
for different combinations of Nsh (vocabulary size) and the number of
consecutive rings Nrings (spatial context) used to build the HOOSC de-
scriptor. The best result is shown in bold

Nrings ρ Nsh

100 300 500 800 1000

2 0.25 0.192 0.239 0.278 0.279 0.264

3 0.50 0.232 0.291 0.296 0.308 0.292

4 1.00 0.260 0.296 0.337 0.321 0.330

5 2.00 0.315 0.350 0.379 0.390 0.387

and mAP(d) < mAP(e) < mAP(f). Intuitively, SC now re-
lies on a higher proportion of correct matches, while dummy
matching cost are assigned to the unreliable, often wrong,
matches. Note that the sampling rate is higher in case d than
in case c, however the precision in c is higher as it makes use
of dummy handlers. Case f provides the best mAP at 0.322,
which is 10 times higher than random ranking which would
give a mAP equals to 0.030. In absolute terms, the mAP of
0.32 is relatively low, and is due to the complex nature of the
glyphs with many internal contours that create confusion.

On the other hand, we notice that increasing the value εd

does not improve the mAP (such results are not shown here).
The original similarity index of Belongie et al. (2000) and
the first one proposed in Roman-Rangel et al. (2009) (not
shown), lead to lower retrieval performance. An important
restriction for the SC is that the higher the dummy rate, the
slower is to find the permutation �, reason for which we did
not increase further the dummy rate ψ .

8.1.2 Shapemes

Table 2 shows the mAP results when varying two parame-
ters of the HOOSC descriptor: the shapeme vocabulary size
Nsh, and the number of consecutive rings Nrings of the spa-
tial context considered to build the descriptor. We observe a
trend to improve performance when increasing the vocab-
ulary size up to 800 shapemes, after which the precision
starts to degrade. Also worth of attention is that a global
description performs better than a local one, no matter the
vocabulary size (e.g., 300 shapemes with 5 rings is better
than 800 shapemes with only 4 rings or less), which indi-
cates that adding context is critical. Using 800 shapemes and
the whole spatial context, our approach increases mAP up to
0.390, thus providing a relative improvement of 21.1% over
the original SC.

Figure 9 shows examples of the retrieved glyphs with
the Shapemes-HOOSC approach. Note that several retrieved
glyphs belong to the same semantic class as their queries
(i.e., they correspond to the same sound). However, glyphs
that share an overall silhouette are sometimes confused by
the HOOSC approach, even if they are rich in internal de-
tails (e.g., yi04 and pa02). For the queries shown in Fig. 9,

Fig. 9 (Color online) Examples of retrieved glyphs with
Shapemes-HOOSC on the M&L dataset. The first column shows the
three queries with highest AP and the two queries with lowest AP (in
descending order). Then, each row shows the top 5 retrieved glyphs
with the relevant ones enclosed by a rectangle

the HOOSC retrieves at least one relevant element in the top
5 retrieved vector, while SC does not. Note that the query
b’a11 (second row in Fig. 9) retrieves signs which previ-
ous glyphic catalogs find logical to place adjacent to one
another, thus regarding them as pertaining to the same class
from an iconic point of view (i.e., the purely visual represen-
tation of any given sign, independently of its associated pho-
netic or semantic values). For instance, Thompson (1962)
places the signs ma01 right next to the b’a syllable (Thomp-
son names T502 and T501 respectively), while Macri and
Looper (2003) intuitively arranged them exactly in the same
order as it was automatically generated (Macri & Looper
names XE2 and XE3).

8.1.3 Impact of Descriptor Type on Retrieval

We also evaluated the specific contribution of the modifi-
cations we proposed. More specifically, we compared five
cases:

– SC: This corresponds to the best combination of the SC
algorithm (case f earlier in this section).

– GSC: This is the original approach proposed by Mori et
al. (2005) which sums all the local tangent angles within
a bin and represents it by the dominant orientation.

– GSC-mod(π ): This is the same as GSC, but with orien-
tation angles computed on the contours over the [0,π)

range only, to avoid mutual cancellation when using data
with rough contours or double lines.

– HOOSC-mod(π ): This represents the contour spatial re-
gion by a histogram of orientation, with Nθ = 4 or
Nθ = 8.
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Table 3 Different approaches explored for retrieval

Descriptor type Approach mAP

SC case f 0.322

GSC GSC 0.149

GSC-mod(π) 0.279

HOOSC Nθ = 4 mod(π) 0.315

Nθ = 8 mod(π) 0.320

Nθ = 8 mod(π), normalized 0.390

Fig. 10 (Color online) Average precision (continuous lines) and aver-
age recall (dotted lines) curves for the retrieval task in the M&L dataset
with three methods; in blue the approach with best mAP in SC-based
retrieval (case f ), in green the GSC method, and in red the HOOSC
method

– HOOSC-mod(π )-normalized: The same as above, but
with a descriptor normalization conducted independently
for each spatial ring, and Nθ = 8.

All the shapeme approaches used Nsh = 800 and 5 rings,
i.e., full spatial context. Table 3 shows the mAP results. GSC
performs surprisingly poorly (0.15), both with respect to SC
(0.32) and our method (0.39). We noted that, as discussed
in Sect. 5.2, opposite gradients happened often, thus result-
ing in mutual cancellations of the directions and imprecise
descriptions. When considering only orientation rather than
direction, GSC-mod(π ) increases the performance but still
remains below that of SC. The use of the histogram of orien-
tation provides better results, with a slight advantage when
using more bins. Table 3 shows the need for a proper nor-
malization procedure to avoid giving too much weight to the
contribution of outer rings in the descriptor.

When looking at the top N retrieval results in each exper-
iment (Fig. 10), we observe that the GSC approach (referred
to as Mori) performs similarly to the HOOSC method at
lower N , but then degrades more rapidly as more glyphs are
retrieved, achieving the same performance as SC.

8.1.4 Computational Time

Besides improving the mAP, our approach is much faster
than SC. Given a query image, the shapeme approach needs
to compute a set of HOOSC descriptors and a bag-of-
shapemes, and then compare it against each of the bag-of-
shapemes for the elements in the dataset. On the other hand,
the SC approach requires to calculate the set of point de-
scriptors, and find a set of point to point correspondences
(i.e., solving the assignment problem) for each of the set
descriptors within the collection. In practice, the bag-of-
shapemes approach takes only 0.05 seconds for the whole
process, while SC does it in 227.4 seconds (3′48′′), which
results in a speedup factor of ≈4500 using a standard desk-
top machine. All the experiments were conducted with non-
optimized Matlab code for our approach, and the publicly
available Matlab code of SC.

Given that our approach relies on a bag-of-shapemes rep-
resentation, it can be easily scaled up to thousands of glyphs
using approximate NN-search or compressed features, as
demonstrated by several works in the image retrieval do-
main, e.g., Jégou et al. (2008). We thus believe it can be
used in real time applications for scholars.

8.2 Results for Mixed Dataset Glyph Retrieval

The results in this section and Sect. 8.3 were obtained using
our HOOSC method with values Nsh = 800 and Nrings = 5.
Figure 11 presents the top 5 retrieved glyphs for each query.
We can notice that despite the complexity of the glyphs,
the retrieved images are often relevant. It is clear however,
that results are worse for glyphs presenting high variability
among their respective instances. This is the case for query
a01 where 4 out of the 5 retrieved glyphs belong to sylla-
ble mi, as syllables a and mi have a similar visual structure
with vertical alignment divided in three main sections, and a
presents high visual variability such as small circles whose
position might vary from one image to another. A similar
trend, although less frequent, occurs with syllables b’a and
u. On the other hand, for most of the queries the results
are very satisfactory (e.g., syllables ka, la, mi, ni, na, u) as
the HOOSC descriptor seems suitable to represent complex
Maya glyphs. Overall, we obtained a mAP of 0.61, which is
higher than in the previous experiments due to the use of a
smaller dataset with more consistent content.

8.3 Glyph Variability over Historical Periods
and Geographic Regions

We conducted an analysis of the visual variability of each
glyph class in the INAH dataset. It was done by comput-
ing the pairwise distance dsh between all the 84 glyphs, and
then by computing means and variances according to intra
or interclass criteria.
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Fig. 11 (Color online) Retrieved glyphs from INAH dataset using
8 images from M&L dataset as queries. The first column shows the
query, and the next five columns show the top 5 retrieved glyphs. The
relevant glyphs to each query are enclosed by a rectangle

8.3.1 Intra-class Analysis

The results show that glyph mi has overall the lowest vi-
sual variability (average of 0.192), which is consistent with
its good retrieval results (see Fig. 11). Conversely, glyph ka
presents the maximum visual variability with a mean dis-
tance of 0.300. This can mainly be explained by the pres-
ence of two visual subclasses for this glyph. The rest of the
glyphs have very similar intra-class distance values (≈0.23),
meaning that they have similar degree of variability within
the INAH dataset.

8.3.2 Analysis over Historic Periods

Analyzing in more detail the intra-class variability over
time, we observed that the first historic period (Early Clas-
sic, 200–500 AD) presents the highest variability for 5 of

Table 4 Periods in which syllables exhibit their highest and lowest in-
traclass average variabilities. The table provides also, the average vari-
ability for each period along with its standard deviation

Syllables Variability

Period Highest Lowest Average Std

Early a, ka, mi, ni, u la 0.277 0.063

Late la, na b’a, ni 0.238 0.036

Terminal b’a a, ka, mi, na, u 0.228 0.028

Table 5 Regions for which syllables exhibit their highest and low-
est intraclass average variabilities. The table provides also, the average
variability for each region along with its standard deviation

Syllables in region with Variability

Region Highest Lowest Average Std

Petén la, na a, ka 0.251 0.039

Motagua a, b’a, ni, u mi 0.258 0.057

Usumacinta ka ni 0.349 0.028

Yucatán mi b’a, la, na, u 0.214 0.033

the 8 glyphs, whereas the third period (Terminal Classic,
800–950 AD) has the highest variability for only 1 of them.
These results are shown in Table 4. In the second column of
Table 4 (labeled highest), we show the list of syllables hav-
ing their highest variability on each period, along with the
average variation and corresponding standard deviation for
every period. Reversely, we found that only 1 glyph has its
lowest variability in the first period, while they are 5 in the
last one.

Overall, this analysis might suggest that for the small
set of glyphs in our dataset the visual representation went
through a stabilization process across time (i.e., on average
the variability goes from 0.277 to 0.238 and then to 0.228,
also with decreasing standard deviation). This initial result
would have to be validated with more data in the future.

8.3.3 Analysis over Geographic Regions

Table 5 shows the average variability across each of the re-
gions. The Motagua region seems to be the most varying
since half of the glyphs show the highest variability for this
region, consistent with its average variability which is the
second highest with a value of 0.258. On the other hand, the
Yucatán region appears to be the less diverse region as half
of the glyphs have their lowest variability in it. This is also
reflected in its average variability (0.214).

8.3.4 Inter-class Analysis

We define the distance between two classes A and B to be
the average of all the distances from each instance of class
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Fig. 12 (Color online)
Interclass similarity graph.
Every node contains an example
of the glyphs corresponding to a
class, every edge is weighted by
the similarity between the two
nodes it connects. The edges are
colored to indicate similarity
level; red: very different
(smaller values), blue: very
similar (higher values), gray:
middle term

A to each instance of class B. We use the inverse of this
distance as link strength. A graph representation is shown in
(Fig. 12).

The set of link strengths varies from 3.40 to 4.17, which
implies that the relative difference between the most and the
less similar pair of syllables is only 18.3%. Interestingly, the
five edges with smallest edge weights (red in Fig. 12) con-
nect syllable ka, whereas the five edges with highest edge
weights (in blue) all connect syllable mi.

8.3.5 Archaeological Analysis

It appears to us significant that despite radically differ-
ent methodologies, our initial results of analysis over his-
torical periods appears compatible with previous conclu-
sions posited by Lacadena (1995), concerning what he calls
the paleographical distance (the amount of variability in
signs), which he found to consistently diminish when mov-
ing towards the Terminal Classic and beyond (equivalent to
our period 3), while augmenting towards the Early Classic
(equivalent to our period 1). This said, we hesitate at the
moment to derive further conclusions of historical signif-
icance based on the analysis over geographic regions that
we have performed, since the available literature dealing
with this particular topic using more orthodox methodolo-
gies than ours is rather scant. Furthermore, the number of

sites hitherto used as source of glyphic signs within the
INAH dataset cannot yet be regarded as fully representative
for each general region, compelling us to reserve any fur-
ther interpretations for future works, when a substantially
increased dataset, now under compilation, is available.

9 Conclusions and Future Work

We present a work towards the integration of computer vi-
sion techniques in the analysis of ancient Maya cultural her-
itage materials. Our approach is challenging and rich, as it
genuinely addresses needs and open problems in archeology
and epigraphy, and poses a number of questions for com-
puter vision research, resulting in a unique opportunity to
integrate knowledge in archeology, epigraphy, and comput-
ing.

Two complex datasets of Maya syllabic glyphs, unique
in nature and highly valuable for the archeology scholarly
community, are used in the experiments conducted in this
work, obtaining encouraging results. It is important to note
that the experiments were conducted with only few instances
for each syllable, making our results to be constrained to a
small portion of the whole potential variability that might
exist. Nevertheless, our methodology would in principle be
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applicable to larger corpora of syllables. Based on the re-
sults obtained so far, we hope that the potential of automatic
vision technologies could be refined to a degree that would
make them useful to retrieve glyphs modified by one of the
phenomena mentioned in Sect. 2.

We studied two main variants of a robust shape descrip-
tor: the Shape Context (SC) and the Generalized Shape Con-
text (GSC). Both of them proved to generate reliable de-
scriptions of Maya hieroglyphs, the former being more ef-
fective in retrieval experiments. During these analyses we
noted a number of their drawbacks for the description and
comparison of shapes, and proposed improvements to over-
come them. In the GSC case, our improvements lent us to
propose the HOOSC descriptor which proved to be more
robust. Both GSC and HOOSC are cleverly complemented
by the bag of shapemes approach; we studied the quality of
the retrieval results for different vocabulary size and degrees
of locality. Using the HOOSC descriptor for retrieval tasks,
we obtain a relative improvement of 21.1% over the SC ap-
proach and 161.7% over the GSC. The bag of shapemes ap-
proach also showed to be thousands of times faster than the
point-to-point comparison of the original SC.

We also presented what to our knowledge is the first study
of glyphic visual similarity over historical periods and ge-
ographical regions, finding out that Maya glyphs tend to
have less visual variability in subsequent periods, suggest-
ing a gradual convergence in their representation within a
given region, an observation that coincides with the previous
conclusions of Lacadena (1995). However, as glyphs started
to disseminate across different regions, they were enriched
with new visual features that increased their variability as
the analysis across regions showed. Whether these overall
trends will hold true as more syllable sets are gradually in-
corporated into the analysis remains to be seen. So far we
prefer a cautious approach before deriving broader interpre-
tations from such a restricted set of data, as recommended
by Lacadena (1995), especially when taking into account the
unevenness in the chronological and geographic distribution
of a substantial portion of signs within the script.

Our methodology allowed to construct a similarity graph
to compare classes of glyphs, i.e., syllables, which might
help archaeologists and epigraphers categorize new hiero-
glyphs discovered in the future. The analysis of the visual
variability of the INAH dataset, points to discover common
patterns that eventually will allow to build a software that
archaeologists could use in query and classification jobs.
However, further work is clearly needed towards improv-
ing the description of the glyphs, making it robust enough to
handle slight differences among instances of the same syl-
lable and at the same time sufficiently discriminant to avoid
confusions.

Among the many research threads to study in the future,
the first one will be to increase the dataset, populating the

temporal-regional tables to have stronger statistical support
in future analyses, and enriching the set of syllables itself.
We would like to conduct analysis with more uniform sam-
ples of glyphs, which may involve producing vectorial trac-
ings of each glyphs, and possibly even restoring damaged
portion of signs if there is enough intrinsic and compara-
tive information to allow for it. Second, we plan to explore
new methods to describe better the Maya corpus, gradually
incorporating not only more syllables, but also logographs
(word signs). New work for shape description has to be per-
formed, such as handling transformations like rotation and
reflection. Unlike traditional problems in vision, where in-
variance with respect to the above characteristics is desir-
able, they might be inadequate as rotated and mirrored Maya
glyphs often have different meanings. Overall, we expect to
be able to refine the bag of shapemes approach for describ-
ing and comparing hieroglyphs, through the introduction of
more structured information that improves the oversimpli-
fying bag assumption, and that might discover diagnostic
features that better discriminate between glyphs belonging
to different syllables.

It almost goes without saying that the challenges involved
in building such tools, or more advanced ones, appear almost
as formidable as the potential benefits it would provide to the
Cultural Heritage community.
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