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We develop an analytical approach to theoretically investigate light speed propagation near the band edge of a
coupled cavity waveguide in the presence of residual disorder. This approach that is based on a mean field
theory allows us to define the domains of validity of the group velocity and the energy transport velocity con-
cepts as well as a guideline to minimize the role of the residual disorder. Inspired by an analogy with the
theory of multiple scattering of classical wave, we derive an analytical formula for the energy transport veloc-
ity in periodic photonic structures. Whereas the group velocity diverges near the band edge in the presence of
any amount of residual disorder, we show that the energy transport velocity mainly follows the ideal group
velocity of the unperturbed structure except for very strong disturbances out of the scope of the presented
model. © 2010 Optical Society of America
OCIS codes: 130.2790, 130.5296, 230.4555, 260.2030, 290.4210, 310.6628.
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. INTRODUCTION
lowing down the light, which naturally propagates at c
3�108 m/s in vacuum, is currently under strong inves-

igation in integrated photonic structures [1,2]. This was
n particular motivated by the experimental demonstra-
ion of light pulses propagating at the speed of a bicycle in
tomic gas [3]. The slowing down of the light speed is
ommonly understood as a decrease in the group velocity
hat is defined as vg=d� /dk [4,5], where � is the angular
requency, and k is the spatial wave number. The group
elocity denotes the speed propagation of the center of a
ave packet [6]. This concept is convenient to describe the
ropagation of a bit of information, but becomes less rel-
vant in the vicinity of dielectric constant resonances [7].
lthough vg keeps a physical meaning near a resonance

or very specific conditions, such as a small sample thick-
ess to avoid any distortion of the pulse [8–10], it cannot
e associated with the speed of the energy transport. In
ddition, all the effects of advance or delay of a pulse ob-
erved near a resonance are limited by the initial tempo-
al pulse width, because such effects only result from a re-
haping of the pulse instead from a significant rigid
emporal shift of all the envelope of the pulse [8,9].

In periodic non-absorbing dielectric structures, the so-
alled slow light regime is reached by engineering flat dis-
ersion curves ��k� [2], such as, for instance, in photonic
rystal coupled cavity waveguide (CCW) structures
11,12], or more generally in plasmonic structures [13],
nd in metamaterials [14,15]. Similarly to slowdown sys-
ems that rely on electromagnetic induced transparency
3,16], the coupled resonator structures exhibit a well-
efined dispersion curve with an associated delay of the
ulse that is not directly linked and limited by the tem-
0740-3224/10/102095-7/$15.00 © 2
oral width of the pulse itself. It is crucial to point out
hat the decrease in speed of a light pulse based on such
n approach takes place with no loss of information: the
nergy carried by all the frequencies that constitute the
ulse is conserved during the propagation, as long as the
ulse bandwidth is smaller than the pass band of the me-
ium. In contrast, a rate of energy loss induced by absorp-
ion or out-of-plane scattering, in the case of planar struc-
ures, or a filtering of some of the frequency of the pulse
y an optical resonator, for instance, can be experimen-
ally interpreted as an ultra-slowing down of the trans-
ort of information [2]. However, in both of these cases
he price to pay is a loss of a large amount of information.
hat is why such kinds of processes will be ignored here.
Real photonic structures are always subject to residual

isorder inherent to state-of-the-art technological fabrica-
ion. Such a disorder is the source of multiple-scattering
ffects that profoundly modify the nature of the transmis-
ion [17,18] as well as the dispersion curve ��k� [19,20].
n a similar way as the physical meaning of the group ve-
ocity is modified near a resonance of the medium dielec-
ric constant, the question of the impact of the disorder on
he group velocity and in general on the speed of light in
eriodic photonic structures can be raised. In particular,
e have recently reported an abrupt transition between a
ell-defined ��k� relation (dispersive regime) and a

peckle-like dispersive diagram (diffusive regime) in
ingle line defect photonic crystal waveguides [21]. Such
n experimental observation highlights the qualitative
ifference between the group velocity vg and the energy
ransport velocity vE.

In the current paper we present an analytical model
ased on a standard mean field theory to explore the tran-
010 Optical Society of America
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ition between the group velocity vg and the energy trans-
ort velocity vE in periodic photonic structures subject to
uniform residual disorder. Our aim is to discuss, within

he framework of this model, the robustness and the na-
ure of the slow light regime when a residual disorder
omes into play. The starting point is a textbook calcula-
ion of a one-dimensional (1D) dispersion curve that is
ased on a standard tight binding approximation and
hat can be used to describe generic CCWs. Depending on
he amount of residual disorder, we use this ideal model
o link together the shape of the dispersion curve and the
requency band where vg loses its meaning in favor of vE.
irst, we outline the fundamental hypotheses of the ana-

ytical model. In the second part we determine the disper-
ion diagram of a coupled cavity structure according to
he amount of residual disorder. As a result, we derive the
roup velocity of a disordered structure and propose one
trategy to overcome the detrimental impact of residual
isorder. We pursue in the third part the calculation of
he energy transport velocity. In the last part, we discuss
nd summarize the main results of the model and com-
ent on the light matter interaction in the diffusive

ransport regime. Sections 2 and 5, which are self-
ontained, can be both read separately in order to get a
omprehensive overview of the main results without en-
ering the details of the calculations.

. GENERAL FORMULATION OF THE
ODEL AND ITS HYPOTHESES
e consider an infinite 1D periodic system formed by

dentical coupled photonic cavities. A classical scalar field
hat satisfies the Helmholtz equation describes the wave
ropagation. The eigenstates of the coupled system can be
xpanded into different bases: either extended Bloch
ave functions or linear combinations of Wannier func-

ions localized at the individual cavities. We use the tight
inding approximation, i.e., we suppose that the Wannier
unctions can be approximated by the modes of the single
avities, which are referred to as “atomic” states below.
his approximation holds if the fields of neighboring cavi-
ies overlap weakly enough. Within this assumption of a
inear combination of cavity modes, the dispersion curve
s given by ���k� /c�2= ��m /c�2+2T cos�k��= ��0 /c�2, with
m being the mean frequency of the band, T the transfer

ntegral, and � the period of the 1D chain. Such a disper-
ion curve restricted to one half of the first Brillouin zone
s plotted in Fig. 1(a) (dark line), where we have defined
he normalized frequency x as x= ���0 /c�2− ��m /c�2� /2T.
e assume a single atomic state per cavity, and as a re-

ult a single frequency band is formed. The width of the
and, ��=4Tc, is directly related to the coupling strength
etween the states localized at each cavity. Note that the
ormalized frequency x can be written x= �u−um� / ��u /2�,
ith u= �� /2���� /c� being the reduced frequency, um
�� /2����m /c� the central reduced frequency, and �u the
andwidth. The dispersion curves as well as the group
nd the energy transport velocities will be expressed in
erms of x. We do not consider the effect of pure dissipa-
ion such as out-of-plane scattering in planar photonic
tructures, which are discussed in [22].
We use a perturbative approach whose starting point is
he Green’s function of an ideal coupled cavity system.
hree kinds of perturbation can be induced by the re-
idual disorder of the dielectric map: (1) When averaged
ver several configurations, the disorder does not allow
ne to distinguish the different cavities and induces an in-
omogeneous linewidth broadening of the single cavities
hat is smaller enough than the coupling frequency be-
ween the cavities; (2) if the disorder is not homogeneous
r follows special statistics laws such as the Levi distri-
ution [23], its averaging over several configurations in-
ide each of the cavities is such that peak frequencies of
ach atomic states are different; and (3) the disorder-
nduced linewidth broadening of the atomic states is
arger than the coupling frequency between the cavities.
he two latter cases are out of the scope of our model.
ase (2) can correspond to a disorder whose one of the
haracteristic length scales is larger than the period of
he cavity chain; for instance, there are some isolated and
are defects along the chain that do not follow the ex-
ected Gaussian distribution of a sub-nanometer residual
isorder. Case (3) implies that the strength of the disorder
s too strong to consider a perturbative approach. In the
rst case, the averaging procedure of the supposed homo-
eneous residual disorder allows one to recover the in-
ariance per translation of the coupled cavity chain. For
ne realization of disorder, the eigenfrequency of each
tom of the coupled cavity chain is different. Averaging
ver several configurations of disorder results in an inho-
ogeneous broadening that is identical for all atoms.
ote that reaching experimentally a situation corre-

ponding to the first case implies a well controlled tech-
ological processing.

. ANALYTICAL DISPERSION CURVE OF A
ISORDERED COUPLED CAVITY
TRUCTURE

n the following part, we detail the analytical calculation
f the dispersion curve presented in Fig. 1. The ideal dis-
ersion curve of the coupled cavity structure, ���k� /c�2

�� /c�2+2T cos�k��= �� /c�2, is the starting point of our

ig. 1. (Color online) Dispersion curves of a coupled cavity
tructure subject to residual disorder for (a) the real part of the
ave vector within the positive part of the first Brillouin zone
nd (b) the imaginary part of the wave vector. Inset: Dispersion
urve over the entire first Brillouin zone. The � parameter quan-
ifies the amount of disorder, and x is the normalized band fre-
uency (see text). � is the lattice constant of the coupled cavity
tructure. um and �u: bandwidth and frequency at the middle of
he band, respectively.
m 0
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D perturbation approach. The corresponding 1D Green’s
unction of the unperturbed Helmholtz equation, i.e., the
eld produced at r by a point source located at r�, is given
y [24]

G0�r,r�;k0
2� = −

1

T

�1
�l−m�

�1 − �2
=

1

T

�x − �x2 − 1��l−m�

2�x2 − 1
, �1�

ith k0=�0 /c being the free space wave number, r= l�
nd r�=m�, l and m integers, and �1=x−�x2−1 and �2

x+�x2−1. Note that we have assumed in Eq. (1) that the
ize of the field of one cavity state is approximately equal
o the periodicity � of the coupled cavity chain. In order to
tay in a general framework, we consider that the period-
city �, or equivalently here the size of the cavity mode,
nd the transfer integral T are independent parameters:
t means that the size of the single cavity field and the
oupling strength are decoupled.

With the presence of disorder and for a harmonic point
ource, the field satisfies the Helmholtz equation
��� ;r�+k0

2�n0
2�� ;r�+	�� ;r����� ;r�=
�r�, where n0�� ;r�

s the phase index of the unperturbed structure, and 	�r�
s the fluctuating part of the dielectric constant resulting
rom the disorder. We assume that the fluctuating part
�r� is a centered homogeneous random function whose
orrelation function is expressed as �	�r�	�r���=�2 exp��r
r�� /��=	��r−r���, with � being the correlation length
nd 	 the correlation function. The function 	 com-
letely characterizes the statistic of 	�r�, as only the two-
oint correlation function is non-vanishing for a centered
aussian random function.
Due to the statistical nature of the problem, our aim is

o find the first moment of the field, �G�r ,r� ;k0
2��, also

alled the mean Green’s function, and its second moment
r covariance �G�r ,r� ;k0

2�Ḡ�� ,�� ;k0
2��, where �¯ � means

veraging over different configurations, and the overbar
tands for complex conjugate. The poles of the Fourier
ransform �Ĝ�k ;k0

2�� of the mean Green’s function provide
he dispersion diagram of the disordered structure [24],
hereas the second moment will be used to determine the
nergy transport velocity in the diffusive regime. Based
n a diagrammatic method [25], �Ĝ�k ;k0

2�� can be formally
etermined with the Dyson equation as

�Ĝ�k;k0
2�� =

1

�Ĝ�k;k0
2�	−1 − �̂�k;k0

2�
, �2�

here the self-energy �̂�k ;k0
2� is the sum of all connected

iagrams, and

�Ĝ0�k;k0
2�� = FT
G0��r − r��;k0

2�� =
1

k0
2 −

�m
2

c2 + 2T cos�k��

,

�3�

here FT
¯ � stands for Fourier transform. Within this
rocedure, the determination of the dispersion curve con-
ists merely of calculating the self-energy. By retaining
nly the first term of the self-energy, the so-called first-
rder smoothing approximation [25], the self-energy takes
simple form:

�̂�k;k0
2� = �2k0

4 FT
G�0���r − r���	��r − r����. �4�

The analytical calculation of this last expression gives

�̂�k;k0
2� =

�2

T

k0
4

�2 − �1

1

�

2�1/� − i��1/���

�1/� − i��1/���2 + k2 for �x� � 1,

�5�

�̂�k;k0
2� =

�2

T

k0
4

�2 − �1

1

�

2�1/� + ln��1�/� − i��1/���

�1/� + ln��1�/� − i��1/���2 + k2

for �x� � 1, �6�

here �1=arg��1� with the assumption that the disorder
orrelation length is negligible compared to the size of the
ell, i.e., ���, these expressions can be further simplified
s

�̂�k;k0
2� = �̂�k0

2� =
�2

T

�

�

2k0
4

�2 − �1
=

�2

T

�

�

k0
4

�x2 − 1
for all x.

�7�

Such a hypothesis implies that the impact of the disor-
er is the same on average for each cell of the coupled sys-
em, i.e., all the cells are identically perturbed on average,
nd the inhomogeneous broadening of their spectra re-
ulting from the averaging procedure is identical, which
s in agreement with the framework that we have previ-
usly defined for the current model. From the analytical
xpression of the self-energy, the equation that defines
he dispersion curves, i.e., �Ĝ�k ;k0

2�	−1− �̂�k ;k0
2�=0, takes

he following simple form:

x − cos�k�� −
��

�x2 − 1
= 0, �8�

ith ��= ��2� /2T2��k0
2. This last parameter contains the

haracteristic parameters � and � of the model of the dis-
rder that was chosen. Moreover, we assume that the
andwidth ��� /c�=4T is much smaller than the middle
requency �m /c of the band, which allows us to approxi-
ate k0

4���m /c�4 and to include this term in the control
arameter �.
The determination of the dispersion curve consists of

nding the explicit relation between x and k for different
’s. For ��0 and for real x, only complex k’s are solutions
f the previous equation. By writing k=kr+ iki, we obtain
n particular for �x��1 cos��kr�=x /�y and ch��ki�=x /�y,
ith

y =
1

2�x2 + 1 +
�

1 − x2 +�x2 + 1 +
�

1 − x2� − 4x2� .

The corresponding dispersion curves x�kr� and x�ki� for
ifferent �’s are plotted in Figs. 1(a) and 1(b), respec-
ively. The maximum value of the � parameter has been
hosen to match recent experimental dispersion curves
�kr� of photonic crystal CCWs that were reported in
12,22]. Such a value fits data from state-of-the-art deep
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ltraviolet or electron-beam lithography patterning.
hereas the band edges are profoundly modified by an in-

reasing amount of disorder quantified by �, the central
alf-part of the band remains almost unperturbed for
�kr�. In this part of the dispersion curve, the main effect
f the disorder results in an increase in ki as shown in
ig. 1(b). The imaginary part of the wave number corre-
ponds to a damping of the first moment of the field.
hen averaged over different configurations of disorder,

he corresponding angular spectrum of the field looks like
smooth broad peak whose linewidth is given by 2ki (in-
omogeneous broadening). In practice, only a single con-
guration of disorder can be measured in a particular
ample, and the resulting angular spectrum has a
peckle-like shape whose envelope corresponds to the av-
raged case. Note that a spatial averaging resulting from
n infinite length of the structure is not equivalent to an
veraging over several configurations of disorder due to
he damping of the field.

Considering that ��1/ �T2��2 and that the plots in Fig.
(a) are given in normalized coordinates, the indepen-
ence of the central part of the band on the parameter �
s true whatever is the value of the bandwidth, provided
hat the T2� product is constant. Based on the assump-
ion of the current model, this implies that as small as
anted vg can be reached in the middle of the band if the

oupling strength T, or equivalently �u, decreases, and
2� is constant. As long as the hypothesis developed in
ection 2 is satisfied, in particular as long as the different
ells that form the coupled structure cannot be distin-
uished by the residual disorder on average, i.e., an aver-
ging over different configurations of the disorder in each
ell, there are no theoretical intrinsic limits for achieving
anishing group velocities. In practice, however, the in-
rease in � that is imposed by the condition T2�=const
ets a severe constraint on the quality of the technological
abrication due to the requirement of a homogeneous dis-
rder over all the cells: a 1 decade decrease in T, or
quivalently of vg, requires a 2 decade increase in �, and
onsequently of the sample size.

Although the validity of the definition of vg in the
iddle of the band does not raise a major issue for the

tate-of-the-art amount of residual disorder, Fig. 1(a) re-
eals that at the band edge the curvature of the disper-
ion curve is dramatically modified. It implies that vg in-
reases, or concomitantly the group index ng decreases, in
ontrary to the intended slowing down effect and finally
ven diverges. Such a behavior appeals for another defi-
ition of the speed of light in the same spirit as in [7].

. MICROSCOPIC DETERMINATION OF THE
PEED OF ENERGY TRANSPORT IN
HE DIFFUSIVE REGIME
hen the dispersive contribution of the intensity trans-

ort becomes negligible compared with the diffusive con-
ribution, the energy transport can be described with the
lassical diffusion equation [21]. For such a regime of un-
efined group velocity, van Tiggelen et al. developed a mi-
roscopic approach of the multiple scattering in random
ielectric particles in order to determine the macroscopic
iffusion coefficient and in particular the speed of the en-
rgy transport from ab initio parameters [26]. Their ap-
roach consists of solving the Bethe–Salpeter equation for
he second moment of the field. Here, we highlight the for-
al similarity between the mean Green’s function associ-

ted with the problem of the light propagation through
andom point scatterers and the one of the light propaga-
ion in simple periodic structures with a sinusoidal dis-
ersion curve. We take advantage of this correspondence
o give an analytical expression for the energy transport
elocity for different values of the disorder parameter �.

For a system of random isotropic point scatterers the
ean Green’s function is given by [25]

�Ĝ��;k�� =
1

��/c�2 − k2 − �̂���
, �9�

ith �̂���=nt���, and where n is the density of scatterers
nd t��� is the scattering factor. The corresponding en-
rgy transport velocity vE is a function of nt���. For the
oupled cavity system the mean Green’s function can be
ritten as

�Ĝ��;k�� =
1

��/c�2 − ��m/c�2 − 2T cos�k�� − �̂���
, �10�

ith �̂���= �̂�k0
2�=�� /�x2−1. Near the band edge that is

he focus of our current study, the “cos�k��” function can
e developed to the second order, and then

�Ĝ��;k�� �
1

��/c�2 − k2�T�2� − ��m/c�2 + 2T − �̂���
.

�11�

his last expression allows a formal correspondence with
he standard point scattering problem if nt���= �̂��� is re-
laced with nt���= ��m /c�2−2T+ �̂���, where �̂��� is a
ure complex number here. The comparison between the
ean Green’s functions of the two models is possible as

ong as the development of the cos�k�� term is a good ap-
roximation. To estimate the validity range of the previ-
us approximate development, the resulting ideal group
elocity, i.e., without disorder, is plotted as a dashed line
urve in Fig. 2. By comparing this curve with the corre-
ponding exact result obtained in the previous section, we
ee that such an approximation is satisfactory for x�0.7.
ote that in Section 3 we have determined the dispersion

urve and as a result the group velocity without any se-
ies expansion for the cos�k�� term. Here we take advan-
age of this expansion to simplify the calculation of the
nergy transport velocity. Without any resonance effect,
.e., in the present case far from the band edge, the energy
ransport velocity is expected to equal the unperturbed
roup velocity. We will show that, here, vE significantly
eviates from this standard value only for x�0.9.
With the use of the ladder approximation [27] and of

he Fourier–Laplace transform L�q ,�� of the intensity
cattered by one scattering point, the Bethe–Salpeter
quation can be conveniently transformed into [28]
�q ,��=S�q ,�� / �1−M�q ,��	, with S�q ,�� being a source

erm, and the kernel
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M�q,�� = nt̄��−�t��+�� G�p+,�+�Ḡ�p−,�−�
dp

�2��d , �12�

ith d being the dimension of the problem, p±=p± 1
2q, and

±=�± 1
2�. The parameters � and q represent the slow

arying parameters of the light pulse, whereas p and �
re the fast variables, which involve one period of the
ave. To determine the kernel, the Fourier–Laplace

ransform of the mean Green’s function is expanded to
rst order in � and in second order in q as describe in

28,29], for instance. As a result of the particular disper-
ion curve of the unperturbed structure, the coefficients
hat appear in the formula of the kernel are different
rom the ones obtained in [28] with the standard random
catterers model. We find in the case of the coupled cavity
hain

M�q,�� = 1 −
1

d
l2q2 − i��, �13�

here l=ke / Im�nt����= �1/����k0 /2T��vg
eff /c��1−x2 is the

cattering mean free path, and vg
eff=d� /dke is the effec-

ive group velocity for which we have defined ke
�k0

2−Re�nt����. As the real part of the scattering factor
oes not depend on �, this effective velocity becomes
qual to the unperturbed group velocity: vg

eff=c�ke /k0�
c��2T /k0��1−x=vg0. The time � is the sum of two con-

ributions [30]: �= �k0 /ke��sc+�dw, with the scattering time
sc= l /c and the dwell time �dw. The dwell time is associ-
ted with the ability of resonances to store the energy of
he field at a given frequency, such as Mie resonances in
he case of powder of spherical scatterers [26]. From the
etermination of the kernel, the following expression is
btained for the dwell time in the case of the standard
andom scatterers model [28]:

ig. 2. (Color online) Variations of the group index ng (top) and
f the group velocity vg (bottom) of a wave propagating in a
oupled cavity structure according to the normalized band fre-
uency x for different amounts of residual disorder (c: speed of
ight). The group velocity and the group index are normalized
ith respect to the bandwidth �u. Dashed line: group velocity re-

ulting from a second order approximation of the ideal dispersion
urve.
�dw = Im1

t

dt

d�
� +

2�

ket̄t
Re dt

d�
� . �14�

he same expression is obtained in the case of the CCW
ithin our approximate development of the cos�k�� term.
or the CCW the scattering factor is given by

nt��� = ��m/c�2 − 2T −
��

�x2 − 1
. �15�

ence its real part is constant. This implies the simplifi-
ation �dw=Im��1/ t��dt /d��	 and finally leads to the fol-
owing analytical formula:

�dw

�sc
=

c

vg0

2x

�1 − x2�

�um�u

um
2 �1 − x2� + ��u2

. �16�

rom the expression of the kernel obtained above, the en-
rgy transport velocity is defined by vE= l /�. This can be
ewritten in the analytical form

vE =
vg0

1 +
vg0

c

�dw

�sc

= vg0

1

1 +
2x

�1 − x2�

�um�u

um
2 �1 − x2� + ��u2

.

�17�

In Fig. 3 we show the variation of vE near the band
dge for different �’s. Over more than 90% of the band vE
an be approximated with the group velocity of the ideal
tructure, and in comparison to the group velocity, vE is
elatively unaffected by the parameter �. The contribu-
ion of the dwell time resulting from the multiple-
cattering processes becomes significant only for frequen-
ies located in the last 4% of the band, i.e., for frequencies
uite far from the frequency where vg becomes undefined.
n practice the contribution of the dwell time can be diffi-
ult to observe due to weak or strong localization effects
31–35]. Note that the calculation of the dwell time relies
n the ladder approximation that misses contributions in
he development of the irreducible kernel such as crossed-
iagrams. The formula obtained for the velocity transport
s valid only in the diffusive regime; in particular it is in-
ppropriate for sub-diffusive and anomalous diffusion.
evertheless the energy velocity transport is expected to
anish, in contrast to the group velocity that is subject to
lower bound near the band edge due to the residual dis-

rder.

ig. 3. (Color online) Variation of the energy transport velocity
E of a wave propagating in a coupled cavity structure near the
and edge for different amounts of residual disorder quantified
y the � parameter (see text).
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. DISCUSSION ON SPEED OF LIGHT AT
HE BAND EDGE OF A DISORDERED
OUPLED CAVITY STRUCTURE

n Fig. 4, we highlight the dispersion curve near the top
and edge of a generic coupled cavity structure subject to
esidual disorder and focus on the corresponding group
nd energy velocities for a given amount of disorder. The
isorder is quantified by the single characteristic constant
that has been previously defined above. The velocities

re normalized with respect to the speed of light in
acuum c and to �u /2, in order to provide a universal plot
hatever is the coupling strength between the cavities.
he purpose of this universal plot is to provide a compre-
ensive link between the velocity of a wave that propa-
ates in a disordered coupled cavity structure and the
hape of the dispersion curve.

For normalized frequencies x below a value of 0.7,
hich depends on �, the main difference between the un-
erturbed dispersion curve ��=0�, represented as a
otted-dashed line, and the perturbed one (here �=0.01),
ies in the linewidth broadening of the spectral response
f the structure. Such a broadening is highlighted with
he gray area that corresponds to the spectral linewidth
t half-maximum along the wave number axis. Above x
0.7, the dispersion curve subject to disorder starts to dif-

er significantly from the ideal case, in line also with a
arge broadening of the spectral response. In parallel,
rom x=0.7, the group velocity vg does not decrease to-
ard zero as expected and begins to diverge with a hori-

ontal asymptote labeled L1. In contrast, the energy ve-
ocity vE strictly follows the variation of the group velocity
g0 of the corresponding ideal structure, except at the ex-
reme parts of the band edges or for an amount of disor-
er that is out of the range of the model.
As recently observed in [21,22] for a given realization of

isorder, the dispersion curve suddenly stops to be de-
ned well before the excitation frequency reaches the
and edge. This effect results in a transition between a
ingle broadened spectral peak and a speckle-like angular
eld distribution. As a consequence the group velocity

ooses its meaning after such a transition. Within the cur-
ent averaged ensemble model, the L1 asymptote puts an
pper limit for the range of validity of vg, which gives an

ig. 4. (Color online) Left: Universal dispersion curve of a CCW
ear the band edge without (�=0, dashed-dotted line) and with

�=0.01, plain line) disorder. Right: Corresponding group veloc-
ty vg and energy transport velocity vE (�, c, �u: lattice constant,
peed of light, and bandwidth, respectively). Gray shadow: inho-
ogeneous linewidth broadening at half-maximum. Inset: Dis-

ersion curve over the entire first Brillouin zone.
nterpretation of the experimental observation reported
n [21,22]. Nevertheless, a second characteristic quantity,
abeled L2, can be defined in the framework of our model:
t corresponds to the value where vg exceeds its value at
he middle of the band.

As discussed in [21], an undefined dispersion relation
oes not preclude the energy transport of a pulse. In
erms of multiple-scattering theory, the intensity of the
ave that propagates can be separated into two contribu-

ions [27,36]. The speed of propagation of the first contri-
ution is given by vg, whereas for the second contribution
t is vE. The relative weight between these two contribu-
ions provides a criterion to define the actual speed of
ight to be considered for a propagating wave packet.

hile the first contribution is described by a ballistic
ransport equation, the second contribution is governed
y a diffusion equation as shown below. As the first con-
ribution is exponentially attenuated along the propaga-
ion with a damping factor equal to 1/ki, this contribution
ill be significant only on a length scale smaller than
/ki, which corresponds to around six cavities for
=0.01.
Considering that the dispersive regime, i.e., the region

f the band where the group velocity exists [21], allows a
ropagation of the information of the field in a well-
efined basis, it is the preferred regime to transport the
nformation of a pulsed wave. However, the slow trans-
ort velocity in the diffusive regime could be advanta-
eously used to enhance nonlinear effects, in particular
he Kerr effect, as the pulse spends more time at a given
lace of the photonic structure. When the group velocity is
eaningful, the spatial compression of the pulse inherent

o the slowing down effect [1] is expected to enhance the
onlinear Kerr interaction, as long as the dispersion
urve is not modified. In the diffusive regime the situation
s more complex. Depending on the sign of the Kerr coef-
cient enhanced spreading of the pulse (defocusing case)
r wave collapse (focusing case) has been recently dis-
ussed in [37]. In the first case we expect an increase in vE
super-diffusive regime), whereas in the second case vE
hould decrease (sub-diffusive regime). We would like to
tress that nonlinear effects profoundly modify the role
layed by the disorder as, for instance, simulated in [38]
ith a mechanical model based on a linear chain of
asses linked by springs with a quadratic nonlinearity.

n particular the nonlinearity can lead to an effective
moothing of the disordered dielectric potential, in anal-
gy to the transition from Bose-glass phase to superfluid
hase as predicted in the Bose gas [39]. The dispersion
urve of a coupled cavity structure can also be drastically
ransformed due to nonlinear effects in the same way as it
s renormalized by the presence of pure dissipation [19] or
s it is flipped according to the first diagonal of the dis-
ersion diagram in distributed feedback lasers with
trong gain modulation [40].

. CONCLUSION
o conclude, we have developed an analytical model that
escribes the dispersive properties of coupled cavity
tructures and in particular the speed of light in such
tructures. In the middle of the frequency band, this
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odel predicts that the group velocity does not signifi-
antly depend on the amount of disorder and as a result
an be as small as wanted provided that the residual dis-
rder is homogeneous over all the structure, which is
hallenging for the current state-of-the-art technology. At
he band edges, the speed of light is strongly altered by
he disorder-induced multi-scattering processes and can
nly be defined as an energy transport velocity. According
o the analytical formula that we have derived in the
ramework of a mean field theory, the energy transport
elocity varies as the ideal group velocity of the unper-
urbed structure and can be vanishingly small, as long as
he wave transport is in a diffusive regime.
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