
S2E: A Platform for
In-Vivo Multi-Path Analysis of Software Systems

Vitaly Chipounov, Volodymyr Kuznetsov, George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{vitaly.chipounov,vova.kuznetsov,george.candea}@epfl.ch

Abstract
This paper presentsS2E, a platform for analyzing the properties and
behavior of software systems. We demonstrateS2E’s use in devel-
oping practical tools for comprehensive performance profiling, re-
verse engineering of proprietary software, and bug finding for both
kernel-mode and user-mode binaries. Building these tools on top of
S2E took less than 770LOC and 40 person-hours each.

S2E’s novelty consists of its ability to scale to large real sys-
tems, such as a full Windows stack.S2E is based on two new ideas:
selective symbolic execution, a way to automatically minimize the
amount of code that has to be executed symbolically given a target
analysis, and relaxedexecution consistency models, a way to make
principled performance/accuracy trade-offs in complex analyses.
These techniques giveS2E three key abilities: to simultaneously
analyze entire families of execution paths, instead of justone exe-
cution at a time; to perform the analyses in-vivo within a real soft-
ware stack—user programs, libraries, kernel, drivers, etc.—instead
of using abstract models of these layers; and to operate directly on
binaries, thus being able to analyze even proprietary software.

Conceptually,S2E is an automated path explorer with modular
path analyzers: the explorer drives the target system down all ex-
ecution paths of interest, while analyzers check properties of each
such path (e.g., to look for bugs) or simply collect information (e.g.,
count page faults). Desired paths can be specified in multiple ways,
andS2E users can either combine existing analyzers to build a cus-
tom analysis tool, or write new analyzers using theS2E API.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]

General Terms Reliability, Verification, Performance, Security

1. Introduction
System developers routinely need to analyze the behavior ofwhat
they build. One basic analysis is tounderstand observed behavior,
such as why a given web server is slow on a SPECweb benchmark.
More sophisticated analyses aim tocharacterize future behaviorin
previously unseen circumstances, such as what will a web server’s
maximum latency and minimum throughput be, once deployed at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright © 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

a customer site. Ideally, system designers would also like to be
able to do quickwhat-if analyses, such as determining whether
aligning a certain data structure on a page boundary will avoid all
cache misses and thus increase performance. For small programs,
experienced developers can often reason through some of these
questions based on code alone. The goal of our work is to make it
feasible to answer such questions for large, complex, real systems.

We introduce in this paper a platform that enables easy con-
struction of analysis tools (such as oprofile, valgrind, bugfinders,
or reverse engineering tools) that simultaneously offer the follow-
ing three properties: (1) they efficiently analyze entire families of
execution paths; (2) they maximize realism by running the analy-
ses within a real software stack; and (3) they are able to directly
analyze binaries. We explain these properties below.

First, predictive analyses often must reason about entirefami-
lies of pathsthrough the target system, not just one path. For exam-
ple, security analyses must check that there exist no cornercases
that could violate a desired security policy; recent work has em-
ployed model checking [29] and symbolic execution [11] to find
bugs in real systems—these are all multi-path analyses. Oneof
our case studies demonstrates multi-path analysis of performance
properties: instead of profiling solely one execution path,we derive
performance envelopes that characterize the performance of entire
families of paths. Such analyses can check real-time requirements
(e.g., that an interrupt handler will never exceed a given bound on
execution time), or can help with capacity planning (e.g., deter-
mine how many web servers to provision for a web farm). In the
end, properties shown to hold forall paths constitute proofs, which
are in essence the ultimate prediction of a system’s behavior.

Second, an accurate estimate of program behavior often requires
taking into account thewhole environmentsurrounding the ana-
lyzed program: libraries, kernel, drivers, etc.—in other words, it
requires in-vivo1 analysis. Even small programs interact with their
environment (e.g., to read/write files or send/receive network pack-
ets), so understanding program behavior requires understanding the
nature of these interactions. Some tools execute the real environ-
ment, but allow calls from different execution paths to interfere
inconsistently with each other [12, 18]. Most approaches abstract
away the environment behind a model [2, 11], but writing abstract
models is labor-intensive (taking in some cases multiple person-
years [2]), models are rarely 100% accurate, and they tend tolose

1 In vivo is Latin for “within the living” and refers to experimentingusing
a whole live system;in vitro uses a synthetic or partial system. In life sci-
ences, in vivo testing—animal testing or clinical trials—is often preferred,
because, when organisms or tissues are disrupted (as in the case of in vitro
settings), results can be substantially less representative. Analogously, in-
vivo program analysis captures all interactions of the analyzed code with its
surrounding system, not just with a simplified abstraction of that system.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147969542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

accuracy as the modeled system evolves. It is therefore preferable
that target programs interact directly with their real environment
during analysis in a way that keeps multi-path analysis consistent.

Third, real systems are made up of many components from
various vendors; access to all corresponding source code israrely
feasible and, even when source code is available, building the code
exactly as in the shipped software product is difficult [5]. Thus, in
order to be practical, analyses ought to operatedirectly on binaries.

Scalability is the key challenge of performing analyses that are
in-vivo, multi-path, and operate on binaries. Going from single-
path analysis to multi-path analysis turns a linear probleminto an
exponential one, because the number of paths through a program
increases exponentially in the number of branches—the “path ex-
plosion” problem [7]. It is therefore not feasible today to execute
fully symbolically an entire software stack (programs, libraries,OS
kernel, drivers, etc.) as would be necessary if we wanted consistent
in-vivo multi-path analysis.

We describe in this paperS2E, a general platform for developing
multi-path in-vivo analysis tools that are practical even for large,
complex systems, such as an entire Windows software stack. First,
S2E simultaneously exercises entire families of execution paths in a
scalable manner by usingselectivesymbolic execution andrelaxed
execution consistency models. Second,S2E employs virtualization
to perform the desired analyses in vivo; this removes the need
for the stubs or abstract models required by most state-of-the-art
symbolic execution engines and model checkers [3, 11, 18, 29, 36].
Third, S2E uses dynamic binary translation to directly interpret x86
machine code, so it can analyze a wide range of software, including
proprietary systems, even if self-modifying or JITed, as well as
obfuscated and packed/encrypted binaries.

The S2E platform offers an automated path exploration mech-
anism and modular path analyzers. The explorer drives in parallel
the target system down all execution paths of interest, while ana-
lyzers check properties of each such path (e.g., to look for bugs)
or simply collect information (e.g., count page faults). Ananalysis
tool built on top ofS2E glues together path selectors with path ana-
lyzers.SelectorsguideS2E’s path explorer by specifying the paths
of interest: all paths that touch a specific memory object, paths in-
fluenced by a specific parameter, paths inside a target code module,
etc.Analyzerscan be pieced together fromS2E-provided analyzers,
or can be written from scratch using theS2E API.

S2E comes with ready-made selectors and analyzers that pro-
vide a wide range of analyses out of the box. The typicalS2E user
only needs to define in a configuration file the desired selector(s)
and analyzer(s) along with the corresponding parameters, start up
the desired software stack inside theS2E virtual machine, and run
theS2E launcher in the guestOS, which starts the desired applica-
tion and communicates with theS2E VM underneath. For example,
one may want to verify the code that handles license keys in a
proprietary program, such as Adobe Photoshop. The user installs
the program in theS2E Windows VM and launches the program
using s2e.exe C:\Program Files\Adobe\Photoshop. From inside
the guestOS, the s2e.exelauncher communicates withS2E via
custom opcodes (described in §4). In theS2E configuration file,
the tester may choose a memory-checker analyzer along with a
path selector that returns a symbolic string whenever Photoshop
reads HKEY LOCAL MACHINE\Software\Photoshop\LicenseKey
from the Windows registry.S2E then automatically explores the
code paths in Photoshop that are influenced by the value of the
license key and looks for memory safety errors along those paths.

Developing a new analysis tool withS2E takes on the order of
20-40 person-hours and a few hundredLOC. To illustrateS2E’s gen-
erality, we present here three very different tools built using S2E: a
multi-path in-vivo performance profiler, a reverse engineering tool,
and a tool for automatically testing proprietary software.

This paper makes the following four contributions:

• Selective symbolic execution, a new technique for automatic
bidirectional symbolic–concrete state conversion that enables
execution to seamlessly and correctly weave back and forth
between symbolic and concrete mode;

• Execution consistency models, a systematic way to reason
about the trade-offs involved in over/under-approximation of
paths in software system analyses;

• A general platform for performing diverse in-vivo multi-path
analyses in a way that scales to large real systems;

• The first use ofsymbolic execution in performance analysis.

In the rest of the paper, we describe selective symbolic execu-
tion (§2), execution consistency models (§3),S2E’s APIs for devel-
oping analysis tools (§4), theS2E prototype (§5), evaluation (§6),
related work (§7), and conclusions (§8).

2. Selective Symbolic Execution
In devising a way to efficiently exercise entire families of paths, we
were inspired by the successful use of symbolic execution [22] in
automated software testing [11, 18]. The idea is to treat a program
as a superposition of possible execution paths. For example, a
program that is all linear code except for one conditional statement
if (x>0) then ... else ...can be viewed as a superposition of two
possible paths: one forx>0 and another one forx≤0. To exercise
all paths, it is not necessary to try all possible values ofx, but rather
just one value greater than0 and one value less than0.

We unfurl this superposition of paths into asymbolic execution
tree, in which each possible execution corresponds to a path from
the root of the tree to a leaf corresponding to a terminal state. The
mechanics of doing so consist of marking variables as symbolic at
the beginning of the program, i.e., instead of allowing a variablex
to take on a concrete value (say,x=5), it is viewed as a superposi-
tion λ of all possible valuesx could take. Then, any time a branch
instruction is conditioned on a predicatep that depends (directly
or indirectly) onx, execution is split into two executionsEi and
Ek, two copies of the program’s state are created, andEi’s path
remembers that the variables involved inp must be constrained to
makep true, whileEj ’s path remembers thatp must be false.

The process repeats recursively:Ei may further split intoEii

andEik , and so on. Every execution of a branch statement creates
a new set of children, and thus what would normally be a linear
execution (if concrete values were used) now turns into a tree
of executions (since symbolic values are used). A nodes in the
tree represents a program state (a set of variables with formulae
constraining the variables’ values), and an edgesi → sj indicates
that sj is si’s successor on any path satisfying the constraints in
sj . Paths in the tree can be pursued simultaneously, as the tree
unfurls; since program state is copied, the paths can be explored
independently. Copy-on-write is used to make this process efficient.

S2E is based on the key observation that oftenonly somefami-
lies of paths are of interest. For example, one may want to exhaus-
tively explore all paths through a small program, but not care about
all paths through the libraries it uses or theOS kernel. This means
that, when entering that program,S2E should split executions to ex-
plore the various paths, but whenever it calls into some other part
of the system, such as a library, multi-path execution can cease and
execution can revert to single-path. Then, when execution returns
to the program, multi-path execution must be resumed.

Multi-path execution corresponds toexpandinga family of
paths by exploring the various side branches as they appear,while
switching to single-path mode corresponds tocorsetingthe family
of paths. In multi-path mode, the tree grows in width and depth; in

2

single-path mode, the tree only grows in depth. We thereforesay
S2E’s exploration of program paths iselastic. S2E turns multi-path
mode off whenever possible, to minimize the size of the execution
tree and include only paths that are of interest to the targetanalysis.

S2E’s elasticity of multi-path exploration is key in being able
to perform in-vivo multi-path exploration of programs inside com-
plex systems, like Windows. By combining elasticity with virtu-
alization,S2E offers the illusion of symbolically executing a full
software stack, while actually executing symbolically only select
components. For example, by concretely (i.e., non-symbolically)
executing libraries and theOSkernel,S2E allows a program’s paths
to be explored efficiently without having to model its surrounding
environment. We refer to this asselective symbolic execution.

Interleaving of symbolic execution phases with concrete phases
must be done carefully, to preserve the meaningfulness of each
explored execution. For example, say we wish to analyze a program
P in multi-path (symbolic) mode, but none of its librariesLi

are to be explored symbolically. IfP has a symbolic variablen
and callsstrncpy(dst,src,n) in Lk, S2E must convertn to
some concrete value and invokestrncpy with that value. This is
straightforward: solve the current path constraints with aconstraint
solver and get some legal value forn (sayn=5) and callstrncpy.
But what happens ton after strncpy returns? Variabledst will
containn=5 bytes, whereasn prior to the call was symbolic—can
n still be treated symbolically? The answer is yes, if done carefully.

In S2E, when a symbolic value is converted to concrete (n : λ→
5), the family of executions is corseted. When a concrete value is
converted to symbolic (n : 5 → λ), the execution family is allowed
to expand. The process of doing this back and forth is governed by
the rules of an execution consistency model (§3). For the above
example, one might require thatn be constrained to value5 in all
executions following the return fromstrncpy. However, doing so
may exclude a large number of paths from the analysis. In §3 we
describe systematic and safe relaxations of execution consistency.

We now describe the mechanics of switching back and forth
between multi-path (symbolic) and single-path (concrete)execu-
tion in a way that executions stay consistent. We know of no prior
symbolic execution engine that has the machinery to efficiently and
flexibly cross the symbolic/concrete boundary both back andforth.

Fig. 1 provides a simplified example of usingS2E: an applica-
tion appuses a librarylib on top of anOSkernel. The target analysis
requires to symbolically executelib, but notapp or kernel. Func-
tion appFn in the application calls a library functionlibFn, which
eventually invokes a system callsysFn. OncesysFnreturns,libFn
does some further processing and returns toappFn. After the exe-
cution crosses into the symbolic domain (shaded) from the concrete
domain (white), the execution tree (right side of Fig. 1) expands.
After the execution returns to the concrete domain, the execution
tree is corseted and does not add any new paths, until execution
returns to the symbolic domain. Some paths may terminate earlier
than others, e.g., due to hitting a bug in the program.

We now describe the two directions in which execution can
cross the concrete/symbolic boundary.

2.1 Concrete→ Symbolic Transition

WhenappFncalls libFn, it does so by using concrete arguments;
the simplest conversion is to use anS2E selector to change the
concrete arguments into symbolic ones, e.g., instead oflibFn(10)
call libFn(λ). One can additionally opt to constrainλ, e.g.,λ ≤ 15.

Once this transition occurs,S2E executeslibFn symbolically
using the (potentially constrained) argument(s) and simultaneously
executeslibFn with the original concrete argument(s) as well. Once
exploration oflibFn completes,S2E returns toappFnthe concrete
return value resulting from the concrete execution, butlibFn will
have been explored symbolically as well. In this way, the execution

app

app

lib

lib

kernel

libFn

sysFn

appFn
on
crerr t

et domain

sys

myy

bol
ic dom

ain

KERNEL

APP

LIB

Figure 1: Multi-path/single-path execution: three different modules (left)
and the resulting execution tree (right). Shaded areas represent the multi-
path (symbolic) execution domain, while the white areas aresingle-path.

of app is consistent, while at the same timeS2E exposes to the
analyzer plugins those paths inlib that are rooted atlibFn’s entry
point. The concrete domain is unaware oflibFn being executed in
multi-path mode. All paths execute independently, and it isup to
theS2E analyzer plugins to decide whether, besides observing the
concrete path, they also wish to look at the symbolic paths.

2.2 Symbolic→ Concrete Transition

Dealing with thelibFn→sysFncall is more complicated. SaylibFn
has the code shown in Fig. 2 and was called with an unconstrained
symbolic valuex∈(−∞,+∞). At the first if branch instruction,
execution forks into one path along whichx∈(−∞, 5) and another
path wherex∈[5,+∞). These expressions are referred to aspath
constraints, as they constrain the values thatx can take on a path.
Along the then-branch, a call tosysFn(x)must be made. This
requiresx to be concretized, sincesysFnis in the concrete domain.
Thus, we choose a value, sayx=4, that is consistent with the
x∈(−∞, 5) constraint and perform thesysFn(4)call. The path
constraints in the symbolic domain are updated to reflect that x=4.

void libFn(int x) {

 if (x<5) {

 buf=sysFn(x);

 if (x<0)

 ...

 }

}

x<5

x ∈ (−∞, +∞)

x ∈ (−∞, 5) x ∈ [5, +∞)

Path constraints

Figure 2: The top level inlibFn’s execution tree.

Note thatS2E actually employslazy concretization: it converts
the value ofx from symbolic to concrete on-demand, only when
concretely running code actually reads the value ofx. This is an
important optimization when doing in-vivo symbolic execution,
because a lot of data can be carried through the layers of the
software stack without conversion. For example, when a program
writes a buffer of symbolic data to the filesystem, there are usually
no branches in the kernel or the disk device driver that depend
on this data, so the buffer can pass through unconcretized and be
written in symbolic form to the virtual disk, from where it will
eventually be read back in its symbolic form. For the sake of clarity,
in this section we assume eager (non-lazy) concretization.

OncesysFncompletes, execution returns tolibFn in the sym-
bolic domain. Whenx was concretized prior to callingsysFn, the
x=4 constraint was automaticaly added to the path constraints—
sysFn’s return value is correct only under this constraint, because
all computation insysFnwas done assumingx=4. Furthermore,
sysFnmay also have had side effects that are equally intimately
tied to thex=4 constraint. With this constraint, execution oflibFn
can continue, and correctness is fully preserved.

3

The problem, however, is that this constraint corsets the family
of future paths that can be explored from this point on:x can no
longer take on all values in(−∞, 5) so, when we subsequently
get to the branchif (x<0) ..., the then-branch will no longer be
feasible due to the addedx=4 constraint. This is referred to as
“overconstraining”: the constraint is not introduced by features
of libFn’s code, but rather as a result of concretizingx to call
into the concrete domain. We think ofx=4 as a soft constraint
imposed by the symbolic/concrete boundary, whilex∈(−∞, 5) is
a hard constraint imposed bylibFn’s code. Whenever a branch in
the symbolic domain is disabled because of a soft constraint, it is
possible to go back in the execution tree and pick an additional
value for concretization, fork another subtree, and repeatthesysFn
call in a way that would enable that branch. As explained later, S2E
can track branch conditions in the concrete domain, which helps
redo the call in a way that re-enables subsequent branches.

The “overconstraining” problem has two components: (a) the
loss of paths that results directly from the concretizationof x, and
(b) the loss of paths that results indirectly via the constrained return
value and side effects. Due to the fact thatS2E implementsVM state
in a way that is shared between the concrete and symbolic domain
(more details in §5), return values and side effects can be treated
using identical mechanisms. We now discuss how the constraints
are handled under different consistency models.

3. Execution Consistency Models
The traditional assumption about system execution is that the state
at any point in time is consistent, i.e., there exists a feasible path
from the start state to the current state. However, there aremany
analyses for which this assumption is unnecessarily strong, and the
cost of providing such consistency during multi-path exploration
is often prohibitively high. For example, when doing unit testing,
one typically exercises the unit in ways that are consistentwith the
unit’s interface, without regard to whether all those pathsare indeed
feasible in the integrated system. This is both because testing the
entire system in a way that exercises all paths through the unit is
too expensive, and because exercising the unit as describedabove
offers higher confidence in its correctness in the face of future use.

S2E aims to be a general platform for system analyses, so it
provides several levels of execution consistency, to enable users to
make the best trade-offs. In this section, we take a first stepto-
ward systematically defining alternate execution consistency mod-
els (§3.1), after which we explain how these different models dic-
tate the symbolic/concrete conversions applied during theback-
and-forth transition between the analyzed code and its environ-
ment (§3.2). In §3.3 we survey some of the ways in which con-
sistency models are implemented in existing analysis tools.

3.1 Model Definitions

The key distinction between the various execution consistency
models is which execution paths each model admits. Choosing
an appropriate consistency model is a trade-off between how“re-
alistic” the admitted paths are vs. the cost of enforcing themodel.
The appropriateness of the trade-off is determined by the nature of
the analysis, i.e., by the way in which feasibility of different paths
affects completeness and soundness of the analysis.

In the rest of the paper, we use the termsystemto denote the
complete software system under analysis, including the application
programs, libraries, and the operating system. We use the term unit
to denote the part of the system that is to be analyzed. A unit could
encompass different parts of multiple programs, libraries, or even
parts of the operating system itself. We use the termenvironmentto
denote everything in the system except the unit. Thus, the system
is the sum of the environment and the unit to be analyzed.

gl
obally

lo

ca
lly feasible

st
atically feasible

f

e
a s i b

l
e

When defining a model, we think in
terms of which paths it includes vs. ex-
cludes. Following the Venn diagram on
the right, an execution path can bestati-
cally feasible, in that there exists a path
in the system’s inter-procedural control
flow graph (CFG) corresponding to the
execution in question. A subset of the
statically feasible paths arelocally feasi-
ble in the unit, in the sense that the execution is consistent with both
the system’s CFG and with the restrictions on control flow imposed
by the data-related constraints within the unit. Finally, asubset of
locally feasible paths isglobally feasible, in the sense that their
execution is additionally consistent with control flow restrictions
imposed by data-related constraints in the environment. Observing
only the code executing in the unit, with no knowledge of codein
the environment, it is impossible to tell apart locally feasible from
globally feasible paths.

We say that a model iscompleteif every path through the unit
that corresponds to some globally feasible path through thesystem
will eventually be discovered by exploration done under that model.
A model isconsistentif, for every path through the unit admissible
by the model, there exists a corresponding globally feasible path
through the system (i.e., the system can run concretely in that way).

We now define six points that we consider of particular inter-
est in the space of possible consistency models, progressing from
strongest to weakest consistency. They are summarized in Fig. 3
using a representation corresponding to the Venn diagram above.
Their completeness and consistency are summarized in Table1.
We invite the reader to follow Fig. 3 while reading this section.

3.1.1 Strict Consistency (SC)

The strongest form of consistency is one that admits only the
globally consistent paths. For example, the concrete execution of a
program always obeys the strict consistency (SC) model. Moreover,
every path admitted under theSCmodel can be mapped to a certain
concrete execution of the system starting with certain concrete
inputs. Sound analyses produce no false positives underSC.

We define three subcategories ofSCbased on what information
is taken into account when exploring new paths.

Strictly Consistent Concrete Execution (SC-CE): Under theSC-
CE model, the entire system is treated as a black box: no internal
information is used to explore new paths. The only explored paths
are the paths that the system follows when executed with the sample
input provided by the analysis. New paths can only be explored by
blindly guessing new inputs. Classic fuzzing (random inputtesting)
falls under this model.

Strictly Consistent Unit-level Execution (SC-UE): Under theSC-
UE model, an exploration engine is allowed to gather and use
information internal to the unit (e.g., by collecting path constraints
while executing the unit). The environment is still treatedas a black
box, i.e., path constraints generated by environment code are not
tracked. Not every globally feasible path can be found with such
partial information (e.g., paths that are enabled by branches in the
environment can be missed). However, the exploration engine saves
time by not having to analyze the environment, which is typically
orders of magnitude larger than the unit.

This model is widely used by symbolic and concolic execution
tools [11, 12, 18]. Such tools usually instrument only the program
but not the operating system code (sometimes such tools replace
parts of theOS by models, effectively adding a simplified version
of it as a part of the program). Whenever such tools see a call
to the OS, they execute the call uninstrumented, selecting some
concrete arguments for the call. Such “blind” selection of concrete

4

+ relax constraints at unit/

environment boundary con-

sistently with environment

 interface specification

+ arbitrarily relax

 constraints at

 unit/environment

 boundary

+ arbitrarily relax

 constraints

 anywhere

+ more inputs

based on knowl-

edge of constraints

from within the unit

+ more inputs

based on knowl-

edge of constraints

from environment

SC-CE
Strictly consistent

concrete execu�on

SC-UE
Strictly consistent

unit-level execu�on

SC-SE
Strictly consistent

system-level execu�on

LC
Local consistency

RC-OC
Overapproximate consistency

RC-CC
CFG consistency

Figure 3: Different execution consistency models cover different sets of
feasible paths. The SC-CE model corresponds to the concreteexecution.
The SC-UE and SC-SE models are obtained from the previous ones by
using increasingly more information about the system execution to explore
new states. The LC, RC-OC and RC-CC models are obtained through
progressive relaxation of constraints.

arguments might cause some paths through the unit to be missed, if
they depend on unexplored environment behaviors.

Strictly Consistent System-level Execution (SC-SE): Under the
SC-SEmodel, an exploration engine gathers and uses information
about all parts of the system, to explore new paths through the unit.
Such exploration is not only sound but also complete, provided that
the engine can solve all constraints it encounters. In otherwords,
every path through the unit that is possible under a concreteexecu-
tion of the system will be eventually found bySC-SEexploration,
makingSC-SEthe only model that is both strict and complete.

However, the implementation ofSC-SE is limited by the path
explosion problem: the number of globally feasible paths isroughly
exponential in the size of the whole system. As the environment
is typically orders of magnitude larger than the unit, including its
code in the analysis (as would be required underSC-SE) offers an
unfavorable trade-off given today’s technology.

3.1.2 Local Consistency (LC)

The local consistency (LC) model aims to combine the performance
advantages ofSC-UEwith the completeness advantages ofSC-SE.
The idea is to avoid exploring all paths through the environment,
yet still explore the corresponding path segments in the unit by re-
placing the results of (some) calls to the environment with symbolic
values that represent any possible valid result of the execution.

For example, when a unit (such as a user-mode program) in-
vokes thewrite(fd, buf, count) system call of aPOSIX OS,
the return value can be any integer between -1 andcount, depend-
ing on the state of the system. The exploration engine can discard
the actual concrete value returned by theOS and replace it with
a symbolic integer between -1 andcount. This allows exploring
all paths in the unit that are enabled by different return values of
write, without analyzing thewrite function and having to find
concrete inputs to the overall system that would enable those paths.
This however introduces global inconsistency—for instance, there
exists no concrete execution in whichcount bytes are written to
the file and thewrite system call returns 0. However, unless the
unit explicitly checks the file (e.g., by reading its content) this does
not matter: the inconsistency cannot yield locally infeasible paths.

In other words, theLC model allows for inconsistencies in
the environment, while keeping the state of the unit internally
consistent. To preserveLC, an exploration engine must track the

propagation of inconsistencies inside the environment andabort
an execution path as soon as these inconsistencies influencethe
internal state of the unit on that path.

This keeps the internal state of the unit internally consistent on
all explored paths: for each explored path, there exists some con-
crete execution of the system that would lead to exactly the same
internal state of the unit along that path—except the enginedoes not
need to incur the cost of actually finding that path. Consequently,
any sound analysis that takes into account only the internalstate of
the unit produces no false positives under theLC model. For this
reason, we call theLC model “locally consistent.”

The set of paths explored under this model corresponds to the
set of locally feasible paths, as defined earlier. However, some paths
could be aborted before completion, or even be missed completely,
due to the propagation of inconsistencies. This means that the LC
model is not complete. In practice, the less a unit interactswith its
environment, the fewer such paths are aborted or missed.

Technically speaking, theLC model is inconsistent, thus it ought
to be a sub-model of theRC model, described next. However, since
the LC model is equivalent to aSC model for a large class of
analyses, we devoted to it an independent category.

3.1.3 Relaxed Consistency (RC)

Under relaxed consistency (RC), all paths through the unit are
admitted, even those that are not allowed by theSCandLC models.
TheRC model is therefore inconsistent in the general case.

The main advantage ofRC is performance: by admitting these
additional infeasible paths, one can avoid having to analyze large
parts of the system that are not really targets of the analysis, thus al-
lowing path exploration to reach the true target code sooner. How-
ever, admitting locally infeasible paths (i.e., allowing the internal
state of the unit to become inconsistent) makes most analyses prone
to false positives, because some of the paths these analysesare ex-
posed to cannot be produced by any concrete run.

This might be acceptable if the analysis is itself unsound any-
way, or if the analysis only relies on a subset of the state that can be
easily kept consistent (in some sense, this is likeLC, except that the
subset of the state to be kept consistent may not be the unit’sstate).
Also note that, even thoughRC admits more paths, thus producing
more analysis work, analyses underRC can abort early those paths
that turn out to be infeasible, or the accuracy of the analysis can be
decreased, thus preserving the performance advantage.

We distinguish two subcategories of theRC model, both of
which we found to be useful in practice.

Overapproximate Consistency (RC-OC): In the RC-OC model,
path exploration can follow paths through the unit while completely
ignoring the constraints that the environment/unitAPI contracts
impose on return values and side effects. For example, the unit may
invoke write(fd, buf, count), and theRC-OC model would
permit the return result to be larger thancount, which violates the
specification of thewrite system call. Under the previous model
(local consistency), such paths would be disallowed. Even though
it is not consistent,RC-OCis complete: every environment behavior
is admitted underRC-OC, so every path in the unit corresponding
to some real environment behavior is admitted too.

The RC-OCmodel is useful, for example, for reverse engineer-
ing. It enables efficient exploration of all behaviors of theunit that
are possible in a valid environment, plus some additional behav-
iors that are possible only when the environment behaves outside
its specification. For instance, when reverse engineering adevice
driver, theRC-OC model allows symbolic hardware [23] to return
unconstrained values; in this way, the resulting reverse engineered
paths include some of those that correspond to allegedly impossible
hardware behaviors. Such overapproximation improves the quality
of the reverse engineering, as explained in [13].

5

Model ConsistencyCompleteness Use Case
SC-CE consistent incomplete Single-path profiling/testing of units

that have a limited number of paths
SC-UE consistent incomplete Analysis of units that generate hard-

to-solve constraints (e.g., crypto-
graphic code)

SC-SE consistent complete Sound and complete verification
without false positives or negatives;
testing of tightly coupled systems
with fuzzy unit boundaries.

LC locally con-
sistent

incomplete Testing/profiling while avoiding false
positives from the unit’s perspective

RC-OCinconsistentcomplete Reverse engineering: extract consis-
tent path segments

RC-CC inconsistentcomplete Dynamic disassembly of a poten-
tially obfuscated binary

Table 1: S2E consistency models: completeness, consistency and use cases.
Each use case is assigned to the weakest model it can be accomplished with.

CFG Consistency (RC-CC): In theRC-CCmodel, the exploration
engine is allowed to change any part of the system state, as long
as the explored execution paths correspond to paths in the unit’s
inter-procedural control flow graph. This roughly corresponds
to the consistency provided by static program analyzers that are
dataflow-insensitive and analyze completely unconstrained paths.
Being strictly weaker than theSC-SEmodel, though using the same
information to explore new paths, theRC-CCmodel is complete.

TheRC-CCmodel is useful in disassembling obfuscated and/or
encrypted code: after letting the unit code decrypt itself under anLC
model (thus ensuring the correctness of decryption), a disassembler
can switch to theRC-CC model to reach high coverage of the
decrypted code and quickly disassemble as much of it as possible.

3.2 Implementing Consistency Models

We now explain how the consistency models can be implemented
by a selective symbolic execution engine (SSE), by describing the
specifics of symbolic↔ concrete conversion as execution goes
from the unit to the environment and then back again.

We illustrate the different implementations with the example of
a kernel-mode device driver (Fig. 4). The driver reads and writes
from/to hardwareI/O ports and calls thewrite usb function,
which is implemented in a kernel-modeUSB library, as well as
alloc, implemented by the kernel itself.

 int send_packet(buffer, size) {

1. packet *pkt;

2. status = alloc(&pkt, size);

3. if (status==FAIL) {

4. assert(pkt==NULL);

5. return;

6. }

 ...

7. if (read_port(STATUS)==READY)

8. if (!write_usb(pkt))

9. return FAIL;

}

int write_usb(pkt) {

 if (usb_ready())

 return do_send(pkt);

 return 0;

}

Unit

EnvironmentDRIVER

USBLIB

KERNEL

int alloc (*ptr, size) {

 ...

}

Figure 4: Example of a “unit” (device driver) interacting with the “environ-
ment” (kernel-mode library and OS kernel itself).

3.2.1 Implementing Strict Consistency (SC)

Strictly Consistent Concrete Execution (SC-CE): For this model,
anSSEallows only concrete input to enter the system. This leads to
executing a single path through the unit and the environment. The
SSEcan execute the whole system natively without having to track
or solve any constraints, because there is no symbolic data.

Strictly Consistent Unit-level Execution (SC-UE): To implement
this model, theSSEconverts all symbolic data to concrete values
when the unit calls the environment. The conversion is consistent
with the current set of path constraints in the unit. No otherconver-
sion is performed. The environment is treated as a black box,and
no symbolic data can flow into it.

In the example of Fig. 4, theSSE concretizes the content of
packetpkt when callingwrite usb and, from there on, this soft
constraint (see §2.2) is treated as a hard constraint on the content
of pkt. The resulting paths trough the driver are globally feasible
paths, but exploration is not complete, because treating the con-
straint as hard can curtail globally feasible paths during the explo-
ration of the driver (e.g., paths that depend on the packet type).

Strictly-Consistent System-level Execution (SC-SE): Under SC-
SE, theSSElets symbolic data cross the unit/environment boundary,
and the entire system is executed symbolically. This preserves
global execution consistency.

Consider thewrite usb function: This function gets its input
from the USB host controller. Under strict consistency, theUSB
host controller (being “outside the system”) can return a symbolic
value, which in turn propagates through theUSB library, eventually
causingusb ready to return a symbolic value as well.

Path explosion due to a large environment can makeSC-SEhard
to use in practice. The paths that go through the environmentcan
substantially outnumber those that go through the unit, possibly de-
laying the exploration of interest. AnSSEcan heuristically priori-
tize the paths to explore, or employincremental symbolic execution
to execute parts of the environment as much as needed to discover
interesting paths in the unit quicker. We describe this next.

The execution ofwrite usb proceeds as if it was executed
symbolically, but only one globally feasible path is pursued in a
depth-first manner, while all other forked paths are stored in a
wait list. This simulates a concrete, single-path execution through
a symbolically executing environment. After returning tosend
packet, the path being executed carries the constraints that were
accumulated in the environment, and symbolic execution continues
in send packet as if write usb had executed symbolically. The
return valuex of write usb is constrained according to the depth-
first path pursued in theUSB library, and so are the side effects.
If, while executingsend packet, a branch that depends onx
becomes infeasible due to the constraints imposed by the call to
write usb, theSSEreturns to the wait list and resumes execution
of a wait-listed path that, e.g., is likely to eventually execute line 9.

3.2.2 Implementing Local Consistency (LC)

ForLC, anSSEconverts, at the unit/environment boundary, the con-
crete values generated by the environment into symbolic values that
satisfy the constraints of the environment’sAPI. This enables multi-
path exploration of the unit. In Fig. 4,SSEwould turnalloc’s re-
turn valuev into a symbolic valueλret∈{v, FAIL} andpkt into a
symbolic pointer, while ensuring thatλret=FAIL ⇒ pkt=null, so
that thealloc API contract is always upheld.

If symbolic data is written by the unit to the environment, the
SSE must track its propagation. If a branch in the environment
ever depends on this data, theSSEmust abort that execution path,
because the unit may have derived that data based on (symbolified)
input from the environment that subsumed values the environment
could not have produced in its state at the time.

From the driver’s perspective, the global state may seem incon-
sistent, since the driver is exploring a failure path when nofail-
ure actually occurred. However, this inconsistency has no effect on
the execution, as long as theOS does not make assumptions about
whether or not buffers are still allocated after the driver’s failure.
LC would have been violated had theOSread the symbolic value of
pkt, e.g., if the driver stored it in anOSdata structure.

6

3.2.3 Implementing Relaxed Consistency (RC)

Overapproximate Consistency (RC-OC): In this model, theSSE
converts concrete values at unit/environment interface boundaries
into unconstrained symbolic values that disregard interface con-
tracts. For example, when returning fromalloc, both pkt and
status become completely unconstrained symbolic values.

This model brings completeness at the expense of substantial
overapproximation. No feasible paths are ever excluded from the
symbolic execution ofsend packet, but sincepkt andstatus
are completely unconstrained, there could be locally infeasible
paths when exploringsend packet after the call toalloc.

As an example, note thatalloc is guaranteed to setpkt to null
whenever it returnsFAIL, so theassert on line 4 should normally
never fail. Nevertheless, underRC-OC, bothstatus on line 3 and
pkt on line 4 are unconstrained, so both outcomes of theassert
statement are explored, including the infeasible one. Under stronger
consistency models, likeLC, pkt must be null ifstatus==FAIL.

CFG Consistency (RC-CC): An SSE can implementRC-CC by
pursuing all outcomes of every branch, regardless of path con-
straints, thus following all edges in the unit’s inter-procedural CFG.
UnderRC-CC, exploration is fast, because branch feasibility need
not be checked with a constraint solver. As mentioned earlier, one
use case is a dynamic disassembler, where running with stronger
consistency models may leave uncovered (i.e., non-disassembled)
code. ImplementingRC-CC may require program-specific knowl-
edge, to avoid exploring non-existing edges, as in the case of an
indirect jump pointing to an unconstrained memory location.

3.3 Consistency Models in Existing Tools

We now illustrate some of the consistency models by surveying
example tools that implement such execution consistency.

Most dynamic analysis tools use theSC-CEmodel. Examples
include Valgrind [38] and Eraser [33]. These tools execute and
analyze programs along a single path, generated by user-specified
concrete input values. Being significantly faster than multi-path
exploration, analyses performed by such tools are, for instance,
useful to characterize or explain program behavior on a small set
of developer-specified paths (i.e., test cases). However, such tools
cannot provide any confidence that results of the analyses extend
beyond the concretely explored paths.

Dynamic test case generation tools usually employ either the
SC-UEor theSC-SEmodels. For example,DART [18] usesSC-UE:
it executes the program concretely, starting with random inputs,
and then instruments the code to collect path constraints oneach
execution.DART uses these constraints to produce new concrete
inputs that would drive the program along a different path onthe
next run. However,DART does not instrument the environment
and hence cannot use information from it when generating new
concrete inputs, thus missing feasible paths as indicated by SC-UE.

As another example,KLEE [11] uses either theSC-SEor a form
of the SC-UE model, depending on whether the environment is
modeled or not. In the former case, both the unit and the modelof
the environment are executed symbolically. In the latter case, when-
ever the unit calls the environment,KLEE executes the environment
with concrete arguments. However,KLEE does not track the side
effects of executing the environment, allowing them to propagate
across otherwise independent execution paths, thus makingthe cor-
responding program states inconsistent. Due to this limitation, we
cannot sayKLEE implements preciselySC-UEas we defined it.

Static analysis tools usually implement some forms of theRC
model. For example,SDV [2] converts a program into a boolean
form, which is an over-approximation of the original program.
Consequently, every path that is feasible in the original program
would be found bySDV, but it also finds additional infeasible paths.

4. System Analysis with S2E
S2E is a platform for rapid prototyping of custom system analy-
ses. It offers two key interfaces: theselectioninterface, used to
guide the exploration of execution paths (and thus implement ar-
bitrary consistency models), and theanalysisinterface, used to col-
lect events or check properties of execution paths. Both interfaces
accept modular selection and analysis plugins. Underneaththe cov-
ers,S2E consists of a customized virtual machine, a dynamic binary
translator (DBT), and an embedded symbolic execution engine, as
shown in Fig. 5. TheDBT decides which guest machine instructions
to execute concretely on the physicalCPUvs. which ones to execute
symbolically using the embedded symbolic execution engine.

S2E provides many plugins out of the box for building custom
analysis tools—we describe these plugins in §4.1. One can also
extendS2E with new plugins, usingS2E’s developerAPI (§4.2).

4.1 User Interface

Path Selection: The first step in usingS2E is deciding on a policy
for which part of a program to execute in multi-path (symbolic)
mode vs. single-path (concrete) mode; this policy is encoded in
a selector.S2E provides a default set of selectors for the most
common types of selection. They fall into three categories:

Data-based selectionprovides a way to expand an execution
path into a multi-path execution by introducing symbolic values
into the system; then, any timeS2E encounters a branch predi-
cate involving a symbolic value, it will fork the execution accord-
ingly. Symbolic data can enter the system from various sources,
andS2E provides a selector for each:CommandLinefor symbolic
command-line arguments,Environmentfor shell environment vari-
ables,MSWinRegistryfor Microsoft Windows registry entries, etc.

Often it is useful to introduce a symbolic value at an internal in-
terface. For example, say a server program calls a library function
libFn(x) almost always withx=10, but may call it withx < 10
in strange corner cases that are hard to induce via external work-
loads. The developer might therefore be interested in exploring the
behavior oflibFn for all values0 ≤ x ≤ 10. For such analyses,
we provide anAnnotationplugin, which allows direct injection of
custom-constrained symbolic values anywhere they are needed.

Code-based selectionenables/disables multi-path execution de-
pending on whether the program counter is or not within a target
code area; e.g., one might focus cache profiling on a web browser’s
SSL code, to see if it is vulnerable to side channel attacks. The
CodeSelectorplugin takes the name of the target program, library,
driver, etc. and a list of program counter ranges. Each such range
can be an inclusion or an exclusion range, indicating that code
within that range should be explored in multi-path mode or single-
path mode, respectively.CodeSelectoris typically used in conjunc-
tion with data-based selectors to constrain the data-selected multi-
path execution to within only code of interest.

Priority-based selectionis used to define the order in which
paths are explored within the family of paths defined with data-
based and code-based selectors.S2E includes basic ones, such as
Random, DepthFirst, andBreadthFirst, as well as others. TheMax-
Coverageselector works in conjunction with coverage analyzers to
heuristically select paths that maximize coverage. ThePathKiller
selector monitors the executed program and deletes paths that are
determined to no longer be of interest to the analysis. For example,
paths can be killed if a fixed sequence of program counters repeats
more thann times; this avoids getting stuck in polling loops.

Path Analysis: Once the selectors define a family of paths,
S2E executes these paths and exposes each one of them to the
analyzer plugins. One class of analyzers are bug finders, such as
DataRaceDetectorandMemoryChecker, which look for the corre-
sponding bug conditions and output an execution path leading to

7

the encountered bug. Another type of analyzer isExecutionTracer,
which selectively records the instructions executed alonga path,
along with the memory accesses, register values, and hardware I/O.
Tracing can be used for many purposes, including measuring cover-
age offline. Finally, thePerformanceProfileanalyzer counts cache
misses,TLB misses, and page faults incurred along each path—this
can be used to obtain the performance envelope of an application,
and we describe it in more detail in the evaluation section (§6).

While most plugins areOS-agnostic,S2E also includes a set
of analyzers that expose Windows-specific events using undoc-
umented interfaces or other hacks. For example,WinDriverMon
parses and monitorsOS-private data structures and notifies other
plugins when the Windows kernel loads a driver. TheWinBugCheck
plugin catches “blue screen of death” events and kernel hangs.

4.2 Developer Interface

We now describe the interface that can be used to write new plugins
or to extend the default plugins described above. Both selectors
and analyzers use the same interface; the only distinction between
selectors and analyzers is that selectors influence the execution of
the program, whereas analyzers are passive observers.S2E also
allows writing of plugins that arbitrarily modify the execution state.

S2E has a modular plugin architecture, in which plugins com-
municate via events in a publish/subscribe fashion.S2E events are
generated either by theS2E platform or by other plugins. To register
for a class of events, a plugin invokesregEventX(callbackPtr); the
event callback is then invoked every timeEventXoccurs. Callbacks
have different parameters, depending on the type of event.

Table 2 shows thecore eventsexported byS2E that arise from
regular code translation and execution. We chose these coreevents
because they correspond to the lowest possible level of abstraction
of execution: instruction translation, execution, memoryaccesses,
and state forking. It is possible to build diverse state manipulation
and analyses on top of them, as we will show in the evaluation.

The ExecState object captures the current state of the entire vir-
tual machinealong a specific individual path. It is the first param-
eter of every event callback.ExecStategives plugins read/write ac-
cess to the entireVM state, including the virtualCPU, VM physical
memory, and virtual devices. Plugins can also toggle multi-path ex-
ecution and read/writeVM memory and registers (see Table 3 for
a short list ofExecStateobject methods). A plugin can obtain the
PID of the running process from the page directory base register,
can read/write page tables and physical memory, can change the
control flow by modifying the program counter, and so on.

For each path being explored, there exists a distinctExecState
object instance; when execution forks, each child execution re-
ceives its own private copy of the parentExecState. Aggressive use
of copy-on-write reduces the memory overhead substantially (§5).

Plugins partition their own state into per-path state (e.g., number
of cache misses along a path) and global state (e.g., total number of
basic blocks touched). The per-path state is stored in aPluginState
object, which hangs off of theExecStateobject.PluginStatemust
implement aclonemethod, so that it can be cloned together with
ExecStatewheneverS2E forks execution. Global plugin state can
live in the plugin’s own heap.

The dynamic binary translator (DBT) turns blocks of guest code
into corresponding host code; for each block of code this is typi-
cally done only once. During the translation process, a plugin may
be interested in marking certain instructions (e.g., function calls)
for subsequent notification. It registers foronInstrTranslationand,
when notified, it inspects theExecStateto see which instruction
is about to be translated; if it is of interest (e.g., aCALL instruc-
tion), the plugin marks it. Whenever theVM executes a marked
instruction, it raises theonInstrExecutionevent, which notifies the
registered plugin. For example, theCodeSelectorplugin is imple-

onInstrTranslation DBT is about to translate a machine instruction
onInstrExecution VM is about to execute a marked instruction
onExecutionFork S2E is about to fork execution
onException The VM interrupt pin has been asserted
onMemoryAccess VM is about to execute a memory access

Table 2: Core events exported by the S2E platform.

multiPathOn/Off() Turn on/off multi-path execution
readMem(addr) Read contents of memory at addressaddr
writeReg(reg, val) Write val (symbolic or concrete) toreg
getCurBlock() Get currently executing code block from DBT
raiseInterrupt(irq) Assert the interrupt line forirq

Table 3: A subset of theExecStateobject’s interface.

mented as a subscriber toonInstrTranslationevents; upon receiv-
ing an event, it marks the instruction depending on whether it is
or not an entry/exit point for a code range of interest. Having the
onInstrTranslationandonInstrExecutionevents separate leverages
the fact that each instruction gets translated once, but mayget exe-
cuted millions of times, as in the body of a loop. For most analyses,
onInstrTranslationends up being raised so rarely that using it intro-
duces no runtime overhead (e.g., catching the kernel panic handler
requires instrumenting only the first instruction of that handler).

S2E opcodes are custom guest machine instructions that are
directly interpreted byS2E. These form an extensible set of opcodes
for creating symbolic values (S2SYM), enabling/disabling multi-
path execution (S2ENA andS2DIS) and logging debug information
(S2OUT). They give developers the finest grain control over multi-
path execution and analysis; they can be injected into the target
code manually or using binary instrumentation tools likePIN [27].
In practice, opcodes are the easiest way to mark data symbolic and
get started withS2E, without involving any plugins.

The interface presented here was sufficient for all the multi-path
analyses we attempted withS2E. Selectors can enable or disable
multi-path execution based on arbitrary criteria and can manipulate
machine state. Analyzers can collect information about low-level
hardware events all the way up to program-level events, theycan
probe memory to extract any information they need, and so on.

5. S2E Prototype
The S2E platform prototype (Fig. 5) reuses parts of theQEMU
virtual machine [4], theKLEE symbolic execution engine [11], and
theLLVM tool chain [25]. To these, we added 23KLOC of C++ code
written from scratch, not including third party libraries2. We added
1 KLOC of new code toKLEE and modified 1.5KLOC; in QEMU,
we added 1.5KLOC of new code and modified 3.5KLOC of existing
code.S2E currently runs on Mac OS X, Microsoft Windows, and
Linux, it can execute any guestOS that runs on x86, and can be
easily extended to otherCPUarchitectures, like ARM or PowerPC.
S2E can be downloaded fromhttp://s2e.epfl.ch.

S2E explores paths by running the target system in a virtual ma-
chine and selectively executing small parts of it symbolically. De-
pending on which paths are desired, some of the system’s machine
instructions are dynamically translated within theVM into an inter-
mediate representation suitable for symbolic execution, while the
rest are translated to the host instruction set. Underneaththe cov-
ers, S2E transparently converts data back and forth as execution
weaves between the symbolic and concrete domains, so as to offer
the illusion that the full system (OS, libraries, applications, etc.) is
executing in multi-path mode.

S2E mixes concrete with symbolic execution in the same path by
using a representation of machine state that is shared between the
VM and the embedded symbolic execution engine.S2E shares the

2 All reported LOC measurements were obtained with SLOCCount[39].

8

real
CPU

real phys
memory

real
devices

virtual
CPU

VM phys
memory

virtual
devices

symbolic
execu on

user-defined
analyzers

analyzers
S E stock2

user-defined
selectors

selectors
S E stock2

drivers

libraries

opera ng system
kernel

applica onsselec�on
interface

analysis
interface

QEMU KLEE

LLVM
binary

transla on

dynamic

Figure 5: S2E architecture, centered around a custom VM.

state by redirecting reads and writes fromQEMU andKLEE to the
common machine state—VM physical memory, virtualCPU state,
and virtual device state. In this way,S2E can transparently convert
data between concrete and symbolic and provide distinct copies of
the entire machine state to distinct paths.S2E reduces the memory
footprint of all these states using copy-on-write optimizations.

In order to achieve transparent interleaving of symbolic and
concrete execution, we modifiedQEMU’s DBT to translate the in-
structions that depend on symbolic data toLLVM and dispatch them
to KLEE. Most instructions, however, run “natively”; this is the case
even in the symbolic domain, because most instructions do not op-
erate on symbolic state. We wrote an x86-to-LLVM back-end for
QEMU, so neither the guestOS nor KLEE are aware of the x86
to LLVM translation.S2E redirects all guest physical memory ac-
cesses, includingMMIO devices, to the shared memory state object.

BesidesVM physical memory,S2E must also manage the in-
ternal state of the virtual devices when switching between execu-
tion paths.S2E usesQEMU’s snapshot mechanism to automatically
save and restore virtual devices andCPUstates when switching ex-
ecution states. The shared representation of memory and device
state between the concrete and symbolic domains enablesS2E to
do on-demand concretization of data that is stored as symbolic. A
snapshot can range from hundreds ofMBs toGBs; we use aggres-
sive copy-on-write to transparently share common state between
snapshots of physical memory and disks. Some state need not be
saved—for example, we do not snapshot video memory, so all paths
share the same frame buffer. As an aside, this makes for intriguing
visual effects on-screen: multiple erratic mouse cursors andBSODs
blend chaotically, providing free entertainment to theS2E user.

Interleaved concrete/symbolic execution and copy-on-write are
transparent to the guestOS, so all guestOSes can run out of the box.
Sharing state betweenQEMU and KLEE allows the guest to have
a view of the system that is consistent with the chosen execution
consistency model. It also makes it easy to replay executionpaths
of interest, e.g., to replay a bug found by a bug-detection analyzer.

Conversion from x86 toLLVM gives rise to complex symbolic
expressions.S2E sees a lower level representation of the programs
than what would be obtained by compiling source code toLLVM
(as done inKLEE): it actually sees the code that simulates the exe-
cution of the original program on the targetCPUarchitecture. Such
code typically contains many bitfield operations (such asand/or,
shift, masking to extract or set bits in theeflags register).

We therefore implemented a bitfield-theory expression simpli-
fier to optimize these expressions. We rely on the observation that,
if parts of a symbolic variable are masked away by bit operations,
removing those bits can simplify the corresponding expressions.
First, the simplifier starts from the bottom of the expression (repre-
sented as a tree) and propagates information about individual bits
whose value is known. If all bits in an expression are known, we
replace it with the corresponding constant. Second, the simplifier

propagates top-down information about bits that are ignored by the
upper parts of the expression—when an operator modifies onlybits
that are ignored later, the simplifier removes that entire operation.

Symbolic expressions can also appear in pointers (e.g., as ar-
ray indices or jump tables generated by compilers for switchstate-
ments). When a memory access with a symbolic pointer occurs,
S2E determines the pages referenced by the pointer and passes their
contents to the constraint solver. Alas, large page sizes can bottle-
neck the solver, soS2E splits the memory into small pages of con-
figurable size (e.g., 128 bytes), so that the constraint solver need
not reason about large areas of symbolic memory. In §6.2 we show
how much this helps in practice.

Finally, S2E must carefully handle time. Each system state has
its own virtual time, which freezes when that state is not being run
(i.e., is not in an actively explored path). Since running code sym-
bolically is slower than native,S2E slows down the virtual clock
when symbolically executing a state. If it didn’t do this, the (rel-
atively) frequentVM timer interrupts would overwhelm execution
and prevent progress.S2E also offers an opcode to completely dis-
able interrupts for a section of code, to further reduce the overhead.

6. Evaluation
S2E’s main goal is to enable rapid prototyping of useful, deep sys-
tem analysis tools. In this vein, our evaluation ofS2E aims to an-
swer three key questions: IsS2E truly a general platform for build-
ing diverse analysis tools (§6.1)? DoesS2E perform these analyses
with reasonable performance (§6.2)? What are the measured trade-
offs involved in choosing different execution consistencymodels
on both kernel-mode and user-mode binaries (§6.3)? All reported
results were obtained on a2× 4-core Intel Xeon E5405 2GHz ma-
chine with 20GB of RAM, unless otherwise noted.

6.1 Three Use Cases

We usedS2E to build three vastly different tools: an automated
tester for proprietary device drivers (§6.1.1), a reverse engineer-
ing tool for binary drivers (§6.1.2), and a multi-path in-vivo per-
formance profiler (§6.1.3). The first two use cases are complete
rewrites of two systems that we built previously in an ad-hocman-
ner:RevNIC [13] andDDT [23]. The third tool is brand new.

Table 4 summarizes the productivity advantage we experienced
by usingS2E compared to writing these tools from scratch. For
these use cases,S2E engendered two orders of magnitude improve-
ment in both development time and resulting code volume. This
justifies our efforts to create general abstractions for multi-path in-
vivo analyses, and to centralize them into one platform.

Use Case
Development Time Tool Complexity

[person-hours] [lines of code]
from scratch with S2E from scratch with S2E

Testing of proprietary
device drivers

2,400 38 47,000 720

Reverse engineering of
closed-source drivers

3,000 40 57,000 580

Multi-path in-vivo
performance profiling

n/a 20 n/a 767

Table 4: Comparative productivity when building analysis tools from
scratch (i.e., without S2E) vs. using S2E. Reported LOC include only new
code written or modified; any code that was reused from QEMU, KLEE, or
other sources is not included. For reverse engineering, 10 KLOC of offline
analysis code is reused in the new version. For performance profiling, we
do not know of any equivalent non-S2E tool, hence the lack of comparison.

6.1.1 Automated Testing of Proprietary Device Drivers

We usedS2E to build DDT+, a tool for testing closed-source Win-
dows device drivers. This is a reimplementation ofDDT [23], an ad-

9

hoc combination of changes toQEMU andKLEE, along with hand-
written interface annotations: 35KLOC added toQEMU, 3 KLOC
added toKLEE, 2 KLOC modified inKLEE, and 7KLOC modified
in QEMU. By contrast,DDT+ has 720LOC of C++ code, which glues
together several exploration and analysis plugins, and provides the
necessary kernel/driver interface annotations to implement LC.

DDT+ combines several plugins: theCodeSelectorplugin re-
stricts multi-path exploration to the target driver, whiletheMemo-
ryCheck, DataRaceDetector, andWinBugCheckanalyzers look for
bugs. To collect additional information about the quality of test-
ing (e.g., coverage), we use theExecutionTraceranalyzer plugin.
Additional checkers can be easily added.DDT+ implements local
consistency (LC) via interface annotations that specify where to in-
ject symbolic values while respecting local consistency—examples
of annotations appear in [23]. None of the reported bugs are false
positives, indicating the appropriateness of local consistency for
bug finding. In the absence of annotations,DDT+ reverts to strict
consistency (SC-SE), where the only symbolic input comes from
hardware.

We runDDT+ on two Windows network drivers, RTL8029 and
AMD PCnet.DDT+ finds the same 7 bugs reported in [23], includ-
ing memory leaks, segmentation faults, race conditions, and mem-
ory corruption. Of these bugs, 2 can be found when operating under
SC-SEconsistency; relaxation to local consistency (via annotations)
helps find 5 additional bugs.DDT+ takes<20 minutes to complete
testing of each driver and explores thousands of paths in each one.

For each bug found,DDT+ outputs a crash dump, an instruction
trace, a memory trace, a set of concrete inputs (e.g., registry values
and hardware input) and values that where injected according to the
LC model that trigger the buggy execution path.

While it is always possible to produce concrete inputs that
would lead the system to the desired local state of the unit (i.e., the
state in which the bug is reproduced) along a globally feasible path,
the exploration engine does not actually do that while operating
under LC. Consequently, replaying execution traces provided by
DDT+ usually requires replaying the symbolic values injected into
the system during testing. Such replaying can be done inS2E itself.
Despite being only locally consistent, the replay is still effective
for debugging: the execution of the driver during replay is valid and
appears consistent, and injected values correspond to the values that
the kernel could have passed to the driver under real, feasible (but
not exercised) conditions.

S2E generates crash dumps readable by Microsoft WinDbg.
Developers can thus inspect the crashes using their existing tools,
scripts, and extensions for WinDbg. They can also compare crash
dumps from different execution paths to better understand the bugs.

6.1.2 Reverse Engineering of Closed-Source Drivers

We also builtREV+, a tool for reverse engineering binary Windows
device drivers; it is a reimplementation ofRevNIC [13]. REV+ takes
a closed-source binary driver, traces its execution, and then feeds
the traces to an offline component that reverse engineers thedriver’s
logic and produces new device driver code that implements the
exact same hardware protocol as the original driver. In principle,
REV+ can synthesize drivers for anyOS, making it easy to port
device drivers without any vendor documentation or source code.

Adopting theS2E perspective, we cast reverse engineering as
a type of behavior analysis. As inDDT+, theCodeSelectorplugin
restricts the symbolic domain to the driver’s code segment.The
ExecutionTracerplugin is configured to log to a file the driver’s
executed instructions, memory and register accesses, and hardware
I/O. The already existing offline analysis tool fromRevNIC then
processes these traces to synthesize a new driver.

REV+ uses overapproximate consistency (RC-OC). The goal of
the tracer is to see each basic block execute, in order to extract

its logic—full path consistency is not necessary. The offline trace
analyzer only needs fragments of paths in order to reconstruct the
original control flow graph—details appear in [13]. By usingRC-
OC, REV+ sacrifices consistency in favor of obtaining coverage fast.

RevNIC REV+ Improvement
PCnet 59% 66% +7%
RTL8029 82% 87% +5%
91C111 84% 87% +3%
RTL8139 84% 86% +2%

Table 5: Basic block coverage obtained by RevNIC and REV+ in 1 hour.

We runREV+ on the same drivers reported in [13], andREV+

reverse engineers them with better coverage thanRevNIC (see Ta-
ble 5). Fig. 6 shows how coverage evolves over time during re-
verse engineering. Manual inspection of the reverse engineered
code blocks reveals that the resulting drivers are equivalent to those
generated byRevNIC, and thus to the originals too [13].

0 %

20 %

40 %

60 %

80 %

100 %

 0 10 20 30 40 50 60 70 80 90
B

a
s
ic

 B
lo

c
k
 C

o
v
e

ra
g

e
 (

%
)

Running Time (minutes)

RTL8029
91C111

RTL8139
PCnet

Figure 6: Basic block coverage over time for REV+.

6.1.3 Multi-Path In-Vivo Performance Profiling

To further illustrateS2E’s generality, we used it to developPROFS,
a multi-path in-vivo performance profiler and debugger. To our
knowledge, such a tool did not exist previously, and this usecase is
the first in the literature to employ symbolic execution for perfor-
mance analysis. In this section, we show through several examples
how PROFS can be used to predict performance for certain classes
of inputs. To obtain realistic profiles, performance analysis can be
done under local consistency or any stricter consistency model.

PROFS allows users to measure instruction count, cache misses,
TLB misses, and page faults for arbitrary memory hierarchies, with
flexibility to combine any number of cache levels, size, associativ-
ity, line sizes, etc. This is a superset of the cache profilingfunction-
ality found in Valgrind [38], which can only simulate L1 and L2
caches, and can only measure cache misses.

For PROFS, we developed thePerformanceProfileplugin. It
counts the number of instructions along each path and, for memory
reads/writes, it simulates the behavior of a desired cache hierarchy
and counts hits and misses. For our measurements, we configured
PROFS with 64-KB I1 and D1 caches with 64-byte cache lines
and associativity 2, plus a 1-MB L2 cache that has 64-byte cache
lines and associativity 4. The path exploration inPROFS is tunable,
allowing the user to choose any execution consistency model.

The firstPROFS experiment analyzes the distribution of instruc-
tion counts and cache misses for Apache’sURL parser. In particu-
lar, we were interested to see whether there is any opportunity for
a denial-of-service attack on the Apache web server via carefully
constructedURLs. The analysis ran under local consistency for 9.5
hours and explored 5,515 different paths through the code. Of the
9.5 hours, 2.5 hours were spent in the constraint solver and 6hours
were spent running concrete code. In this experiment, the analysis
carries high overhead, because it simulates aTLB and three caches.

10

We found each path involved in parsing aURL to take on the
order of4.3 × 106 instructions, with one interesting feature: for
every additional “/” character present in theURL, there are 10
extra instructions being executed. We found no upper bound on the
execution ofURL parsing: aURL containingn + k “/” characters
will take 10 × k more instructions to parse than aURL with n

“/” characters. The total number of cache misses on each path
was predictable at15, 984± 20. These are examples of behavioral
insights one can obtain with a multi-path performance profiler.
Such insights can help developers fine-tune their code or make it
more secure (e.g., by ensuring that password processing time does
not depend on the password content, to avoid side channel attacks).

We also set out to measure the page fault rate experienced by
the Microsoft IIS web server inside itsSSLmodules while serving
a static page workload overHTTPS. Our goal was to check the
distribution of page faults in the cryptographic algorithms, to see if
there is any opportunity for side channel attacks. We found no page
faults in theSSL code along any of the paths, and only a constant
number of them in gzip.dll. This suggests that counting pagefaults
should not be the first choice if trying to breakIIS’s SSLencryption.

Next, we aimed to establish a performance envelope in terms of
instructions executed, cache misses, and page faults for the ubiqui-
tousping program. This program has on the order of 1.3KLOC.
The performance analysis ran under local consistency, explored
1,250 different paths, and ran for 5.9 hours. Unlike theURL parsing
case, almost 5.8 hours of the analysis were spent in the constraint
solver—the first 1,000 paths were explored during the first 3 hours,
after which the exploration rate slowed down.

The analysis does not find a bound on execution time, and it
points to a path that could hit an infinite loop. This happens when
the reply packet toping’s initial packet has the record route (RR)
flag set and the option length is 3 bytes, leaving no room to store the
IP address list. While parsing the header,ping finds that the list of
addresses is empty and, instead ofbreak-ing out of the loop, it does
continue without updating the loop counter. This is an example
where performance analysis can identify a dual performanceand
security bug: malicious hosts could hangping clients. Once we
patchedping, we found the performance envelope to be 1,645 to
129,086 executed instructions. With the bug, the maximum during
analysis had reached1.5× 106 instructions and kept growing.

PROFS can find “best case performance” inputs without having
to enumerate the input space. For this, we modify slightly the
PerformanceProfileplugin to track, for all paths being explored, the
common lower bound on instructions, page faults, etc. Any time
a path exceeds this minimum, the plugin automatically abandons
exploration of that path, using thePathKiller selector described
in §4. This type of functionality can be used to efficiently and
automatically determine workloads that make a system perform at
its best. This use case is another example of performance profiling
that can only be done using multi-path analysis.

We wanted to compare our results to what a combination of
existing tools could achieve: runKLEE to obtain inputs for paths
through the program, then run each such test case in Valgrind(for
multi-path analysis) and with Oprofile (for in-vivo analysis). This is
not possible forping, becauseKLEE’s networking model does not
support yetICMP packets. It is not possible for binary drivers either,
becauseKLEE cannot fork kernel state and requires source code.
These difficulties illustrate the benefits of having a platform like
S2E that does not require models and can automatically cross back
and forth the boundary between symbolic and concrete domains.

To conclude, we usedS2E to build a thorough multi-path in-
vivo performance profiler that improves upon classic profilers. Val-
grind [38] is thorough, but only single-path and not in-vivo. Unlike
Valgrind-type tools,PROFS performs its analyses along multiple
paths at a time, not just one, and can measure the effects of the

OS kernel on the program’s cache behavior and vice versa, notjust
the program in isolation. Although tools like Oprofile [30] can per-
form in-vivo measurements, but not multi-path, they are based on
sampling, so they lack the accuracy ofPROFS—it is impossible,
for instance, to count the exact number of cache misses in an exe-
cution. Such improvements over state-of-the-art tools come easily
when usingS2E to build new tools.

6.1.4 Other Uses ofS2E

S2E can be used for pretty much any type of system-wide analysis.
We describe here four additional ideas: energy profiling, hardware
validation, certification of binaries, and privacy analysis.

First, S2E could be used to profile energy use of embedded
applications: given a power consumption model,S2E could find
energy-hogging paths and help the developer optimize them.Sec-
ond,S2E could serve as a hardware model validator:S2E can sym-
bolically execute a SystemC-based model [20] together withthe
real driver andOS; when there is enough confidence in the cor-
rectness of the hardware model, the modeled chip can be produced
for real. Third,S2E could perform end-to-end certification of bina-
ries, e.g., verify that memory safety holds along all critical paths.
Finally, S2E could be used to analyze binaries for privacy leaks:
by monitoring the flow of symbolic input values (e.g., creditcard
numbers) through the software stack,S2E could tell whether any of
the data leaks outside the system.S2E alleviates the need to trust a
compiler, since it performs all analysis on the final binary.

6.2 Implementation Overhead

S2E introduces∼6× runtime overhead over vanillaQEMU when
running in concrete mode, and∼78× in symbolic mode. Concrete-
mode overhead is mainly due to checks for accesses to symbolic
memory, while the overhead in symbolic mode is due toLLVM
interpretation and symbolic constraint solving.

The overhead of symbolic execution is mitigated in practiceby
the fact that the symbolic domain is much smaller than the con-
crete domain. For instance, in theping experiments,S2E executed
3×104 times more x86 instructions concretely than it did symboli-
cally. All the OScode (e.g., page fault handler, timer interrupt, sys-
tem calls) that is called frequently, as well as all the software that is
running on top (e.g., services and daemons) are in concrete mode.
Furthermore,S2E can distinguish inside the symbolic domain in-
structions that can execute concretely (e.g., that do not touch sym-
bolic data) and run them “natively.”ping’s 4 orders of magnitude
difference is alowerbound on the amount of savings selective sym-
bolic execution brings over classic symbolic execution: byexecut-
ing concretely those paths that would otherwise run symbolically,
S2E alsosaves the overhead of further forking (e.g., on branches in-
side the concrete domain) paths that are ultimately not of interest.

Another source of overhead are symbolic pointers. We com-
pared the performance of symbolically executing theunlink util-
ity’s x86 binary inS2E vs. symbolically executing itsLLVM version
in KLEE. SinceKLEE recognizes all memory allocations performed
by the program, it can pass to the constraint solver memory arrays
of exactly the right size; in contrast,S2E must pass entire memory
pages. In 1 hour, with a 256-byte page size,S2E explores 7,082
paths, compared to 7,886 paths inKLEE. Average constraint solv-
ing time is 0.06 sec for both. With 4KB pages, though,S2E explores
only 2,000 states and averages 0.15 sec per constraint.

We plan to reduce this overhead in two ways: First, we can in-
strument theLLVM bitcode generated byS2E with calls to the sym-
bolic execution engine, before JITing it into native machine code, to
avoid the overhead of interpreting each instruction inKLEE. This is
similar in spirit to the difference betweenQEMU and the Bochs [6]
emulator: the latter interprets instructions in one giant switch state-
ment, whereas the former JITs them to native code and obtainsa

11

major speedup. Second, we plan to add support for directly exe-
cuting nativeLLVM binaries insideS2E, which would reduce sig-
nificantly the blowup resulting from x86-to-LLVM translation and
would reduce the overhead of symbolic pointers.

6.3 Execution Consistency Model Trade-Offs

Having seen the ability ofS2E to serve as a platform for building
powerful analysis tools, we now experimentally evaluate the trade-
offs involved in the use of different execution consistencymodels.
In particular, we measure how total running time, memory usage,
and path coverage efficiency are influenced by the choice of mod-
els. We illustrate the tradeoffs using both kernel-mode binaries—
the SMSC 91C111 and AMD PCnet network drivers—and a user-
mode binary—the interpreter for the Lua embedded scriptinglan-
guage [26]. The 91C111 closed-source driver binary has 19KB,
PCnet has 35KB; the symbolic domain consists of the driver, and
the concrete domain is everything else. Lua has 12.7KLOC; the
concrete domain consists of the lexer+parser (2KLOC) and the en-
vironment, while the symbolic domain is the remaining code (e.g.,
the interpreter). Parsers are the bane of symbolic execution engines,
because they have many possible execution paths, of which only a
small fraction are paths that pass the parsing/lexing stage[19]. The
ease of separating the Lua interpreter from its parser inS2E illus-
trates the benefit of selective symbolic execution.

We use a script in the guest OS to call the entry points of the
drivers. Execution proceeds until all paths have reached the driver’s
unload entry point. We configure a selector plugin to exercise the
entry points one by one. IfS2E has not discovered any new basic
block for some time (60 sec), this plugin kills all paths but one. The
plugin chooses the remaining path so that execution can proceed to
the driver’s next entry point.

Without path killing, drivers could get stuck in the early ini-
tialization phase, because of path explosion (e.g., the tree rooted
at the initialization entry point may have several thousandpaths
when its exploration completes). The selector plugin also kills re-
dundant subtrees when entry points return, because callingthe next
entry point in the context ofeachof these execution states (subtree
leaves) would mostly exercise the same paths over again.

For Lua, we provide a symbolic string as the input program,
underSC-SEconsistency. Under local consistency, the input is con-
crete, and we insert suitably constrained symbolic Lua opcodesaf-
ter the parser stage. Finally, inRC-OCmode, we make the opcodes
completely unconstrained. We average results over 10 runs for each
consistency model on a4×6-core AMD Opteron 8435 machine,
2.6 GHz, 96GB of RAM. Table 6 shows running times for different
execution consistencies.

Weaker (more relaxed) consistency models help achieve higher
basic block coverage in that time—Fig. 7 shows results for the
running times from Table 6. For PCnet, coverage varies between
14%–66%, while 91C111 ranges from 10%–88%. The stricter the
model, the fewer sources of symbolic values, hence the fewerex-
plorable paths and discoverable basic blocks in a given amount of
time. In the case of our Windows drivers, system-level strict con-
sistency (SC-SE) keeps all registry inputs concrete, which prevents
several configuration-dependent blocks from being explored. InSC-
UE, concretizing symbolic inputs to arbitrary values prevents the
driver from loading, thus yielding poor coverage.

Consistency 91C111 Driver PCnet Driver Lua
RC-OC 1,400 3,300 1,103
LC 1,600 3,200 1,114
SC-SE 1,700 1,300 1,148
SC-UE 5 7 -

Table 6: Time (in seconds) to finish the exploration experiment for two
device drivers and the Lua interpreter under different consistency models.

In the case of Lua, the local consistency model allows bypassing
the lexer component, which is especially difficult to symbolically
execute due to its loops and complex string manipulations.RC-OC
exceptionally yielded less coverage because execution gotstuck in
complex crash paths reached due to incorrect Lua opcodes.

0 %

20 %

40 %

60 %

80 %

100 %

RC-OC LC SC-SE SC-UE

B
a

s
ic

 B
lo

c
k

C
o

v
e

ra
g

e
 (

%
) 91C111

PCnet
Lua

Figure 7: Effect of consistency models on coverage.

Path selection together with adequate consistency models im-
prove memory usage (Fig. 8). UnderLC, the PCnet driver spends
4 minutes in the initialization method, exploring∼7,000 paths
and using 8GB of memory. In contrast, it spends only 2 minutes
(∼2,500 paths) and 4GB underRC-OCconsistency. UnderLC con-
sistency, theCardType registry setting is symbolic, causing the ini-
tialization entry point to call in parallel several functions that look
for different card types. UnderLC consistency,S2E explores these
functions slower than underRC-OC consistency, where we liber-
ally inject symbolic values to help these functions finish quicker.
Slower exploration leads to less frequent timeout-based path kills,
hence more paths, more memory consumption, and longer explo-
ration times. UnderSC-SEandSC-UEconsistency, registry settings
are concrete, thus exploring only functions for one card type.

 2

 4

 6

 8

 10

RC-OC LC SC-SE SC-UE

M
e

m
o

ry
 H

ig
h

W
a

te
rm

a
rk

 (
G

B
)

91C111
PCnet

Lua

Figure 8: Effect of consistency models on memory usage.

Finally, consistency models affect constraint solving time (Fig. 9).
The relationship between consistency model and constraintsolving
time often depends on the structure of the system being analyzed—
generally, the deeper a path, the more complex the correspond-
ing path constraints. For our targets, solving time decreases with
stricter consistency, because stricter models restrict the amount
of symbolic data. For 91C111, switching from local to overap-
proximate consistency increases solving time by10×. This is
mostly due to the unconstrained symbolic inputs passed to the
QueryInformationHandler and SetInformationHandler
entry points, which results in complex expressions being gener-
ated by switch statements. In Lua, the structure of the constraints
causesS2E to spend most of its time in the constraint solver.

0 %

20 %

40 %

60 %

80 %

100 %

RC-OC LC SC-SE SC-UE

F
ra

c
o

n
 o

f

m
e

 s
p

e
n

t
in

 c
o

n
st

ra
in

t
so

lv
e

r

PCnet

91C111

Lua

 0.001

 0.01

 0.1

 1

RC-OC LC SC-SE SC-UE

A
v
e

ra
g

e

m
e

 t
o

so
lv

e
 a

 q
u

e
ry

 (
se

c)

PCnet

91C111

Lu
a

Figure 9: Impact of consistency models on constraint solving.

As in §6.1.3, we attempted a comparison to vanillaKLEE. We
expected that the Lua interpreter, being completely in user-mode
and not having any complex interactions with the environment,

12

could be handled byKLEE. However,KLEE does not model some
of its operations. For example, the Lua interpreter makes use of
setjmp and longjmp, which turn intolibc calls that manipu-
late the program counter and other registers in a way that confuses
KLEE. Unlike S2E, other engines do not have a unified representa-
tion of the hardware, so all these details must be explicitlycoded for
(e.g., detect thatsetjmp / longjmp is used and ensure thatKLEE’s
view of the execution state is appropriately adjusted). InS2E, this
comes “for free,” because the CPU registers, memory, I/O devices,
etc. are shared between the concrete and symbolic domain.

Our evaluation shows thatS2E is a general platform that can
be used to write diverse and interesting system analyses—weillus-
trated this by building, with little effort, tools for bug finding, re-
verse engineering, and comprehensive performance profiling. Con-
sistency models offer flexible trade-offs between the performance,
completeness, and soundness of analyses. By employing selective
symbolic execution and relaxed execution consistency models, S2E
is able to scale these analyses to large systems, such as an entire
Windows stack—analyzing real-world programs like Apache httpd,
Microsoft IIS, andping takes a few minutes up to a few hours, in
which S2E explores thousands of paths through the binaries.

7. Related Work
We are not aware of any platform that can offer the level of general-
ity in terms of dynamic analyses and execution consistency models
thatS2E offers. Nevertheless, a subset of the ideas behindS2E did
appear in various forms in earlier work.

BitBlaze [37] is the closest dynamic analysis framework toS2E.
It combines virtualization and symbolic execution for malware
analysis and offers a form of local consistency to introducesym-
bolic values intoAPI calls. In contrast,S2E has several additional
consistency models and various generic path selectors thattrade
accuracy for exponentially improved performance in more flexible
ways. To our knowledge,S2E is the first to handle all aspects of
hardware communication, which consists ofI/O, MMIO , DMA , and
interrupts. This enables symbolic execution across the entire soft-
ware stack, down to hardware, resulting in richer analyses.

One way to tackle the path explosion problem is to use mod-
els and/or relax execution consistency. File system modelshave al-
lowed, for instance,KLEE to testUNIX utilities without involving
the real filesystem [11]. However, based on our own experience,
writing models is a labor-intensive and error-prone undertaking.
Other researchers report that writing a model for the kernel/driver
interface of a modernOS took several person-years [2].

Other bodies of work have chosen to execute the environment
concretely, with various levels of consistency that were appropriate
for the specific analysis in question, most commonly bug finding.
For instance,CUTE [36] can run concrete code consistently without
modeling, but it is limited to strict consistency and code-based se-
lection.SJPF[32] can switch from concrete to symbolic execution,
but does not track constraints when switching back, so it cannot
preserve consistency in the general case.

Another approach to tackling path explosion is compositional
symbolic execution [17]. This approach saves the results ofexplo-
ration of parts of the program and reuses them when those parts
are called again in a different context. We are investigating how to
implement this approach inS2E, to further improve scalability.

Non-VM based approaches cannot control the environment out-
side the analyzed program. For instance, bothKLEE andEXE allow
a symbolically executing program to call into the concrete domain
(e.g., perform a system call), but they cannot fork the global system
state. As a result, different paths clobber each other’s concrete do-
main, with unpredictable consequences. Concolic execution [35]
runs everything concretely and scales to full systems (and is not

affected by state clobbering), but may result in lost paths when ex-
ecution crosses program boundaries. Likewise,CUTE, KLEE, and
other similar tools cannot track the branch conditions in the con-
crete code (unlikeS2E), and thus cannot determine how to redo
calls in order to enable overconstrained but feasible paths.

In-situ model checkers [16, 21, 29, 40, 41] can directly check
programs written in a common programming language, usually
with some simplifications, such as data-range reduction, without re-
quiring the creation of a model. SinceS2E directly executes the tar-
get binary, one could say it is an in-situ tool. However,S2E goes fur-
ther and provides a consistent separation between the environment
(whose symbolic execution is not necessary) and the target code
to be tested (which is typically orders of magnitude smallerthan
the rest). This is what we call in-vivo inS2E: analyzing the target
code in-situ, while facilitating its consistent interaction with that
code’s unmodified, real environment. Note that other work uses the
“in vivo” term to mean something different fromS2E’s meaning—
e.g., Murphy et al. propose a technique for testing where “invivo”
stands for executing tests in production environments [28].

Several static analysis frameworks have been used to build anal-
ysis tools. Saturn [14] andbddbddb [24] prove the presence or
absence of bugs using a path-sensitive analysis engine to decrease
the number of false positives. Saturn uses function summaries to
scale to larger programs and looks for bugs described in a logic
programming language.bddbddb stores programs in a database as
relations that can be searched for buggy patterns using Datalog. Be-
sides detecting bugs,bddbddb helped optimizing locks in multi-
threaded programs. Static analysis tools rely on source code for
accurate type information and cannot easily verify run-time prop-
erties or reason about the entire system. Bothbddbddb and Saturn
require learning a new language.

Dynamic analysis frameworks alleviate the limitations of static
analysis tools. In particular, they allow the analysis of binary soft-
ware. Theoretically, one could statically convert an x86 binary to,
say,LLVM and run it in a system likeKLEE, but this faces the clas-
sic undecidable problems of disassembly and decompilation[34]:
disambiguating code from data, determining the targets of indirect
jumps, unpacking code, etc.

S2E adds multi-path analysis abilities to all single-path dynamic
tools, while not limiting the types of analysis. PTLsim [42]is aVM-
based cycle-accurate x86 simulator that selectively limits profiling
to user-specified code ranges to improve scalability. Valgrind [38]
is a framework best known for cache profiling tools, memory leak
detectors, and call graph generators. PinOS[9] can instrument oper-
ating systems and unify user/kernel-mode tracers. However, PinOS
relies on Xen and a paravirtualized guestOS, unlike S2E. PTLsim,
PinOS, and Valgrind implement cache simulators that model multi-
level data and code cache hierarchies.S2E allowed us to implement
an equivalentmulti-pathsimulator with little effort.

S2E complements classic single-path, non VM-based profiling
and tracing tools. For instance, DTrace [15] is a framework for
troubleshooting kernels and applications on production systems
in real time. DTrace and other techniques for efficient profiling,
such as continuous profiling [1], sampling-based profiling [10], and
data type profiling [31], trade accuracy for low overhead. They are
useful in settings where the overhead of precise instrumentation
is prohibitive. Other projects have also leveraged virtualization to
achieve goals that were previously prohibitively expensive. These
tools could be improved withS2E by allowing the analyses to be
exposed to multi-path executions.

S2E uses mixed-mode execution as an optimization, to increase
efficiency. This idea first appeared inDART [18], CUTE [36], and
EXE [12], and later in Bitscope [8]. However, automatic bidirec-
tional data conversions across the symbolic-concrete boundary did
not exist previously, and they are key toS2E’s scalability.

13

To summarize,S2E embodies numerous ideas that were fully
or partially explored in earlier work. What is unique inS2E is its
generality for writing various analyses, the availabilityof multi-
ple user-selectable (as well as definable) consistency models, au-
tomatic bidirectional conversion of data between the symbolic and
concrete domains, and its ability to operate without any modeling
or modification of the (concretely running) environment.

8. Conclusions
This paper describedS2E, a new platform forin-vivo multi-path
analysisof systems, which scales even to large, proprietary, real-
world software stacks, like Microsoft Windows. It is the first time
virtualization, dynamic binary translation, and symbolicexecution
are combined for the purpose of generic behavior analysis.S2E
simultaneously analyzes entirefamilies of paths, operates directly
on binaries, and operatesin vivo, i.e., includes in its analyses the
entire software stack: user programs, libraries, kernel, drivers, and
hardware.S2E uses automatic bidirectional symbolic–concrete data
conversions and relaxed execution consistency models to achieve
scalability. We showed thatS2E enables rapid prototyping of a
variety of system behavior analysis tools with little effort. S2E can
be downloaded fromhttp://s2e.epfl.ch/.

Acknowledgments
We thank Jim Larus, our shepherd, and Andrea Arpaci-Dusseau,
Herbert Bos, Johannes Kinder, Miguel Castro, Byung-Gon Chun,
Petros Maniatis, Raimondas Sasnauskas, Willy Zwaenepoel,the
S2E user community, and the anonymous reviewers for their help
in improving our paper. We are grateful to Microsoft Research for
supporting our work through a PhD Fellowship starting in 2011.

References
[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,S.-T.

Leung, D. Sites, M. Vandevoorde, C. A. Waldspurger, and W. E.Weihl.
Continuous profiling: Where have all the cycles gone? InSymp. on
Operating Systems Principles, 1997.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,C. McGar-
vey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static
analysis of device drivers. InACM SIGOPS/EuroSys European Conf.
on Computer Systems, 2006.

[3] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg. The
static driver verifier research platform. InIntl. Conf. on Computer
Aided Verification, 2010.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conf., 2005.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few bil-
lion lines of code later: using static analysis to find bugs inthe real
world. Communications of the ACM, 53(2), 2010.

[6] Bochs IA-32 Emulator. http://bochs.sourceforge.net/.
[7] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: Attacking path

explosion in constraint-based test generation. InIntl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems, 2008.

[8] D. Brumley, C. Hartwig, M. G. Kang, Z. L. J. Newsome,
P. Poosankam, D. Song, and H. Yin. BitScope: Automatically dissect-
ing malicious binaries. Technical Report CMU-CS-07-133, Carnegie
Mellon University, 2007.

[9] P. P. Bungale and C.-K. Luk. PinOS: a programmable framework
for whole-system dynamic instrumentation. InIntl. Conf. on Virtual
Execution Environments, 2007.

[10] M. Burrows, U. Erlingson, S.-T. Leung, M. T. Vandevoorde, C. A.
Waldspurger, K. Walker, and W. E. Weihl. Efficient and flexible value
sampling. InIntl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2000.

[11] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams. InSymp. on Operating Systems Design and Implementation,
2008.

[12] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.Engler.
EXE: Automatically generating inputs of death. InConf. on Computer
and Communication Security, 2006.

[13] V. Chipounov and G. Candea. Reverse engineering of binary device
drivers with RevNIC. InACM SIGOPS/EuroSys European Conf. on
Computer Systems, 2010.

[14] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-
sensitive analysis. InConf. on Programming Language Design and
Implementation, 2008.

[15] Dtrace. http://www.sun.com/bigadmin/content/dtrace/index.jsp.
[16] P. Godefroid. Model checking for programming languages using

Verisoft. InSymp. on Principles of Programming Languages, 1997.
[17] P. Godefroid. Compositional dynamic test generation.In Symp. on

Principles of Programming Languages, 2007. Extended abstract.
[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated

random testing. InConf. on Programming Language Design and
Implementation, 2005.

[19] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. InNetwork and Distributed System Security Symp., 2008.

[20] IEEE. Standard 1666: SystemC language reference manual, 2005.
http://standards.ieee.org/getieee/1666/.

[21] Java PathFinder. http://javapathfinder.sourceforge.net, 2007.
[22] J. C. King. Symbolic execution and program testing.Communications

of the ACM, 1976.
[23] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source

binary device drivers with DDT. InUSENIX Annual Technical Conf.,
2010.

[24] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis as
database queries. InSymp. on Principles of Database Systems, 2005.

[25] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. InIntl. Symp. on Code Genera-
tion and Optimization, 2004.

[26] Lua: A lightweight embeddable scripting language.
http://www.lua.org/, 2010.

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. PIN: building customized pro-
gram analysis tools with dynamic instrumentation. InConf. on Pro-
gramming Language Design and Implementation, 2005.

[28] C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance of
software applications using the in vivo testing approach. In Intl. Conf.
on Software Testing Verification and Validation, 2009.

[29] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing Heisenbugs in concurrent pro-
grams. InSymp. on Operating Systems Design and Implementation,
2008.

[30] Oprofile. http://oprofile.sourceforge.net.
[31] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache perfor-

mance bottlenecks using data profiling. InACM SIGOPS/EuroSys Eu-
ropean Conf. on Computer Systems, 2010.

[32] C. Păsăreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet, M. Lowry,
S. Person, and M. Pape. Combining unit-level symbolic execution and
system-level concrete execution for testing NASA software. In Intl.
Symp. on Software Testing and Analysis, 2008.

[33] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multithreaded programs.ACM
Transactions on Computer Systems, 15(4), 1997.

[34] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable
code revisited. InWorking Conf. on Reverse Engineering, 2002.

[35] K. Sen. Concolic testing. InIntl. Conf. on Automated Software
Engineering, 2007.

[36] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for C. InSymp. on the Foundations of Software Eng., 2005.

[37] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. Bitblaze:A new
approach to computer security via binary analysis. InIntl. Conf. on
Information Systems Security, 2008.

[38] Valgrind. http://valgrind.org/.
[39] D. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/, 2010.
[40] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,

L. Zhang, and L. Zhou. MODIST: Transparent model checking of
unmodified distributed systems. InSymp. on Networked Systems
Design and Implementation, 2009.

[41] J. Yang, C. Sar, and D. Engler. EXPLODE: a lightweight, general sys-
tem for finding serious storage system errors. InSymp. on Operating
Systems Design and Implementation, 2006.

[42] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator. InIEEE Intl. Symp. on Performance Analysis of
Systems and Software, 2007.

14

