
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011 1103

Selection of Network Coding Nodes for Minimal
Playback Delay in Streaming Overlays

Nicolae Cleju, Nikolaos Thomos, Member, IEEE, and Pascal Frossard, Senior Member, IEEE

Abstract—Network coding permits to deploy distributed packet
delivery algorithms that locally adapt to the network availability in
media streaming applications. However, it may also increase delay
and computational complexity if it is not implemented efficiently.
We address here the effective placement of a limited number of
nodes that implement randomized network coding in overlay net-
works, so that the goodput is kept high while the delay for de-
coding stays small in streaming applications. We first estimate the
decoding delay at each client, which depends on the innovative
rate in the network. This estimation permits to identify the nodes
that have to perform coding in order to reduce the decoding delay.
We then propose two iterative algorithms for selecting the nodes
that should perform network coding. The first algorithm relies on
the knowledge of the full network statistics. The second algorithm
uses only local network statistics at each node. Simulation results
show that large performance gains can be achieved with the se-
lection of only a few network coding nodes. Moreover, the second
algorithm performs very closely to the central estimation strategy,
which demonstrates that the network coding nodes can be selected
efficiently with help of a distributed innovative flow rate estimation
solution. Our solution provides large gains in terms of throughput,
delay, and video quality in realistic overlay networks when com-
pared to methods that employ traditional streaming strategies as
well as random network coding nodes selection algorithms.

Index Terms—Delay minimization, network coding, overlay net-
works, throughput maximization.

I. INTRODUCTION

T HE recent development of overlay networks offers
interesting perspectives for multimedia streaming appli-

cations, since network diversity can be used advantageously for
improved quality of service. The traditional streaming systems
based on ARQ or channel coding techniques however gener-
ally fail to efficiently exploit this diversity. They either suffer
from relatively high computational cost, require coordination
between network nodes, or lead to suboptimal performance in
large scale networks where local channel conditions are hard to
estimate. A different paradigm has been initiated recently with

Manuscript received January 18, 2011; revised April 28, 2011; accepted June
18, 2011. Date of publication July 12, 2011; date of current version September
16, 2011. This work was supported in part by the Swiss National Science Foun-
dation under grant PZ00P2-121906. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Dr. Yiannis An-
dreopoulos.

N. Cleju is with the “Gheorghe Asachi” Technical University of Iasi, Iasi
700506, Romania (e-mail: nikcleju@etti.tuiasi.ro).

N. Thomos and P. Frossard are with the Ecole Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland, and also with the Signal Processing
Laboratory (LTS4), Lausanne, Switzerland (e-mail: nikolaos.thomos@epfl.ch;
pascal.frossard@epfl.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2011.2161448

network coding [1], [2], where some processing is requested
from the network nodes in order to improve the packet delivery
performance. Specifically, network coding nodes combine
buffered packets before forwarding them to next hop nodes.
This coding strategy is particularly appealing in distributed
streaming systems, as it removes the need for reconciliation
between nodes. It locally adapts to the available bandwidth and
packet loss rate and even permits to approach the max-flow
min-cut bound of the network graph. Overall, the network
coding systems have shown improved resiliency to dynamics,
delays, scalability, and buffer capacities in networks with
diversity [3].

The application of network coding algorithms in multimedia
streaming systems is however not straightforward. Specifically,
multimedia streaming imposes strict timing constraints that im-
pact the design of network coding algorithms. A practical net-
work coding system has been presented in [4] and addresses the
specific characteristics of streaming applications. It implements
randomized network coding (RNC) techniques [5] in the net-
work nodes and devises a protocol to deal with buffering is-
sues and timing constraints. Moreover, it introduces the con-
cept of generations that restricts coding operations to packets
that share similar decoding deadlines. However, network coding
systems still face important issues in practical systems due to
the decoding delays imposed by successive network coding op-
erations. This delay as well as the computational overhead in
the system grow with the number of network coding nodes. It
becomes therefore important to select efficiently the subset of
nodes that perform network coding in order to control delay and
complexity and still exploit efficiently the diversity in the net-
work.

In this paper, we discuss solutions for the selective placement
of a few network coding nodes in order to reduce the delay for
video delivery. We assume that the number of network coding
nodes is given beforehand, based on computational complexity
or decoding delay constraints.1 The nodes in the network are
categorized into network coding (NC) and store and forward
(SF) nodes. The NC nodes use the practical network coding
algorithm described in [4], which has been selected for its ef-
fectiveness and simplicity. Similarly, we adopt the concept of
coding generation and buffer models [4] for proper handling of
the timing constraints in the stream delivery. We extend our pre-
vious work [7] that estimates the rate of non-redundant packets
in each network node. This rate is an indication of the goodput of
the system as it measures the number of useful and non-redun-
dant packets that are received at a node. It permits to estimate the

1The problem of finding the optimal number of network coding nodes for
delay-minimal video delivery is actually an NP-hard problem [6]

1520-9210/$26.00 © 2011 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147968937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1104 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011

decoding delay in the client nodes; this corresponds to the time
necessary for collecting enough useful packets to build a full
rank decoding system. Contrarily to [7], we directly estimate
the delay for selecting the best subset of nodes that shall imple-
ment network coding. A direct estimation of the delay leads to
better solution than the estimation of the innovative rate. While
both problems are dual in the case of a single client, the min-
imization of the delay or the maximization of the goodput are
not exactly equivalent in multicast applications.

We propose two algorithms that iteratively choose the SF
nodes to be turned into NC nodes for improving the system per-
formance until the predefined number of network coding nodes
has been reached. Both algorithms differ in their view of the
network status. The first algorithm assumes that a central node
has complete knowledge about the status of the overlay net-
work in terms of available bandwidth and packet loss rate. The
second algorithm only uses local estimations of the network
status at each node and provides a solution for distributed sys-
tems. The simulation results show that the proper selection of
only a few network coding nodes already leads to throughput
gains that come close to the max-flow min-cut bound and greatly
decrease the delay necessary for media stream delivery. More-
over, the algorithm that only considers local network statistics
performs very competitively with the algorithm that uses full
knowledge of the network topology. Both algorithms even se-
lect the same nodes for network coding in most of the cases. Fur-
thermore, they both outperform basic streaming algorithms built
on store and forward approaches as well as solutions where net-
work coding nodes are selected randomly. These observations
are confirmed in realistic overlay networks where our method
can improve users’ video experience even in the case where only
few nodes implement randomized network coding. This is due
to a good balance between decoding delay and efficient use of
the network diversity. Finally, minimal network knowledge is
often sufficient for determining the efficient positioning of the
network coding nodes.

The paper is organized as follows. In Section II, we present
the framework under consideration and briefly overview the net-
work coding principles. In Section III, we describe the model of
the SF node buffer that is eventually used for delay computation.
Then we present in Section IV a methodology for estimating the
useful flow rate in the network nodes as well as the decoding
delay. The centralized and semi-distributed algorithms for se-
lecting the network coding nodes are presented in Section V.
Simulation results are proposed in Section VI where the benefits
of the proposed algorithms are evaluated for video streaming ap-
plications in various realistic network cases. Finally, the related
work is discussed in Section VII and conclusions are drawn in
Section VIII.

II. NETWORK CODING FRAMEWORK

We consider a streaming system that consists of servers,
clients, and intermediate nodes, as illustrated in Fig. 1. The
overlay network offers source and path diversity, which can be
efficiently exploited with network coding techniques that ran-
domly combine packets in the nodes. This increases the packet
diversity in the network and leads to efficient exploitation of the
channel resources without the need for complex scheduling or

Fig. 1. Illustration of a system for streaming on overlay networks. Multiple
streaming servers (SS) send information to clients on a lossy packet network
via intermediate nodes that can be either network coding (NC) or “store and
forward” (SF) peers.

nodes coordination mechanisms [1]. The network is modeled
by a directed acyclic graph where is the set of
network nodes and is the set of edges (links) in the network.
Each network link between nodes and is characterized by
a bandwidth (expressed in terms of packets per second)
as well as a packet loss rate . We assume that all servers
transmit the same multimedia content to clients via interme-
diate nodes that could either be NC or SF nodes. We consider
that the intermediate nodes are not necessarily interested in the
transmitted content, but rather act as helper nodes and assist the
packet delivery system. The system implements a push-based
packet delivery strategy that involves lower communication and
coordination overhead than a pull-based solution. We consider
that the servers can also implement randomized coding on the
source packets for improved robustness. The coded packets are
then pushed to the clients through the successive intermediate
nodes. Finally, the clients perform decoding after receiving
enough packets to build a full rank decodable system of packets.

The SF nodes simply send at each transmission opportunity
the first packet in their buffer, which has not been sent previ-
ously. The buffer is managed in a first-in-first-out manner, where
the oldest packets are replaced by new ones when the buffer is
full. When the outgoing bandwidth is larger than the incoming
capacity, an SF node sends random replicates of packets from
its buffer. On the other hand, the intermediate nodes that per-
form network coding combine randomly the buffered packets in
order to generate network coded packets that are further trans-
mitted to neighbor nodes. As suggested in [4], the NC nodes
first check whether the received packets are innovative, where
innovative packets characterize packets carrying novel informa-
tion. Non-innovative packets are discarded immediately as they
do not increase the symbol diversity into the network. Then the
NC nodes randomly combine the remaining packets with coding
operations based on randomized network coding (RNC) [8]. It
is a simple and efficient network coding solution in distributed
systems. RNC codes work similarly to rateless codes [9], [10]
and can generate an arbitrary number of coded packets from a
given set of source packets. It provides a means for simple band-
width adaptation.

Formally, the network coding operations performed in a peer
node can be written as follows. An NC node generates

CLEJU et al.: SELECTION OF NETWORK CODING NODES FOR MINIMAL PLAYBACK DELAY IN STREAMING OVERLAYS 1105

Fig. 2. NC node combines incoming packets � and generates network coding
packets � . A header � is appended to each coded packet and carries the
coding coefficients.

packets by RNC. The th network coded packet is of the
form

where corresponds to the set of packets of the same gener-
ation that are available at node , denotes either a network
coded packet or a native (uncoded) packet, and is a random
coefficient over the Galois field of size , GF(q). The basis of
the Galois field is typically set to , as it has been shown
in [4] that this guarantees high symbol diversity and low prob-
ability of building duplicate packets. As the packets combined
in a node are actually combinations of the original data packets,
the encoded packets can be expressed as a function of the native
packets

(1)

where is the total number of native packets, e.g., for video
transmission, can be the number of video packets. The pa-
rameters and represent, respectively, the native packets
and their corresponding coding coefficients after random net-
work coding operations. It is worth noting that some of the
coefficients can be zero, which means that does not
contain information about the native packet . As the coding
coefficients are chosen randomly, a header of constant length is
appended to each packet with coefficient information, so that
the receiver can decode the stream and recover the original
data packets. A network coded packet is thus augmented with a
header containing the vector of coding coefficients. Fortunately,
the header does not grow with the number of hop transmissions
due to the relation of equation (1). The encoding procedure in
a peer node is depicted in Fig. 2.

The decoding operations at the client basically consist in
solving the system of equations that correspond to the network
coding operations. Upon collecting a network coded packet,
the client stores it in a buffer and adds a line into a matrix
that contains the coding coefficients. When a full rank system
is collected, the original packets are reconstructed by solving
the following equations:

...
...

. . .
...

...

where and are, respectively, vectors with the coded and
source packets. The solution of the equations system is typically
computed by Gaussian elimination [4].

The proposed streaming system leads to the following obser-
vations. First, the network coding nodes act somehow similarly
to sources in the sense that they refresh the set of packets in
the network by coding operations. This is necessary as there is
a non-zero probability for the reception of duplicate packets in
the network nodes when the network is mostly composed of SF
nodes. These duplicates can be generated by a node that does not
receive enough diverse packets, or from different nodes that in-
dependently transmit identical packets. These duplicate packets
lower significantly the stream delivery performance especially
in networks containing bottlenecks. However, the careful place-
ment of a few network coding nodes in the overlay can help to
reduce the number of duplicates in the network. If the number
of network coding nodes becomes too large, the probability for
the randomized network coding operations to generate duplicate
packets becomes again non-negligible. This is especially the
case if coding operations are restricted to small generations due
to delay constraints. As redundancy, delay, and computational
overhead might increase with the number of coding nodes, it
becomes quite apparent that efficient systems should not im-
plement network coding in every overlay node. Instead, one
has to find an effective placement of network coding nodes in
order to fully exploit the network diversity in overlay streaming
applications.

III. SF BUFFER MODEL

We provide in this section a buffer model for the SF nodes,
which forward and possibly replicate packets if the outgoing
bandwidth is sufficient. The buffer model is used to estimate
the rate of replicated packets, which is an important parameter
in the computation of the decoding delay in the receivers.

As illustrated in Fig. 3, we consider that each SF node has
two buffers of capacity (in packets): the Main Buffer (MB),
where the incoming packets are stored, and the Copies Buffer
(CB), where copies of the packets that have been recently trans-
mitted are stored. Both buffers follow a FIFO model as the oldest
packets are overwritten by the new ones when the node’s buffer
capacity is exceeded. In addition, since our system works with
deadline-constrained data, the packets are removed from the
buffers when their decoding deadline expires.

The buffering process works as follows: when a packet ar-
rives in an SF node, it is stored in MB. When the SF node has a
transmission opportunity, a packet from MB is sent and thus re-
moved from MB. A copy of this packet is kept in CB. Whenever
MB is empty and the node has other transmission opportunities,
it randomly selects a packet from CB and transmits it. In other
words, the node transmits packet replicates when the outgoing
bandwidth is sufficient. The packets in CB are overwritten after
some time by newer packets. In our model, if an SF node does
not have sufficient outgoing bandwidth for replication, it does
not use CB. Alternatively, if the outgoing bandwidth is large,
CB is used extensively and MB is often empty. It is important
to note that MB and CB are not necessarily of the same size.
The size of the buffer is actually not a critical design parameter

1106 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011

Fig. 3. Packet replications procedure followed in an SF node after the reception
of the �th innovative packet.

in our system; it mostly affects the efficiency of the packet repli-
cation process with higher redundancy when CB is small.

We are now interested in computing the number of packet
replicates generated by the SF node under the proposed buffer
model. A priori, the average number of replicates per packet

at node is given by the ratio of outgoing and incoming
bandwidths and , respectively. We can write

. However, the probability for a packet to be repli-
cated depends on the order of its arrival to the SF node. Typi-
cally, a packet that arrives early spends more time in the buffer
and thus has a higher probability to be replicated than a packet
that arrives late and close to the decoding deadline. We thus con-
sider three cases depending on the order of arrival of the packets.
We denote the arrival by the position of a packet in a coding
generation.

The first case includes the earliest packets that reach the node
while CB is not full. Every packet is replicated with a uniform
probability , , where is the number of packets avail-
able in CB. Hence, the packet replication rate decreases as the
buffer level increases. After some point, CB becomes full, but
the early packets stay for some more time in CB before getting
flushed; the replication rate is in this case. These two fac-
tors are described in the large parenthesis of (2). The average
number of copies for the th packet is thus given by

(2)

The second case corresponds to packets that reach the node
while CB is full. When CB is full, each new packet overwrites
the oldest packet in CB. Each packet has a lifetime in CB that
corresponds to the time necessary to collect new packets in
the SF node. The replication probability is equal to and
the average number of copies is then equivalent to the average
replication rate in the node. In this stationary mode, we have

(3)

where is the number of packets that fully traverse CB until the
head of the buffer’s queue. Finally, the third case corresponds to
the packets that do not spend a full lifecycle in CB due to the
expiration of the decoding deadline. When the decoding dead-
line expires, CB is flushed, and the packets in the buffer at that
moment have less opportunities to be replicated, since they do
not traverse fully the buffer. If denotes the posi-
tion of the packets in CB when the buffer is flushed, the average
number of copies of the late packets can then be written as

(4)
where is the overall number of packets of the same
coding generation that reach the node . These packets are not
necessarily innovative for a client as this depends also on the
packets received from all other nodes connected with the client
. The number of innovative packets received from client that

have been transmitted from a node is denoted . The
exact calculation of is equivalent to the calculation of
the decoding delay and cannot be computed analytically. It can
only be estimated through an iterative procedure that will be de-
scribed in Section IV. The fraction in (4) denotes the percentage
of the time that a packet from a generation stays in the CB prior
to the deletion of all packets of the generation.

In summary, two main factors affect the packet replication
rate, the FIFO behavior of the CB buffer and the expiration of
the decoding deadline that causes the deletion of packets in the
buffer. Thus, the first packets are replicated more than av-
erage and the last packets are replicated less than average, while
the intermediate packets have constant replication rate. Finally,
it should be noted that, depending on the bandwidth value and
the delay constraints, there are situations where the buffer does
not reach the stationary regime of (3) and the computation of
the number of replicates shall be adapted accordingly.

We use the above buffering model to compute an equivalent
packet replication rate for all packets in an SF node, which
is more precise than the average value .
The equivalent replication rate is estimated so that the number
of packets at the client is preserved with respect to the case
where the packet replication rate is computed independently for
each packet. We assume that each packet travels independently
to the client , and we pose the following equivalent condition:

(5)

where is the probability of losing a packet between the
node and the client . The average number of copies is

CLEJU et al.: SELECTION OF NETWORK CODING NODES FOR MINIMAL PLAYBACK DELAY IN STREAMING OVERLAYS 1107

Fig. 4. Flow decomposition of the network graph by the proposed algorithm. The top (red) node and the bottom (green) node are, respectively, the source and
the client of the considered topology. The SF and NC nodes are represented, respectively, by the big and small black nodes. Flow from the (a) source, (b) first NC
node, (c) second NC node, (d) third NC node, and (e) fourth NC node.

computed from (2)–(4). Rewriting the above equation, we can
express the equivalent replication rate as

(6)

We use this replication rate estimate in the computation of the
decoding delay in Section IV.

IV. DELAY ANALYSIS

A. Estimation Methodology

Our objective is to minimize the decoding delay by the proper
placement of NC nodes in the overlay. The decoding delay is the
time required to gather a sufficient number of innovative packets
for decoding. In the analysis below, we restrict our attention to
cases where a full rank system is built at decoder and estimate
the delay necessary for this situation to happen. We further con-
struct our analysis for one coding generation, while the exten-
sion to multiple generations is straightforward. The decoding
delay depends on the rate of innovative packets at the client.
The innovative rate increases monotonically with the number of
useful packets at the client [4], which corresponds to the number
of different packets that reach the client. Hence, a higher rate of
useful packets leads to a smaller decoding delay.

In order to compute the decoding delay, we consider that SF
nodes replicate packets in case of large outgoing bandwidth. We
further consider that new packets are generated only at sources
and NC nodes. We treat these nodes independently in the com-
putation of the delay at the client as illustrated in Fig. 4. We
assume that the probability of generating two identical packets
in the sources or NC nodes is negligible due to the large size
of the Galois field. In more details, we first estimate the delay
noticed by the client when packets are sent from a given source
through all the paths connecting this source to the client, except
for the paths that traverse NC nodes [see Fig. 4(a)]. Next, we
consider the NC node that is the closest to the source and all
the paths that connect it to the client, except for those passing
through other NC nodes [see Fig. 4(b)]. Similarly, all other NC
nodes are considered only when all their parent NC nodes have
been visited. This procedure is repeated for the unprocessed NC
nodes and the corresponding graphs are shown, respectively, in

Fig. 4(c)–(e). The total delay is computed under the assumption
that all sources and NC nodes send independent streams. Equiv-
alently, we assume that the total useful flow is equal to the sum
of the useful flows generated by the source and all the NC nodes.

As we consider lossy network paths, we have to take into ac-
count that some of the packets generated by network nodes do
not reach their destination. We thus estimate the probability
that a packet sent by the node does not reach the client . This
probability iscomputedonthesubgraph thatcontainsall thepaths
connecting the node with the client but excludes the paths that
traverse other NC nodes since these typically alter the set of re-
ceivedpackets.Thecorrespondingsubgraphsarecolored inred in
Fig. 4. We denote by the set of children ofnode (excluding
the NC nodes) in the subgraph and we define

as the probability that a packet transmitted by node is for-
warded to a descendant node . In addition, we write
the probability that a packet is deleted in a node due to buffer
overflow as

Recall that and are, respectively, the cumulative in-
coming and outgoing bandwidth of node . Then, a packet sent
by node might not reach the client due to one of the following
three causes. The packet can be lost during its transmission to
the child node or it can be lost at the node due to buffer
overflow. Finally, it can be lost along with all its possible copies
during the transmission from the child node to the client .
Overall, the probability is given as

(7)

where denotes the packet loss probability over the network
segment connecting nodes and . The probability can be
computed recursively backwards starting from the clients up to
the server or NC nodes. Specifically, we first set to zero the loss
probabilities for all the clients. Then, all nodes in the directed
acyclic subgraph are visited backwards. Each node is visited

1108 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011

only when all its children nodes have been processed already.
Once is known, we can compute the rate of useful packets
received by the client from a source or an NC node by multi-
plying the respective outgoing rate by the probability of correct
reception .

Next, we define , the number of packets received by any
node that are potentially useful for the client . These packets
correspond to the data that reaches the node and contains in-
formation that is potentially useful for the client . It depends
on the paths connecting the source nodes and the NC nodes
to the node , i.e., the subgraphs colored in green in Fig. 4. It
also depends on the set of SF nodes on these paths. The rate of
useful packets transmitted by the sources corresponds to their
outgoing bandwidth, as they are able to generate any number of
different packets via network coding. However, the useful rate in
NC nodes may be smaller than their outgoing bandwidth, as they
may have only part of the source information in their buffer. Fi-
nally the number of useful packets in SF nodes cannot be larger
than the number of incoming packets. It is however difficult to
estimate in a direct way. We therefore propose below to com-
pute the delay in a recursive manner.

B. Decoding Delay

In this section, we estimate the delay at a client node .
The decoding delay depends on the rate of useful packets re-
ceived from the multiple sources or network coding nodes. We
estimate the time necessary to form a system of full rank at
the decoder, where is the generation size in packets. In prac-
tice, the client might need to collect a slightly larger number of
packets, [4] for forming a system with inno-
vative packets. This is due to the possibility that useful packets
from a source might still be redundant and not completely inde-
pendent of packets generated by other sources. The exact value
of the overhead factor depends on the coding system (e.g.,
it can be upper-bounded by for RNC, where is the GF
size). However, our analysis is relative, and compare different
configurations to select the option that leads to the minimal de-
coding delay. It becomes therefore equivalent to work with or

since the solutions that lead to the fastest delivery of and,
respectively, packets are identical. We choose to work with

in the rest of this section.
We compute the average decoding delay by first estimating

the time necessary to collect enough packets from each source
or NC node independently. Under the assumption that each one
of these multiple collection processes represents a uniform flow
of packets, we can finally approximate the expected decoding
delay as the time necessary for the collection of a sufficient
number of packets from multiple independent flows.

The complete algorithm for computing the decoding delays
is given in Algorithm 1. Note that the algorithm uses an itera-
tive procedure to compute the decoding delays, since the equiv-
alent packet replication rate in SF node (see Section III) cannot
be exactly computed at first. The algorithm initializes the repli-
cation rate to an average value given by the input and output
bandwidths of each node, and refines this value along with the
successive decoding delay estimations. The NC nodes are exam-
ined in the order of their proximity to the sources, i.e., the nodes
that are closer to the sources are processed first. The number of
useful packets is computed recursively at all NC nodes,

starting from those that are close to the sources. Then the algo-
rithm considers NC nodes that receive packets from NC nodes
that have been already visited. This specific procedure is appli-
cable in our framework as we consider the iterative selection
of network coding nodes. Nodes are checked in a greedy way
and the algorithm improves at each stage the current solution by
the selection of the additional network coding node that brings
the largest delay reduction. The overall algorithm typically con-
verges only after a few iterations.

Algorithm 1: Delay computation algorithm

1: Initialize replication rates for every node:
.

2: repeat

3: for each client node do

4: Compute for sending nodes from (7).

5: Compute for all sources .

6: for each NC node do

7: Compute using (10)–(14) setting node in
SF mode.

8: Compute using (10)–(14) setting node
in silent mode.

9: Compute .

10: Compute using (8).

11: if then

12: Compute using (10)–(14) setting node
in NC mode.

13: else

14: Compute the expected decoding delay
using (15).

15: end if

16: end for

17: Compute the average decoding delay considering
all sources and NC nodes simultaneously, with (16).

18: end for

19: for each SF node do

20: Estimate the total number of packets received by
each node, per generation: .

21: Update the replication rate with (6).

22: end for

23: until Until convergence of .

We describe now the delay estimation algorithm in more de-
tails. The steps 7–10 of Algorithm 1 correspond to the estima-
tion of the useful rate in NC nodes, which is necessary
for computing the initial replication rate of the node . As this

CLEJU et al.: SELECTION OF NETWORK CODING NODES FOR MINIMAL PLAYBACK DELAY IN STREAMING OVERLAYS 1109

rate is difficult to estimate in a direct way, we choose a differen-
tial method by comparing the delay observed by the client
when the node is active and, respectively, silent. From the ex-
pected delay in each node’s operation mode, we can compute

that is the difference between useful rates at client
when the node is active or, respectively, silent. Finally, the
rate of the packets at node that are useful for the client

is computed by solving

(8)

where the first and second conditions correspond to the cases
when the node in SF mode has a small incoming, respectively,
outgoing bandwidth. Note that, when the network does not con-
tain any NC nodes, the rate of useful packets that are trans-
mitted is simply equal to the output bandwidth of the sources.
In this case, the useful rate received by the client is simply

.
Then we compute the delay due to packets sent by the dif-

ferent sources and NC nodes in the network. We consider two
cases. First, we consider the NC nodes that have limited in-
coming bandwidth [i.e., in line 12 of Alg. 1]
and the sources with outgoing bandwidth larger than the source
rate. The probability of generating useful packets in such nodes
evolves as the buffer fills in. We start by estimating the number
of different packets received by the client when the node
is the only source of information. In average, the node sends

packets in the inter-arrival time of two
consecutive packets in its buffer, which are combinations of the
same set of input packets. Out of these packets, packets,
can be considered as useful for the client if the decoding
system has a rank deficiency of . Furthermore, due
to packet losses and bandwidth variations in the network, each
of the packets generated by the node arrives at the client with
probability . The probability that out of the
packets arrive at the client is

(9)

Note that in general, does not have an integer value. We
therefore perform an interpolation between the values of
evaluated on the integer values closest to . This is necessary
as the packet replicas can only be integers, while the average can
be a real number.

We then consider the probability for the client to
collect useful packets from data sent by a node that possesses

useful packets. This probability can be computed recursively
as

(10)

This relation holds for . The first factor in (10) repre-
sents the probability that the client has received in total
packets from the node , while possesses packets that are
useful for client . The second term comes from (9). The sum of
terms over all admissible leads to the probability .

When , the rank of the equation system received by
node cannot exceed as it is equal to the generation size. Thus,
(10) becomes

(11)

We further denote by the probability that the client
collects useful packets precisely due to the arrival of the
th useful packet in the sending node . This probability dif-

fers from (10), which corresponds to the case where decoding
is possibly exactly with arrival of the th packet. can
be written as

(12)

where includes all possible events that lead
the node to collect packets with rank when it receives
the useful packet for client . Note that, due to integer
constraints, and are also computed by
performing interpolation for the integer values closest to .

The arrival time of the th useful packet at the sending node
can be computed from the useful packet rate . We assume
that represents a constant rate and that the arrival times
of packets in node are uniformly distributed. Now, one can
compute the expected number of useful packets that are
necessary at the sending node for the client to receive
useful packets. It is expressed simply as

(13)

The decoding delay for the client when the NC node is
the only source of information can be estimated by dividing the
expected number of necessary packets by the inter-arrival time
between two useful packets. It is written as

(14)

Then, we consider the sources and the NC nodes that are
over-provisioned in bandwidth [i.e., the set of nodes where

, line 14 in Alg. 1]. We assume that they transmit
packets that are all potentially useful for the client . The number
of useful packets from node that reach the client in this case
is given by the rate . When this
rate is uniform, the decoding delay when the node is the only
source of information is given by

(15)

Finally, the average decoding delay at client is computed
by considering all the sources and NC nodes as independent
sources of information with uniform useful rates . We
can write the decoding delay as

(16)

where is the set of sources and NC nodes.

1110 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011

V. SELECTIVE PLACEMENT OF NC NODES

Equipped with methods to estimate the decoding delay on
the overlay network, we can design algorithms to decide which
nodes in the network should perform network coding. We ad-
dress the problem of placing network coding nodes in the
overlay network, such that the average delay observed by the
clients is minimized. This is typically achieved by selecting net-
work coding nodes such that the packet replication rate is de-
creased and the innovative flow rate in the network is increased.

However, the optimal selection of the NC nodes is known to
be an NP-hard problem [6]. Hence, we design a greedy approach
that iteratively searches for the optimal placement of a new net-
work coding node while all the previously added NC nodes are
fixed. The candidate nodes for implementing network coding
are all the remaining SF nodes in the overlay network. It selects
the SF node whose transformation into an NC node brings the
highest benefit for the clients. This procedure is repeated until
all the network coding nodes have been selected.

We propose now two variants of the iterative selection algo-
rithm that both use Algorithm 1 for computing the delay, but
differ in their view of the network resources. The first algorithm
assumes that a central node possesses a global knowledge of
the network; it iteratively selects the network coding nodes in
a centralized manner. When global network knowledge is not a
reasonable assumption, the centralized algorithm still serves as
a performance benchmark for other greedy NC node placement
algorithms. The second algorithm uses only a local view of the
network resources at each node for computing the gains in inno-
vative rate and decoding delay. This algorithm is probably more
realistic in practice and can be implemented in a distributed way.

In more details, the centralized algorithm uses the knowledge
about the full network and available resources in order to deter-
mine the number of innovative packets received by each client.
It leads to the iterative selection of network coding nodes
by computing at each stage the benefit of turning any of the
SF nodes into an NC node. The candidate node that brings the
highest delay decay with its transformation is selected as a new
NC node. The algorithm is described in Algorithm 2.

Algorithm 2: Centralized NC node selection

1: for to A do

2: for each node in the set of SF nodes. do

3: Turn temporarily into an NC node

4: Estimate the average decoding delay at the clients
(using Algorithm 1).

5: Turn back into an SF node.

6: end for

7: Select the node that minimizes the decoding delay,
i.e.,

8: Turn permanently into an NC node.

9: end for

The second algorithm relaxes the assumption that a central
node is aware of the full network status. Instead, the nodes only
use local network information for the estimation of the delay.
We define a neighborhood around each node. Then, an algorithm
similar to the centralized solution above is applied in each neigh-
borhood in order to determine the benefits of turning SF nodes
into NC nodes. In particular, each node uses the estimation of
the reception probability that is given by all nodes in the
neighborhood and computes an estimation of the decoding delay
based on local information, i.e., the capacities and the loss rates
of the subnetwork around the node . Note that is also
calculated considering only the statistics of node’s neighbor-
hood. These estimations are transmitted periodically to a cen-
tral agent, which finally makes the decision on the placement of
new NC nodes. As the delay estimations are done locally, the
computational complexity requirements are less important on
the central node. In addition, the communication costs are re-
duced in the semi-distributed algorithm, as only the local delay
estimation are transmitted to the central node. The procedure is
summarized in Algorithm 3.

Algorithm 3: NC node selection with local information

1: for to A do

2: for every SF node do

3: Temporarily transform node into an NC node.

4: Estimate the average delay at the clients using
Algorithm 1 with local information consisting of the network
statistics within horizon of node .

5: Transform node back into an SF node.

6: Transmit to a central agent.

7: end for

8: Select the node that minimizes the delay,

9: Turn permanently into an NC node.

10: end for

Both algorithms permit to select a few network coding nodes
in the system, such that the coding delay and overall computa-
tional complexity in the network is limited. At the same time, the
system maintains a high innovative rate for sustained streaming
performance. The choice of the number of NC nodes is typically
determined by the admissible delay or tolerable complexity in
the network. For example, constraints on decoding delay im-
pose a limit on the maximum number of NC nodes in the system.
However, the problem of determining the optimal number of NC
nodes is out of the scope of this paper. We rather assume that the
number of coding nodes or helpers in the streaming system is
given a priori. The proposed algorithms then solve the problem
of placing efficiently the NC nodes in the overlay network.

Finally, it has to be noted that the second algorithm is not fully
distributed, as it still uses a central agent to select the NC nodes.

CLEJU et al.: SELECTION OF NETWORK CODING NODES FOR MINIMAL PLAYBACK DELAY IN STREAMING OVERLAYS 1111

However, since it uses only local information, the proposed so-
lution is certainly amenable to a fully distributed algorithm. One
could imagine that each node decides independently if it should
implement network coding or not, by comparing the local esti-
mation of the gain in delay to a pre-defined threshold. Alterna-
tively, a distributed consensus solution could be deployed for a
coordinated selection of the NC nodes with minimal informa-
tion exchange between the overlay nodes.

VI. SIMULATION RESULTS

A. Setup

In this section, we analyze the performance of the proposed
NC node selection algorithms for the transmission of video
streams in overlay networks. We generate overlay networks
based on realistic network bandwidth values and adjacency
measurements from the Planet Lab [11], as provided in a
snapshot of their network taken on November 24, 2009 by their
Scalable Sensing Service [12]. Our schemes are evaluated
in network topologies obtained from PlanetLab, which pro-
vides realistic topologies with nodes and segments of different
capacities. The networks under consideration have one source
node, three client nodes, and a variable number of intermediate
nodes. We create network topologies in the following way.
First, the source nodes are positioned, then the nodes are ran-
domly added one-by-one to the topology. For every new node,
four nodes are randomly chosen as parent nodes. However, if
the new node is not directly connected to any of the selected
parents according to the PlanetLab measurement data, the node
is removed and a new node is selected. After all nodes have
been added to the network, the nodes that cannot be reached by
the source and the nodes that are not connected with any client
are removed. The resulting network graphs are directed and
acyclic by construction. The edge capacity of each link is set to
1/200 of the PlanetLab capacity values in order to get realistic
values for the link bandwidth. The packet loss rate of each
link is set to 5%. We use random networks that consist of 32,
56, and 100 nodes with two different network diameter values
of 6 and 8 hops, where the network diameter represents the
maximum distance between any pair of nodes in the network.
For all network simulations, we consider the placement of up
to 10 NC nodes in each network. In each case, the performance
results are averaged over sets of 10 random networks and
100 simulations for each network. Simulations are performed
using the NS-3 [13] network simulator. Finally, we assume
that the topology, the loss rate, and the link bandwidth do not
change with the time. Nevertheless, extension to networks with
low and moderate dynamics is straightforward, but requires
periodic run of the node selection algorithms at the price of
more communications.

The network coding operations are performed in a Galois
field of size since this field size has been shown to re-
sult in a good compromise between performance (packets are
innovative with high probability) and information overhead [4].
The generation size is set to 32 packets, which is reasonable for
real-time video streaming applications. The packet size is 512
bytes. The packet size is not a critical parameter for our algo-
rithm as the packet diversity, which drives the performance of

network coding, is only determined by the generation size. For
the chosen values of packet and generation sizes, the network
coding overhead remains reasonable, i.e., about 6% over the
packet payload. Larger generation sizes would provide higher
packet diversity but result in larger overheads that can even re-
duce the throughput gains due to network coding. The decoding
is finally performed by Gaussian elimination. Since we are inter-
ested in analyzing the performance in terms of decoding delay,
we compute the average delay as the time needed by each client
to receive 32 linearly independent packets (i.e., a complete gen-
eration). This is the minimal number of packets for the clients
to decode the source information.

We evaluate the performance of the centralized and semi-
distributed algorithms (resp. Algorithms 2 and 3) denoted as
“FHNP” (Full Horizon Node Placement) and “LHNP” (Limited
Horizon Node Placement), respectively. We compare them with
a greedy search algorithm (FHNPR) similar to Algorithm 2 but
that uses the actual delays obtained by NS-3 simulations instead
of the delay estimates from Algorithm 1 for the node selection.
We also compare to a baseline scheme called in the following
as “RANDSEL” that randomly places the NC nodes in the net-
work. For the sake of completeness, we finally study the perfor-
mance of a scheme where all nodes are NC nodes (this scheme
is called “All nodes NC”) and a scheme with only SF nodes.
The performance of the latter is equal to the theoretical max-
imum that can be sustained when only routing is enabled and
can be found by typical maximum flow algorithms. Finally, we
provide comparisons with the centralized algorithm proposed in
[7], which minimizes the delay via throughput maximization.

Note that the minimum delay and maximum effective
throughput obtained with Linear NC are computed by consid-
ering that a high capacity hyper-source node connected with
all sources. In this case, the overall throughput is computed as
the sum of the throughputs from the hyper-source to each client
node. For the routing case, we consider as well a hyper-sink
node linked with all client nodes, and we compute the max-
imum throughput between the hyper-source and hyper-sink
with standard graph maximum flow algorithms. We should
point out that the links connecting the hyper nodes with the
networks sources and clients are error free and have infinite
capacities, so they do not introduce extra delays.

B. Decoding Delay

We first study the decoding delay for each of the algorithms.
Fig. 5 illustrates the normalized average decoding delays for the
network clients as a function of the number of NC nodes added
in the network, for two different network diameter sizes. The de-
coding delays are normalized to the performance obtained when
all nodes perform network coding. We show the performance of
LHNP for different horizon values of the neighborhood in the
local gain estimations. We observe a sharp reduction of the de-
livery times with the addition of the first few NC nodes for all
the algorithms, but especially for the proposed algorithms. The
gains become less important after a few NC nodes have been
placed in the network. We can thus see that the NC nodes are
well positioned in order to improve the delivery performance.
The results also highlight the inefficiency of the RANDSEL al-
gorithm, which becomes competitive with the other methods

1112 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011

Fig. 5. Normalized average decoding delays versus the number of NC nodes for: (a) networks containing 32 to 56 nodes and network diameter equal to six, (b)
network containing 32 to 56 nodes and network diameter equal to eight, and (c) network containing 100 nodes and network diameter equal to six.

Fig. 6. Normalized achievable throughput versus the number of NC nodes: (a) networks containing 32 to 56 nodes and network diameter equal to six, (b) network
containing 32 to 56 nodes and network diameter equal to eight, and (c) network containing 100 nodes and network diameter equal to six.

only for large number of NC nodes. We can see that the FHNP
performs similar to the FHNPR. This confirms that the proposed
delay estimation strategy in FHNP is accurate as it comes close
to the actual delay values measured by the network simulator.
The improved performance of the proposed method compared
to [7] is coming from the buffering model and the probabilistic
approach followed for modeling the replication process. Finally,
we can notice that for larger networks the LHNP needs more net-
work knowledge (larger horizon) to approach the performance
of FHNP. This is due to the significant network heterogeneity
that necessitates the inclusion of more network coding nodes to
remove the bottlenecks effect.

C. Innovative Rate

We further look at the average normalized effective
throughput in the network (i.e., the number of useful packets
received by the clients), as a function of the number of NC
nodes in the network. Normalization is performed with respect
to the effective throughput achieved by the scheme where all
nodes perform network coding. Fig. 6(a) and (b) shows the
effective throughputs for two different network diameter values,
while Fig. 6(c) for larger networks. The results confirm the
earlier observations on the decoding delay performance. A few
well-selected nodes are able to bring a large throughput gain.
Further performance improvements become less important
as the number of NC nodes increases. We see also that the

algorithms proposed in this paper provide the best performance
among the schemes under comparison. The node selection
algorithm with local information improves with the size of the
neighborhood but generally stays close to the centralized algo-
rithm when the neighborhood is sufficiently large. In the case
where the neighborhood is limited to one node, the proposed
algorithm still outperforms RANDSEL since the decisions are
not totally blind. The reason for the inferior performance of
the semi-distributed scheme compared to the centralized one
simply comes from the fact that the local network statistics
are not sufficient for accurately estimating the delay when the
neighborhood is small. In addition, we can observe that a few
NC nodes are sufficient for obtaining higher throughputs than
the one in routing algorithms where the nodes simply forward
packets randomly to their descendants. It confirms the fact
that our methods are appropriate for deployment in low-cost
networks, where a few helpers or network coding nodes are
sufficient for improved throughput and efficient data delivery.
From the evaluation, it is clear that the buffer model and the
improved modeling of the replication process gives advantages
over the FHNP algorithm presented in [7]. It is worth to note
that for large network topologies consisting of 100 nodes, the
performance gains over [7] are smaller than those observed
for small networks. This is due to the fact that more network
nodes are needed to cope with the network heterogeneity in
large networks. Finally, we can observe that our algorithms
tend to perform better in networks with larger node’s horizon

CLEJU et al.: SELECTION OF NETWORK CODING NODES FOR MINIMAL PLAYBACK DELAY IN STREAMING OVERLAYS 1113

Fig. 7. Average PSNR quality at clients versus the number of NC nodes in the networks for: (a) Foreman CIF sequence when network diameter is six, (b) Foreman
CIF sequence when network diameter is eight, (a) Akyio CIF sequence when network diameter is six, and (d) Foreman CIF sequence when network diameter is
eight.

values,2 as they are able to exploit more efficiently the available
resources and the diversity in the overlay network.

D. Video Quality

Finally, for the sake of completeness, we study the advan-
tages of the node selection algorithms from the viewpoint of
video quality. We estimate the average PSNR quality measured
at the clients with respect to the number of NC nodes in the net-
work for all methods under comparison in the transmission of
the Foreman CIF and Akyio CIF sequences encoded by the the
JM12.2 [14] of the H.264/AVC standard [15]. The video source
rate is chosen to be equivalent to the throughput values com-
puted by the server in each algorithm under comparison. The
300 frames of the Foreman CIF video sequence are encoded as
IPPPPP… with frame rate 30 fps. The GOP size is 30 frames.
Prior to transmission, the video encoded packets are divided into
consecutive generations of 32 packets of 512 bytes each. We

2A node’s horizon is defined as the longest short path between the considered
node and any other network node. Hence, a node with horizon three contains in
its neighborhood all the nodes that are at most three hops away from this node.

consider in our illustrative video simulation that the playback
delay at the clients is larger than the minimal average delay com-
puted by our algorithms; in this case, virtually all packets reach
the decoder on time for decoding.

The evaluation results for Foreman CIF sequence are illus-
trated in Fig. 7(a) and (b). It is interesting that the improved
throughput values translate into higher PSNR quality, which
confirms the above observations about the benefits of proper NC
node selection. We can have gains that exceed 1.5 dB with only
two NC nodes, whereas we reach gains of 3 dB for seven NC
nodes. The PSNR gains saturate as the number of NC nodes
increases, but quality gains can still be noticed. As expected,
larger gains are observed for the centralized algorithm; how-
ever, the semi-distributed algorithm offers significant gains as
well. For a neighborhood of three hops, the performance of the
semi-distributed even becomes identical to that of the central-
ized scheme. Finally, we see that RANDSEL gives small PSNR
gains for a few NC nodes, which confirms the poor perfor-
mance of a random selection of the network coding nodes and
supports the development of effective selection algorithms. We

1114 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011

also evaluate all schemes for transmission of the Akyio CIF se-
quence. This sequence has static background and moderate mo-
tion in the face and shoulders areas. The results are presented
in Fig. 7(c) and (d). The evaluation confirms the observations
we have reached for Foreman sequence with however a higher
video quality due to lower motion in the Akyio sequence.

The above experiments have been proposed for illustrating
the importance of the effective placement of network coding
nodes. In practice, the channel conditions and even the network
topologies are dynamic, which influences the goodput of the
system. If the network coding algorithm is not able to finely
adapt to these dynamics, the decoding might not be successful
and the video quality degrades. Several solutions such as more
conservative choice of the playback delay or rate adaptation at
the source can be used in such cases.

VII. RELATED WORK

The problem of finding a minimal set of network coding
points in a network has been mostly studied from a theoretical
perspective so far. First, the special case of two source mes-
sages is examined in [16] where it is proved that the number
of coding nodes is independent of the total number of net-
work nodes. In [17], the minimum number of network coding
nodes is computed through graph coloring techniques. It is
then shown in [18] that the number of coding nodes is upper
bounded by the number of receivers. A unification of network
coding and tree packing theorems is further presented in [19],
where network coding is restricted to pre-selected edges. These
include only input edges of relay nodes and not the input edges
of clients where simple routing is applied. This choice is made
in order to achieve the min-cut max-flow limit of the network
and save both processing and implementation complexity. The
relation between links capacities and the number of coding
nodes is investigated in [20], where it is shown that in directed
acyclic networks arbitrary amounts of gain can be noticed when
subsets of nodes of arbitrary size are used for coding. Finally,
the problem of finding network codes with a minimal number
of encoding nodes has recently been studied in [6] where the
optimization problem is however shown to be NP-hard.

While the previous work mostly consider that the network
is fully known at a central node, a decentralized algorithm for
minimizing the number of network coding packets flowing
in a network has been presented in [21]. It also addresses the
design capacity approaching network codes that minimize the
set of network coding nodes. However, this algorithm does
not provide any guarantee that the minimum set of network
coding nodes can always be determined. While [21] consider
capacity approaching codes without delay constraints, we
rather use well performing network codes and consider the
available resources in the network in order to select a set of
network coding nodes, such that the overall delay is kept small
in multimedia applications. The choice of randomized network
codes is mostly geared towards the implementation of practical
distributed systems where large benefits are expected by the
proper choice of a limited number of network coding nodes.

In general, the previous works about the selection of coding
nodes do not consider delay issues, which are most important in
streaming applications. The problem of the selection of network

processing nodes in multimedia streaming applications has been
addressed in [22] in a framework that is however slightly dif-
ferent than ours. The placement of a limited number of net-
work-embedded FEC nodes (NEF) is considered in networks
that are organized into multicast trees. The placement is chosen
in order to enhance the robustness to transmission errors and
to improve the network’s throughput. NEF nodes first decode
and successively re-encode the recovered packets in order to in-
crease the symbol diversity. A greedy algorithm is proposed for
placing NEF nodes. Although the proposed method is efficient,
it is computationally expensive and unrealistic to be deployed
in dynamic networks. In contrast to [22], we consider the place-
ment of processing nodes in the more general case of overlay
mesh networks with randomized network coding for distributed
packet delivery.

Finally, game theoretic concepts are adopted in a recent work
[23] for developing socially optimal distributed algorithms that
decide on the nodes that should combine packets. Specifically,
incentives such as extra download bandwidth are given to net-
work nodes in order to change their status to network coding and
indirectly minimize the delays in the system. However, this al-
gorithm does not offer any guarantee that limited resources will
be used efficiently, since all the nodes may potentially desire to
become network coding nodes. It is not appropriate when a cer-
tain number of network coding nodes shall be placed effectively
in a network.

VIII. CONCLUSIONS

We have considered the problem of the placement of a pre-
defined number of network coding nodes in an overlay media
streaming system. We have proposed novel algorithms that it-
eratively select the best nodes for network coding such that the
delay is decreased. The deployment of network coding gets po-
sitioned as a valid solution for exploiting the network diversity
in streaming applications. We show that the selection of a small
number of network coding nodes is able to provide an effective
tradeoff between packet duplicates, decoding delay, and com-
putational complexity. The experimental evaluation in irregular
and realistic networks shows that the proposed node selection
schemes achieves the same throughput as a system where all
nodes perform network coding, but with a dramatically smaller
number of network coding nodes and hence lower complexity.
In addition, we show that the quality of experience in video
streaming applications is greatly improved by the proper selec-
tion of network coding nodes. Finally, the proposed algorithm is
amenable to the implementation of distributed solutions that are
able to adapt to the local characteristics of a dynamic network
topology. It could also offer important insights in the design of
effective media delivery solutions, where helpers nodes could be
positioned in an overlay networks for maximizing the quality of
service offered to the media clients.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

CLEJU et al.: SELECTION OF NETWORK CODING NODES FOR MINIMAL PLAYBACK DELAY IN STREAMING OVERLAYS 1115

[3] M. Wang and B. Li, “� : Random rush with random network coding
in live peer-to-Peer streaming,” IEEE J. Select. Areas Commun., vol.
25, no. 9, pp. 1655–1666, Dec. 2007.

[4] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc.
41st Allerton Conf. Communication, Control, and Computing, Monti-
cello, IL, Oct. 2003.

[5] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” in Proc. 41st Allerton Annual Conf. Communication,
Control, and Computing, Monticello, IL, Oct. 2003.

[6] M. Langberg, A. Sprintson, and J. Bruck, “Network coding: A com-
putational perspective,” IEEE Trans. Inf. Theory, vol. 55, no. 1, pp.
147–157, Jan. 2009.

[7] N. Cleju, N. Thomos, and P. Frossard, “Network coding node place-
ment for delay minimization in streaming overlays,” in Proc. Int. Conf.
Communications (ICC’10), Cape Town, South Africa, May 2010.

[8] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, S. Jun, and B.
Leong, “A random linear network coding approach to multicast,” IEEE
Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[9] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no.
6, pp. 2551–2567, Jun. 2006.

[10] M. Luby, “LT codes,” in Proc. of the 43rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’02), Vancouver, BC,
Canada, Nov. 2002, pp. 271–280.

[11] PlanetLab. [Online]. Available: http://www.planet-lab.org/.
[12] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and S. J. Lee, “� :

A scalable sensing service for monitoring large networked systems,” in
Proc. SIGCOMM Workshop Internet Network Management (INM’06),
Pisa, Italy, Sep. 2006.

[13] The Network Simulator—Ns3. [Online]. Available: http://www.
nsnam.org.

[14] Jvt Reference Software Version 12.2. [Online]. Available: http://bs.
hhi.de/suehring/tml/.

[15] Information Technology—Coding of Audio-Visual Objects—Part 10:
Advanced Video Coding. Final Draft International Standard, 2003,
iSO/IEC FDIS 14 496-10.

[16] A. Tavory, M. Feder, and D. Ron, “Bounds on linear codes for network
multicast,” in Proc. Electronic Colloq. Computational Complexity
(ECCC’03), 2003.

[17] C. Fragouli, E. Soljanin, and A. Shokrollahi, “Network coding as a
coloring problem,” in Proc. Conf. Information Science and Systems
(CISS07), Princeton, NJ, Mar. 2004.

[18] C. Fragouli and E. Soljanin, “Information flow decomposition for net-
work coding,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 829–848,
Mar. 2006.

[19] Y. Wu, K. Jain, and S. Y. Kung, “A unification of network coding and
tree packing (Routing) theorems,” IEEE Trans. Inf. Theory, vol. 52, no.
6, pp. 2398–2409, Jun. 2006.

[20] J. Cannons and K. Zeger, “Network coding capacity with a constrained
number of coding nodes,” IEEE Trans. Inf. Theory, vol. 54, no. 3, pp.
2398–2409, Mar. 2008.

[21] K. Bhattad, N. Ratnakar, R. Koetter, and K. R. Narayanan, “Minimal
network coding for multicast,” in Proc. IEEE Int. Symp. Information
Theory (ISIT 2005), Seattle, WA, Sep. 2005.

[22] M. Wu, S. Karande, and H. Radha, “Network embedded FEC for op-
timum throughput of multicast packet video,” EURASIP J. Appl. Signal
Process., vol. 20, no. 8, pp. 728–742, Sep. 2005.

[23] N. Thomos, H. Park, E. Kurdoglu, and P. Frossard, “NC node selection
game in collaborative streaming systems,” in Proc. Int. Conf. Acoustics,
Speech, and Signal Processing, ICASSP’10, Dallas, TX, Mar. 2010.

Nicolae Cleju received the Diploma degree (vale-
dictorian) in electronics engineering from the
“Gheorghe Asachi” Technical University of Iasi,
Iasi, Romania, in 2007, the M.Sc. degree in electrical
engineering from the Swiss Federal Institute of
Technology, Lausanne, Switzerland, in 2009, and
the M.Sc. degree in signal processing from the
“Gheorghe Asachi” Technical University of Iasi
in 2010, where he is currently pursuing the Ph.D.
degree in the Signal Processing Laboratory of the
Faculty of Electronics, Telecommunications, and

Information Technology.

Nikolaos Thomos (S’02–M’06) received the
Diploma and the Ph.D. degrees from the Electrical
and Computer Engineering Department of the
Aristotle University of Thessaloniki, Thessaloniki,
Greece, in 2000 and 2005, respectively.

Currently he is postdoctoral research fellow with
the Signal Processing Laboratory of Swiss Federal
Institute of Technology (EPFL), Lausanne, Switzer-
land. Previously, he was a postdoctoral and graduate
research fellow with the Informatics and Telem-
atics Institute/Centre for Research and Technology

Hellas, Thessaloniki, Greece. His research interests include network coding,
multimedia communications, joint source and channel coding, and distributed
source coding.

Dr. Thomos has been awarded the highly esteemed Ambizione career award
in 2008 from the Swiss National Science Foundation targeted to prospective
researchers. He is a member of the Technical Chamber of Greece.

Pascal Frossard (S’96–M’01–SM’04) received
the M.S. and Ph.D. degrees, both in electrical
engineering, from the Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, in 1997
and 2000, respectively.

Between 2001 and 2003, he was a member of
the research staff at the IBM T. J. Watson Research
Center, Yorktown Heights, NY, where he worked
on media coding and streaming technologies. Since
2003, he has been a professor at EPFL, where he
heads the Signal Processing Laboratory (LTS4). His

research interests include image representation and coding, visual informa-
tion analysis, distributed image processing and communications, and media
streaming systems.

Dr. Frossard has been the General Chair of IEEE ICME 2002 and Packet
Video 2007. He has been the Technical Program Chair of EUSIPCO 2008,
and a member of the organizing or technical program committees of numerous
conferences. He has been an Associate Editor of the IEEE TRANSACTIONS

ON MULTIMEDIA (2004-), the IEEE TRANSACTIONS ON IMAGE PROCESSING

(2010-), and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY (2006-). He is an elected member of the IEEE Image, Video and
Multidimensional Signal Processing Technical Committee (2007-), the IEEE
Visual Signal Processing and Communications Technical Committee (2006-),
and the IEEE Multimedia Systems and Applications Technical Committee
(2005-). He has served as Vice-Chair of the IEEE Multimedia Communications
Technical Committee (2004–2006) and as a member of the IEEE Multimedia
Signal Processing Technical Committee (2004–2007). He received the Swiss
NSF Professorship Award in 2003, the IBM Faculty Award in 2005, and the
IBM Exploratory Stream Analytics Innovation Award in 2008.

