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ABSTRACT

The present paper proposes and studies an algorithm to estimate chan-
nels with a sparse common support (SCS). It is a generalization of
the classical sampling of signals with Finite Rate of Innovation (FRI)
[1] and thus called SCS-FRI. It is applicable to OFDM and Walsh-
Hadamard coded (CDMA downlink) communications since SCS-FRI
is shown to work not only on contiguous DFT pilots but also uniformly
scattered ones. The support estimation performances compare favorably
to theoretical lower-bounds, and importantly this translates into a sub-
stantial equalization gain at the receiver compared to the widely used
spectrum lowpass interpolation method.

Keywords— Channel estimation, MIMO, OFDM, CDMA, Finite
Rate of Innovation

1. INTRODUCTION

Modern communication devices have seen their number of antennas
cropping up. The rationals behind multiple output systems are linked
to the physical properties of the electromagnetic (EM) multipath chan-
nel [2]: different antennas witness diferent channel conditions. Under
this assumption, it seems natural to estimate each of these channels, and
then select the best one or a combination to achieve greater capacity than
a single output system.

Most multi-output EM multipath channels have a Sparse Common
Support (SCS) property, i.e. the paths’ Time of Arrivals (ToA) are the
same for every output up to a small error≤ ε. Under this assumption,
we will outline a Finite Rate of Innovation (FRI) sampling [3] based al-
gorithm which takes advantage of the SCS property, conveniently called
SCS-FRI [4, 5]. Compared to other algorithms which also try to esti-
mate the channels from a subset of Fourier “probes” (such as lowpass
interpolation of the channel spectrum), SCS-FRI has four main advan-
tages. First, parametric estimation allows for joint recovery of the sup-
port common to the multiple outputs, independently of the paths am-
plitudes. Second, the number of probes used to sense the channel can
be reduced, saving precious bandwidth for data transmition. Third, for
an equal number of probes, channel estimation is more robustto noise
corruption, yielding a higher equalization gain. Last but not least, the
channel estimate is characterized by a very small set of parameters, sav-
ing some bandwidth for multiple input systems using non-blind transmit
diversity techniques [6], e.g. beamforming. SCS channels in a discrete
time setting were previously studied in [7] within the compressed sens-
ing framework.

We will first describe and motivate the SCS channel model and pro-
ceed with the description of the SCS-FRI algorithm. This algorithm
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Fig. 1. (a) Transmission over a medium with two scatterers andP re-
ceiving antennas. (b) TheP channels contain two paths arriving at the
same time up to±ε. The amplitudes of paths from a scatterer are (pos-
sibly correlated) Rayleigh variates [8].

uses baseband DFT pilots (probes) to solve the aforementioned estima-
tion problem. Within this setup, we will derive Cramér-RaoBounds
(CRB) on the support estimation for both deterministic and Rayleigh
fading channels.

We will then show that SCS-FRI is not restricted to baseband DFT
pilots, and works equivalently well in the uniformely spaced (“scat-
tered”) DFT pilots layout ubiquitous in OFDM based communications.
Like other channel estimation techniques based on scattered pilots, the
only requirement is for the channel impulse response (CIR) to be rela-
tively short compared to the symbol duration.

Then we investigate the efficient use of other probing sequences. It
is shown that they must have the same span as a subset of DFT ba-
sis vectors to warrant the use of a DFT pilot based algorithm.Inter-
estingly, the set of Walsh-Hadamard sequences, used in mostCDMA
based standards, verifies this property with the added benefit of provid-
ing uniformely scattered DFT pilots. This enables the use ofSCS-FRI
on CDMA downlink channels as if they were OFDM coded channels.
All these equivalences allow to use the CRB derived in Section 4.

We conclude the study with numerical results showing the efficiency
of the SCS-FRI algorithm in a multi-output Rayleigh fading OFDM
setup, and the potential equalization gain compared to the industry stan-
dard which is lowpass interpolation of the CIR spectrum.

2. PROBLEM FORMULATION

Consider a bandpass channel of bandwidthB. The inverse bandwidth
1/B sets a limit on the distance at which two pulses of bandwidthB
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Algorithm 1 Block-Cadzow denoising

Require: A block-Toeplitz matrixH(L) and a target rankK.
Ensure: A block-Toeplitz matrixH(L) with rank≤ K.

1: repeat
2: ReduceH(L) to rankK by a truncated SVD.
3: MakeH(L)

p p = 1 . . . P , Toeplitz by averaging diagonals.
4: until convergence

can be reliably resolved in typical operating conditions. For channel
estimation, a resolution of a10th of the inverse bandwidth is reasonable.

Application of this principle to multiple output multipathchannels
leads to the following approximation: antennas at a distance not ex-
ceeding∆ ≪ c/B share the same path ToA up to a delay∆/c. This
principle is shown in Figure1, where the antenna topology guarantees
the support differs at most by±ε. We call this realistic channel model
the Sparse Common Support(SCS) model. For analytic purposes the
parameterε may be set to0. This particular case is called theexact SCS
model.

The SCS assumption is quite relevant as many modern communi-
cation schemes use only a few megahertz of bandwidth. For example
the 3GPP LTE standard [6] uses at most20 MHz of bandwidth thus
c/20 MHz = 15m, which is one order of magnitude larger than a typi-
cal antenna array size. Other ubiquitous standards such as IS-95 [9] or
ETSI DVB-T [10] use less than10 MHz of bandwidth.

Let {hp}p=1...P be a set ofP baseband equivalent exact SCS chan-
nels withK paths:

hp(t) =
K∑

k=1

ck,pϕ(t− tk), (1)

The paths coefficientsck,p are treated as complex random vari-
ables and tk ∈ [0 τ [ with τ the delay-spread. ϕ(t) =
sin(πBt)/(N sin(πtB/N)) is the Dirichlet kernel of bandwidthB,
such thatN ≥ 2K + 1 is an odd integer. The channel is probed by
aτ -periodic functions(t), andN = 2M+1 noisy measurementsyp[n]
are acquired over one period:

yp[n] = (s ∗ hp)(n/B) + qp[n] n ∈ {0, . . . , N − 1}, (2)

whereqp ∼ NC(0, σ
2
I). The DFT domain representation

ŷp[m] = ŝ[m]·
K∑

k=1

ck,pW
mtk + q̂p[m] , m ∈ {−M, . . . , M}. (3)

where W = e−2πj/(NT ). The goal is to estimate the support
{tk}k=1...K and the paths amplitudes{ck,p}k=1...K,p=1...P from the
NP DFT samples. Once the support is known, estimation of the path
amplitudes is simple linear algebra as seen in (3).

3. SPARSE COMMON SUPPORT FRI (SCS-FRI)

We start from (3). The classical FRI algorithm [3] works on baseband
DFT samples, hence we set the probe to bes[m] = 1[−M M][m] the unit
box sequence on[−M M ]. In the absence of noisêyp[m], |m| ≤ M
forms a linearly recurrent sequence of degreeK [11], i.e.

ŷp[m] = f1ŷp[m− 1] + · · ·+ fK ŷp[m−K].

The coefficients{f1, . . . , fK} depend only on the ToA, and are thus
common to all channels with common support. This simple observa-
tion leads to joint estimation of the support by computationof a unique
annihilating filter [12, 4] :

Proposition 1. Let H(K+1) =
[
H

(K+1)
1 ;H

(K+1)
2 ; · · · ;H(K+1)

P

]T

Algorithm 2 SCS-FRI channel estimation

Require: An estimate on the number of effective pathsKest, 2M +
1 (M ≥ K) noisy channel DFT coefficientŝyp[m] =∑K

k=1 ck,pW
mtk
N + q̂p[m] for |m| ≤M , p = 1 . . . P .

Ensure: Support estimate{test
k }k=1...Kest

1: Build H(M) according to (4).
2: H(M) ← Block-Cadzow(H(M),Kest).
3: Updateŷp[m] with the first row and column of the denoised block

H
(M)
p .

4: Build H(Kest+1) according to (4).
5: Solve the annihilating filter equation (5) to getf .
6: {test

k }k=1...Kest ← −NT
2π

∠ roots(f).
7: Estimate{ck,p} solvingP linear Vandermonde systems (3).

be the block-Toeplitz matrix with blocks size(2M −K + 1) ×K + 1
and structure:

H
(K+1)
p =





ŷp,K−M ŷp,K−M−1 · · · ŷp,−M

ŷp,K−M+1 ŷp,K−M · · · ŷp,1−M

...
...

. . .
...

ŷp,M ŷp,M−1 · · · ŷp,M−K




, (4)

In the absence of noise, a set of exact SCS channels withK distinct
paths verifies

H
(K+1)

f = 0, (5)

wheref = [1 − f1 · · · − fK ]T are the annihilating filter coeffi-
cients such that the polynomialpf (z) = 1 −

∑K
k=1 fkz

k hasK roots
{e−2πjtk/(NT )}k=1...K .

The second property is on the rank ofH(L) (L ≥ K) and is useful
to denoise the measurements:

Proposition 2. For a set of exact SCS channels withK distinct paths
and in the absence of noise, the matrixH(L) built according to (5) with
column dimensionL ≥ K verifies:

rankH(L) = K.

For the proofs of Propositions1 and2 see [4]. Proposition2 together
with the block-Toeplitz structure ofH(L) yields aBlock-Cadzowde-
noising algorithm (Algorithm1)[4]. Fitting all the pieces together result
in the SCS-FRI algorithm, listed under Algorithm2.

4. CRAMÉR-RAO BOUNDS WITH BASEBAND DFT PROBES

Based on the samples collected in (2), we may bound the expected
RMSE on the ToA estimation obtained by any unbiased estimator. For
single path exact SCS channels with ToAt1 and amplitudec1, it is pos-
sible to derive a simple scalar formula (Theorem1) for this Cramér-Rao
bound. This formula is also a good approximation of the CRB ina mul-
tipath environment where paths are well-separated, empirically defined
as distant by more than2(2M + 1)/(NT ) (see Figure2.b).

Theorem 1. The expected minimal uncertainties on the estimation of
the parameters in the SCS-FRI scenario withP signals are given by

E

[
(
△t1
NT

)2
]
≥

3(2M + 1)

4π2NM(M + 1)
E
[
ESNR

−1]

E

[
(
△cℓ
cℓ

)2
]
≥

2M + 1

N
E
[
PSNR

−1
ℓ

]
ℓ = 1, . . . , P

whereESNR = 1
2σ2

∑P
ℓ=1 cℓc

∗
ℓ denotes the effective signal to noise

ratio andPSNRℓ = cℓc
∗
ℓ/(2σ

2) .



Proof. See [4] for a proof on real-valued signals and noise. Application
to complex signals is straightforward.

An exact formula for multipath channels can be found in [13]:

Proposition 3. [13] Let Φ andΦ′ beN ×K matrices such that

Φn,k = ϕ((n− 1)T − tk) , Φ′
n,k = ϕ′((n− 1)T − tk),

n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}. Given the stochastic matrix

C =

P∑

p=1

cpc
∗
p,

with cp = [c1,p · · · cK,p]
T , the Fisher information matrixJ condi-

tionned on the path amplitudes is given by

J = 2σ−2
Φ

′∗PkerΦΦ
′ ⊙C. (6)

such thatPkerΦ = I − ΦΦ
† is the projection into the nullspace ofΦ

and “⊙” denotes the entrywise matrix product.

See [13] for the proof. The Cramér-Rao bounds for the estimation of
the normalized ToAs are on the diagonal of the expectation ofJ−1.

5. SCS-FRI WITH DIFFERENT PROBING FUNCTIONS:
APPLICATION TO OFDM AND CDMA DOWNLINK

5.1. Probing with uniformly scattered DFT pilots (OFDM)

In most communications, the delay-spreadτ is much smaller than the
symbol lengthNT . This assumption alone (no multipath structure
involved) implies the CIR is characterized by a subset{ĥp[mD +
m0]}m∈Z, 0≤mD+m0<N of its N -points DFT coefficients, withD ≤
⌊τ/∆⌋. In (3), it corresponds to the probing sequenceŝ[m] =
1m≡m0 modD , where1· is the indicator function.

This observation is at the heart of the very popular “scattered” pi-
lot layout used in OFDM communications. The standard methodis to
perform lowpass interpolation of the CIR spectrum from the pilots.

For FRI, extension to scattered pilots is straightforward [14]:

ŷp[mD +m0] =
K∑

k=1

Wm0tk
N ck,pW

mDtk
N + q̂p[mD], (7)

which can be seen as a dilation byD of the ToA and a phase shift
of the path amplitudes. The bound on the delay-spread guarantees
Dtk modNT = Dtk, and so the ToA are retrieved unambiguously
dividing byD. Once the ToA are known, the phase shift is invertible.

This dilation of time property together with the AWGN natureof the
noise mean estimation with uniformly scattered DFT pilots is equivalent
to estimation with baseband DFT pilots and a time dilation byD. Thus
the bounds computed in Section4 apply.

5.2. Probing without DFT-domain coding (CDMA downlink)

We have just shown that SCS-FRI relies on baseband or uniformly scat-
tered DFT samples to estimate the channel. A natural way to extend this
is to look for channel coding in an arbitrary domain which will lead to
this suitable situation. In our setup, coding in another domain than the
DFT domain is motivated by the application of SCS-FRI to a broader
class of communication standards, and the gain of free “scrambling” of
the data.

Let W be the DFT matrix andΠ be the orthogonal projection of
the DFT spectrum onto the pilot subspacePDFT. The goal is to obtain a
target DFT pilot vectorp ∈ PDFT sending given input dataxd ∈ D and
a probing vectorxp ∈ P :

p = ΠW
∗(xd + xp). (8)

The freedom used to set the pilot sequencep to a given value in the
DFT domain comes from the probexp. Hence the receiver does not
know xp a priori. Since we chose to work with linear subspaces,xd

can be recovered if and only ifD ⊥ P . Probes and data therefore
partition the signal space. Equation (8) surely has a solution if rankΠ =
dim{ΠWxp : xp ∈ P}. However it is in general unpractical as the
energy ofxp may exceed the energy ofp. There is an isometry between
probes and DFT pilots for any input data if and only ifP ⊆ PDFT. To
guarantee existence of a solution,P = PDFT.

This condition strictly restricts the codes we can use to code the data
and probes, but on the bright side, the widely used Walsh-Hadamard
code verifies it for DFT pilots scattered by a power of 2:

Proposition 4. LetW n andΩn be respectively the2n-points DFT and
WHT matrix obtained by Sylvester’s construction:

Ω1 =

[
1 1

1 −1

]

, Ωi+1 = Ω1 ⊗Ωi.

Then, for l ∈ {1, . . . , n − 1} the set ofΩn’s columns with in-
dices in

{
2l + i

}
i=1...2l

and the set ofW n’s columns with indices in{
(i− 1/2) · 2n−l + 1

}
i=1...2l

span the same subspace.

For a proof see [8]. Proposition4 tells us2l contiguous Walsh-
Hadamard codewords can yield2l uniformly spread DFT pilots sepa-
rated byD = 2n−l samples.

This result has a nice interpretation in the context of generalized
Fourier transforms, the2n-WHT being itself the Fourier transform on
the finite group(Z/2Z)n instead ofZ/2nZ for the classical2n-points
DFT [8, 15]. A similar result holds for DFT on other finite groups [8].

6. NUMERICAL RESULTS

We test the SCS-FRI algorithm in an OFDM setup. The system has
a bandwidthB = 20 MHz centered atB = 2.6GHz. Each frame is
composed of511 samples with a sampling stepT = 50ns. Each frame
contains31 DFT pilots scattered by a factorD = 16. For all simulation,
the delay-spreadτ is less than1.6µs.

For all simulations, the SNR is measured as the ratio betweenthe
total signal energy and the total noise energy. Total energymeans the
energy collected over all antennas.

In simulations1 and2 the channel has two paths. All antennas share
the same support (exact SCS model). The path coefficients arechosen
as a realization of a complex Gaussian random vector. For thesake of
comparison, the first path amplitudes{c1,p} are normalized such that∑

p c1,pc
∗
1,p = 1. For the second path

∑
p c2,pc

∗
2,p = 1/2, i.e. the

second path has half the total energy of the first path.
Simulation1 (Figure2.a) shows the performances for the estimation

of t1 andt2 with 6 independent antennas. The paths are separated by
2T . It is shown that at this distance the CRB computed for each path
independently accoriding to Theorem1provides a decent approximation
of the true bound.

Simulation2 (Figure2.b) shows the power of joint support recovery.
The receiver has either2 or 6 antennas. Since the SNR is measured
globally, for a given abscissa in Figure2.b, the system with6 of them
has a lower SNR per antenna compared to the system with only2.

Simulation3 (Figure 3) simulates a rayleigh fading channel. The
ToA of each path is independently perturbed by lapse uniformly dis-
tributed on] − 1 1]ns, which is larger than the travel time between an-
tennas at light speed. The receiver is surrounded by 4 scatterers and pos-
sess 3 antennas correlated according to a physically motivated model [8]
based on [16]. The estimation provided by SCS-FRI is used to synthe-
size the3 channels and the result is compared to lowpass interpolation
of the channel spectrum (MATLAB’sinterp()), which is a widely
used technique for channel estimation from scattered DFT pilots.
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Fig. 2. Part (a) shows the support estimation error based on 6 exactSCS channels. Each channel has two path separated by a time2T . The estimation
remains close to the lower-bound down to0dB. Part (b) focus on the second path. Compared to Part (a), the total received signal energy is spread
over 2 channels instead of 6. In the 6 channels setup, SCS-FRIperforms near optimally at lower SNR values compared to the 2channels setup.
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Fig. 3. Part (a) shows the physical layout of the channel: it contains four 20 meter wide scatterers labeled A, B, C and D. The receiver (Rx)
has 3 antennas equispaced on a circle of radius10cm. Part (b) shows performing independent estimation for each antenna with FRI provides a
SNR equalization gain of 4-5dB compared to lowpass interpolation. Taking advantage of the common support property withSCS-FRI provides an
additional 2-3dB equalization gain.

From these results, we conclude that SCS-FRI takes a near-optimal
advantage of spatial diversity given baseband or uniformlyscattered
DFT samples. The results obtained in Simulation3 and shown in Fig-
ure 3 reveals the additional gain obtained with parametric approaches
compared to the standard non-parametric spectrum interpolation. The
key property used by parametric methods is sparsity of the support. Us-
age of the common support property in addition to sparsity provides a
substantial equalization gain increment. Note that our results take into
account effects like fading and spatial correlation as wellas small delays
of the support between antennas to account for the time of propagation.

7. CONCLUSIONS AND FUTURE WORK

The proposed SCS-FRI algorithm was shown to recover accurately and
robustly the support of SCS channels corrupted by AWGN and pos-
sibly undergoing a Rayleigh fading regime. It was shown to work
for sampling schemes yielding baseband DFT coefficients as well as
schemes yielding uniformly scattered DFT coefficients. Thelatter can
be achieved for some useful non DFT coded channels. It was shown to
be the case of Walsh-Hadamard coded channels such as the downlink
of many CDMA standards. In this case, it opens these communication
standards to the world of Fourier based estimation and equalization (and
not only estimation based on correlation in the time-domain).
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[6] E. Dahlman, S. Parkvall, J. Sköld, and P. Beming,3G Evolution: HSPA
and LTE for Mobile Broadband, Academic Press, Oxford, UK, 2008.

[7] M.F. Duarte, S. Sarvotham, D. Baron, M.B. Wakin, and R.G.Baraniuk,
“Distributed compressed sensing of jointly sparse signals,” in Asilomar
Conf. Signals, Sys., Comput. Citeseer, 2005, pp. 1537–1541.

[8] Y. Barbotin, A. Hormati, S. Rangan, and M. Vetterli, “Estimation of sparse
MIMO channels with common support: Theory and applications,” ArXiv
preprint, 2011.

[9] V.K. Garg, IS-95 CDMA and CDMA2000, Prentice Hall PTR, 2000.

[10] ETSI, “300 744, DVB; Framing, channel coding and modulation for digital
terrestrial television,”EU. Std., , no. 300 744, 01 2001.

[11] R. Prony, “Essai experimental et analytique,”J. Ec. Polytech.(Paris), vol.
2, pp. 24–76, 1795.

[12] D.W. Tufts and R. Kumaresan, “Estimation of frequencies of multiple sinu-
soids: Making linear prediction perform like maximum likelihood,” Proc.
IEEE, Volume 70, p. 975-989, vol. 70, pp. 975–989, 1982.

[13] S. Yau and Y. Bresler, “A compact Cramér-Rao bound expression for para-
metric estimation of superimposed signals,”IEEE Trans. Signal Process.,
vol. 40, no. 5, pp. 1226 – 1230, 1992.

[14] Irena Maravic, Sampling Methods for Parametric Non-Bandlimited Sig-
nals, Ph.D. thesis, Lausanne, 2004.

[15] A. Terras,Fourier Analysis on Finite Groups and Applications, Cambridge
Univ. Press, 1999.

[16] J. Salz and J. Winters, “Effect of fading correlation onadaptive arrays in
digital mobile radio,”IEEE trans. on vehicular tech., vol. 43, 1994.


	 Introduction
	 Problem formulation
	 Sparse Common Support FRI (SCS-FRI)
	 Cramér-Rao bounds with baseband DFT probes
	 SCS-FRI with different probing functions: application to OFDM and CDMA downlink
	 Probing with uniformly scattered DFT pilots (OFDM)
	 Probing without DFT-domain coding (CDMA downlink)

	 Numerical results
	 Conclusions and future work
	 References

