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Abstract  

Profilers based on hardware performance counters are indispensa-
ble for performance debugging of complex software systems. All 
modern processors feature hardware performance counters, but 
current virtual machine monitors (VMMs) do not properly expose 
them to the guest operating systems. Existing profiling tools 
require privileged access to the VMM to profile the guest and are 
only available for VMMs based on paravirtualization.  Diagnosing 
performance problems of software running in a virtualized envi-
ronment is therefore quite difficult.  

This paper describes how to extend VMMs to support perfor-
mance profiling. We present two types of profiling in a virtualized 
environment: guest-wide profiling and system-wide profiling. 
Guest-wide profiling shows the runtime behavior of a guest. The 
profiler runs in the guest and does not require privileged access to 
the VMM. System-wide profiling exposes the runtime behavior of 
both the VMM and any number of guests. It requires profilers 
both in the VMM and in those guests.  

Not every VMM has the right architecture to support both 
types of profiling. We determine the requirements for each of 
them, and explore the possibilities for their implementation in 
virtual machines using hardware assistance, paravirtualization, 
and binary translation.  

We implement both guest-wide and system-wide profiling for 
a VMM based on the x86 hardware virtualization extensions and 
system-wide profiling for a VMM based on binary translation. We 
demonstrate that these profilers provide good accuracy with only 
limited overhead.  

Categories and Subject Descriptors D.4 [Operating Systems]: 
Performance; C.4 [Performance of Systems]: Performance Attrib-
utes 

General Terms Performance, Design, Experimentation  

Keywords Performance Profiling, Virtual Machine, Hardware-
assisted Virtualization, Binary Translation, Paravirtualization 

1. Introduction 

Profilers based on the hardware performance counters of modern 
processors are indispensable for performance debugging of com-
plex software systems [21, 4, 23]. Developers rely on profilers to 
understand the runtime behavior, identify potential bottlenecks, 

and tune the performance of a program.  
Performance counters are part of the processor’s performance 

monitoring unit (PMU). The PMU consists of a set of perfor-
mance counters, a set of event selectors, and the digital logic to 
increase a counter after a hardware event specified by the event 
selector occurs. Typical events include clock cycles, instruction 
retirements, cache misses, TLB misses, etc. When a performance 
counter reaches a pre-defined threshold, a counter overflow inter-
rupt is generated.  

The profiler selects the event(s) to be monitored, and registers 
itself as the PMU counter overflow interrupt handler. When an 
interrupt occurs, it records the saved program counter (PC) and 
other relevant information. After the program is finished, it con-
verts the sampled PC values to function names in the profiled 
program, and it generates a histogram that shows the frequency 
with which each function triggers the monitored hardware event. 
For instance, Table 1 shows a typical output of the widely used 
OProfile profiler [17] for Linux. The table presents the eight 
functions that consume the most cycles in a run of the profiled 
program. 

PMU-based performance profiling in a native computing envi-
ronment has been well studied. Mature profiling tools built upon 
PMUs exist in almost every popular operating system [17, 13]. 
They are extensively used by developers to tune software perfor-
mance. This is, however, not the case in a virtualized environ-
ment, for the following two reasons.  

On the one hand, running an existing PMU-based profiler in a 
guest does not result in useful output, because, as far as we know, 
none of the current VMMs properly expose the PMU program-
ming interfaces to guests. Most VMMs simply filter out guest 
accesses to the PMU. It is possible to run a guest profiler in re-
stricted timer interrupt mode, but doing so results in limited pro-
filing results. As more and more applications run in a virtualized 
environment, it is necessary to provide full-featured profiling for 
virtual machines. In particular, as applications are moved to virtu-
alization-based public clouds, the ability to profile applications in 
a virtual machine without the need for privileged access to the 
VMM allows users of public clouds to identify performance bot-
tlenecks and to fully exploit the hardware resources they pay for.  

On the other hand, while running a profiler in the VMM is 
possible, without the cooperation of the guest its sampled PC 
values cannot be converted to function names meaningful to the 
guest application developer. The data in Table 1 result from run-
ning a profiler in the VMM during the execution of a computa-
tion-intensive application in a guest. The first row shows that the 
CPU spends more than 98% of its cycles in the function 
vmx_vcpu_run(), which switches the CPU to run the guest.  As 
the design of the profiler does not consider virtualization, all the 
CPU cycles consumed by the guest are accounted to this function 
in the VMM . Therefore, we cannot obtain detailed profiling data 
on the guest. Currently, only XenOprof [18] supports detailed 
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profiling of virtual machines running in Xen [6], a VMM based on 
paravirtualization. For VMMs based on hardware assistance and 
binary translation, no such tools exist. Enabling profiling in the 
VMM provides users and developers of virtualization solutions 
with a full-scale view of the whole software stack and its interac-
tions with the hardware, helping them to tune the performance of 
the VMM, the guest, and the applications running in the guest. 

 

% CYCLE Function Module 

98.5529 vmx_vcpu_run kvm-intel.ko 
0.2226 (no symbols) libc.so 
0.1034 hpet_cpuhp_notify vmlinux 
0.1034 native_patch vmlinux 
0.0557 (no symbols) bash 
0.0318 x86_decode_insn kvm.ko 
0.0318 vga_update_display qemu 
0.0318 get_call_destination vmlinux 

Table 1.  A typical profiler output: the eight functions that con-

sume the most cycles in a run of the profiled program. 

In this paper we address the problem of performance profiling 
for three different virtualization techniques: hardware assistance, 
paravirtualization, and binary translation. We categorize profiling 
techniques in a virtualized environment into two types. Guest-
wide profiling exposes the runtime characteristics of the guest 
kernel and all its active applications. It only requires a profiler 
running in the guest, similar to native profiling, i.e., profiling in a 
nonvirtualized environment. The VMM is responsible for virtual-
izing the PMU hardware, and the changes introduced to the VMM 
are transparent to the guest. System-wide profiling reveals the 
runtime behavior of both the VMM and any number of guests. It 
requires a profiler running in the VMM and in the profiled guests, 
and provides a full-scale view of the system.  

The main contributions of this paper are: 

1. We generalize the problem of performance profiling in a vir-
tualized environment and propose two types of profiling: 
guest-wide profiling and system-wide profiling. 

2. We analyze the challenges of achieving guest-wide and sys-
tem-wide profiling for each of the three virtualization tech-
niques. Synchronous virtual interrupt delivery to the guest is 
necessary for guest-wide profiling. The ability to convert sam-
ples belonging to a guest context into meaningful function 
names is required for system-wide profiling.  

3. We present profiling solutions for virtualization based on 
hardware assistance and binary translation. 

4. We demonstrate the feasibility and usefulness of virtual ma-
chine profiling by implementing both guest-wide and system-
wide profiling for a VMM based on the x86 virtualization ex-
tensions and system-wide profiling for a VMM based on bina-
ry translation. 

The rest of the paper is organized as follows. In Section 2 we 
review the structure and working principles of a profiler in a 
native environment. In Section 3 we analyze the challenges of 
supporting guest-wide and system-wide profiling for each of the 
three aforementioned virtualization techniques. In Section 4 we 
present the implementation of guest-wide and system-wide profil-
ing in two VMMs, KVM and QEMU. We evaluate the accuracy, 
usefulness and performance of the resulting profilers in Section 5. 
In Section 6 we discuss some practical issues related to supporting 
virtual machine profiling in production environments. We de-
scribe related work in Section 7 and conclude in Section 8. 

2. Native Profiling 

Profiling is a widely used technique for dynamic program analy-
sis. A profiler investigates the runtime behavior of a program as it 
executes. It determines how much of a hardware resource each 
function in a program consumes. A PMU-based profiler relies on 
performance counters to sample system states and figure out 
approximately how the profiled program behaves. Compared with 
other profiling techniques, such as code instrumentation [22, 12], 
PMU-based profiling provides a more accurate picture of the 
target program’s execution as it is less intrusive and introduces 
fewer side effects.  

The programming interface of a PMU is a set of performance 
counters and event selectors. When a performance counter reaches 
the pre-defined threshold, a counter overflow interrupt is generat-
ed by the interrupt controller and received by the CPU. Exploiting 
this hardware component for performance profiling, a PMU-based 
profiler generally consists of the following major components: 

 Sampling configuration. The profiler registers itself as the 
counter overflow interrupt handler of the operating system, se-
lects the monitored hardware events and sets the number of 
events after which an interrupt should occur. It programs the 
PMU hardware directly by writing to its registers.  

 Sample collection. The profiler records the saved PC, the 
event type causing the interrupt, and the identifier of the inter-
rupted process under the counter overflow interrupt context. 
The interrupt is handled by the profiler synchronously. 

 Sample interpretation. The profiler converts the sampled PC 
values into function names of the profiled process by consult-
ing its virtual memory layout and its binary file compiled with 
debugging information. 

Figure 1. Block diagram of a native PMU-based profiler. 

In a native environment, all three profiling components and 
their data structures reside in the operating system. They interact 
with each other through facilities provided by the operating sys-
tem. Figure 1 shows a block diagram of a PMU-based profiler in a 
native environment.  

In a virtualized environment, the VMM sits between the PMU 
hardware and the guests. The profiler’s three components may be 
spread among the VMM and the guests. Their interactions may 
require communications between the VMM and the guests. In 
addition, the conditions for implementing these three components 
may not be satisfied in a virtualized environment. For instance, 
the sampling configuration component of a guest profiler may not 
be able to program the PMU hardware because of the interposition 
of the VMM. In the next section, we present a detailed discussion 
of the requirements for guest-wide and system-wide profiling for 

CPU PMU

User

Kernel

controller

configure

interpret

collect

 



3 
 

virtualization based on hardware extensions, paravirtualization 
and virtualization based on binary translation. 

3. Virtual Machine Profiling 

3.1 Guest-wide Profiling 

Challenges By definition, guest-wide profiling runs a profiler in 
the guest and only monitors the guest. Although more information 
about the whole software stack can be obtained by employing 
system-wide profiling, sometimes guest-wide profiling is the only 
way to do performance profiling in a virtualized environment. As 
we explained before, users of a public cloud service are normally 
not granted the privilege to run a profiler in the VMM, which is 
necessary for conducting system-wide profiling. To achieve guest-
wide profiling, the VMM needs to provide PMU multiplexing, 
i.e., saving and restoring PMU registers, and enable the imple-
mentation of the three profiling components in the guest. Since 
sample interpretation in guest-wide profiling is the same as in 
native profiling, we only present here the required facilities for 
sampling configuration and sample collection. We return to the 
topic of PMU multiplexing in Section 3.3. 

To implement sampling configuration, the guest must be able 
to program the PMU registers, either directly or with the assis-
tance of the VMM.  

To achieve sample collection, the guest must be able to collect 
correct samples under interrupt contexts, which requires that the 
VMM supports synchronous interrupt delivery to the guest. This 
means that, if the VMM injects an interrupt into a guest, that 
injected interrupt is handled first when the guest resumes its exe-
cution. For performance profiling, when a performance counter 
overflows, an interrupt is generated and first handled by the 
VMM. If the interrupt is generated when the guest code is being 
executed, the counter overflow is considered to be contributed by 
the guest. The VMM injects a virtual interrupt into the guest, 
which drives the profiler to take a sample. If the guest handles the 
injected interrupt synchronously when it resumes execution, it 
collects correct samples as in native profiling. If not, at the time 
when the injected virtual interrupt is handled, the real interrupt 
context has already been destroyed and the profiler obtains wrong 
sampling information. 

Hardware assistance The x86 virtualization extensions pro-
vide facilities that help implement guest-wide profiling. First, the 
guest can be configured with direct access to the PMU registers, 
which are model-specific registers (MSRs) in the x86. The save 
and restore of the relevant MSRs can also be done automatically 
by the CPU. Second, the guest can be configured to exit when 
interrupts occur. The hardware guarantees that event delivery to a 
guest is synchronous, so the VMM can forward to the guest all 
counter overflow interrupts contributed by it, and the guest profil-
er samples correct system states. We present our implementation 
of guest-wide profiling for virtualization based on the x86 hard-
ware extensions in Section 4.1. 

Paravirtualization The major obstacle of implementing guest-
wide profiling for VMMs based on paravirtualization is synchro-
nous interrupt delivery to the guest. At least for Xen, this facility 
is currently not available.  External events are delivered to the 
guest asynchronously.  Mechanisms similar to synchronous signal 
delivery in a conventional OS should be employed to add this 
capability to paravirtualization-based VMMs. For sampling con-
figuration, as a paravirtualized guest runs in a deprivileged mode 
and cannot access the PMU hardware, the VMM must implement 
the necessary programming interfaces to allow the guest to pro-
gram the PMU indirectly. 

Binary translation For VMMs based on binary translation, 
sampling configuration can be achieved with the assistance of the 
VMM, which is able to identify instructions that access the PMU 
and rewrite them appropriately. Similar to paravirtualization, 
synchronous interrupt delivery to the guest is an engineering 
challenge. As far as we know, no VMMs based on binary transla-
tion support this feature.  

3.2 System-wide Profiling 

Challenges System-wide profiling reveals the runtime characteris-
tics of both the VMM and the guests. It first requires that all three 
components of the profiler run in the VMM. Since the profiler 
resides in the VMM, it can program the PMU hardware directly 
and handle the counter overflow interrupts synchronously. The 
challenges for system-wide profiling come from the other two 
profiling components.  

The first challenge for system-wide profiling comes from sam-
ple collection. If the counter overflow is triggered by a guest user 
process, the VMM profiler cannot obtain the identity of this pro-
cess without the assistance of the guest operating system. This 
information is described by a global variable in the guest kernel, 
and the VMM does not know the internal memory layout of the 
guest. To solve this problem, the guest must share this piece of 
information with the VMM profiler.  

The second challenge is interpreting samples belonging to the 
guests. Even if the VMM profiler is able to sample all the required 
information, sample interpretation is not possible because the 
VMM does not know the virtual memory layout of the guest 
processes or the guest kernel. This requires the guest to interpret 
its samples, which means that at least the sample interpretation 
component of a profiler should run in the guest.  

One approach that addresses both the sample collection and 
the sample interpretation problem is to not let the VMM record 
samples corresponding to a guest, but to delegate this task to the 
guest. We call this approach full-delegation. It requires guest-wide 
profiling to be supported by the VMM. With this approach, during 
the profiling process, one profiler runs in the VMM and one runs 
in each guest. The VMM profiler is responsible for handling all 
counter overflow interrupts, but it only collects and interprets 
samples contributed by the VMM. For a sample not belonging to 
the VMM, a counter overflow interrupt is injected into the corre-
sponding guest. The guest profiler is driven by the injected inter-
rupts to collect and interpret samples contributed by the guest. 
Overall system-wide profiling results are obtained by merging the 
outputs of the VMM profiler and the guests. 

An alternative solution is to let the VMM profiler collect all 
samples and to delegate the interpretation of guest samples to the 
corresponding guest [18].  We call this approach interpretation-
delegation. With this solution, the guest makes the identity of the 
process to be run available to the VMM profiler. When a counter 
overflows, the VMM records the saved PC, the event type, and the 
identifier of the interrupted guest process, and sends it to the 
guest. After the guest receives the sample, it notifies the sample 
interpretation component of its profiler to convert the sample to a 
function name, in the same manner as a native profiler. After the 
profiling finishes, the results recorded in the guests are merged 
with those produced by the VMM profiler to obtain a system-wide 
view. 

The interpretation-delegation approach for system-wide profil-
ing requires explicit communication between the VMM and the 
guest. Their interaction rate approaches the rate of counter over-
flow interrupts, which can go up to thousands of times per second 
with a normal profiling configuration. Efficient communication 
methods should be used to avoid distortions in the profiling re-



4 
 

sults. We choose to use a buffer shared among all the profiling 
participants for exchanging information. In addition, a guest 
should process samples collected for it in time. Otherwise, if a 
process terminates before the samples contributed by it are inter-
preted, there will be no way to interpret these samples because the 
sample interpretation component needs to consult the virtual 
memory layout of this process.  

Similar to full-delegation, interpretation-delegation can also be 
implemented by running one profiler in the VMM and one in each 
guest. However, the guest profiler does not need to access the 
PMU hardware. It only processes samples in the shared buffer, 
which are collected for it by the VMM profiler, by running its 
sample interpretation component when handling a virtual interrupt 
injected by the VMM profiler. 

The choice between full-delegation and interpretation-
delegation to implement system-wide profiling depends on 
whether synchronous interrupt delivery is supported by the VMM. 
If so, full-delegation is the preferred approach. If not, one should 
either choose the interpretation-approach or add the support of 
synchronous interrupt delivery to the VMM. Full delegation re-
quires less engineering effort and is transparent to the profiled 
guest. Implementing synchronous interrupt delivery to the guest in 
software is, however, not trivial, and current VMMs based on 
paravirtualization and binary translation do not support this fea-
ture. Therefore, we choose the full-delegation approach to imple-
ment system-wide profiling for a VMM based on hardware assis-
tance and the interpretation-delegation approach for a VMM 
based on binary translation (see Section 4). 

Hardware assistance For VMMs based on hardware exten-
sions, since they have all the facilities to implement guest-wide 
profiling, the full-delegation approach can be employed to achieve 
system-wide profiling. This approach only requires minor changes 
to the VMM as our implementation of system-wide profiling for 
an open-source VMM in Section 4.1 shows. System-wide profil-
ing can also be achieved by the interpretation-delegation ap-
proach. An efficient communication path between the guest and 
the VMM and extensions to the profilers running both in the 
VMM and in the guest require more engineering work than the 
full-delegation approach. 

Paravirtualization For VMMs based on paravirtualization, 
system-wide profiling can be implemented by interpretation-
delegation. XenOprof uses this approach to perform system-wide 
profiling in Xen. Its implementation requires less engineering 
effort than in VMMs based on hardware assistance or binary 
translation, because Xen provides the hypercall mechanism that 
facilitates interactions between the VMM and the guest. The full-
delegation approach may also work if the VMM supports guest-
wide profiling. 

Binary Translation For VMMs based on binary translation, 
system-wide profiling can be achieved through the interpretation-
delegation approach. If the VMM supports synchronous interrupt 
delivery to the guest, the full-delegation approach also works. 

 When using interpretation-delegation, VMMs based on binary 
translation need to solve the following additional problem. If the 
execution of a guest triggers a counter overflow, the PC value 
sampled by the VMM profiler points to a translated instruction in 
the translation cache, not to  the original instruction. Additional 
work is required to map the sampled PC back to the guest address 
where the original instruction is located. This address translation 
problem can be solved by the following idea. During the transla-
tion of guest instructions, we save the mapping from the ad-
dress(es) of one or more translated instructions to the address of 
the original guest instruction in the address mapping cache, a 
counterpart of the translation cache. For each memory address of 

the translation cache, there is an entry in the address mapping 
cache, which points to the address holding the original guest 
instruction. For samples from a guest context, rather than storing 
the PC value itself, the VMM looks up the original instruction 
address in the address mapping cache and stores that address as 
part of the sample.  This rewriting of the sampled PC value is 
transparent to the sample interpretation component in the guest. 

3.3 PMU Multiplexing 

Besides the requirements stated previously, another important 
question for both guest-wide and system-wide profiling is: what is 
the right time to save and restore PMU registers?  

The first option is to save and restore these registers when the 
CPU switches between running guest code and running VMM 
code. We call this type of profiling CPU switch. Profiling results 
with CPU switch reflect the execution of the guest on the virtual-
ized CPU, but not the guest’s use of devices emulated by soft-
ware. When the CPU switches to execute the VMM code that 
emulates the effects of a guest I/O operation, although the moni-
tored hardware events are effectively being contributed by the 
guest, they are not accounted to it. In the case of guest-wide pro-
filing, the PMU is turned off, and in the case of system-wide 
profiling the events are accounted to the VMM. 

The second option is to save and restore relevant registers 
when the VMM switches execution from one guest to another. We 
call this domain switch. This method accounts to a guest all the 
hardware events triggered by its execution and by the execution of 
the VMM while emulating devices on its behalf. In other words, 
domain switch PMU multiplexing reflects the characteristics of 
the entire virtual environment, including both the virtualized 
hardware and the virtualization software.  

Guest-wide and system-wide profiling can choose either of the 
two approaches for PMU multiplexing. Generally, domain switch 
provides a more realistic picture of the underlying virtual envi-
ronment. We compare the profiling results of these two methods 
in Section 5. 

4. Implementation 

We describe the implementation of both guest-wide and system-
wide profiling for the kernel-based virtual machine (KVM) [16], a 
VMM based on hardware assistance. We also present how sys-
tem-wide profiling is implemented in QEMU [7], a VMM based 
on binary translation. As both KVM and QEMU are considered as 
hosted VMMs, we use the terms “VMM” and “host” interchange-
ably in this section. 

Our implementation follows two principles. First, performance 
profiling should introduce as little as possible overhead to the 
execution of the guest. Otherwise, the monitoring results would be 
perturbed by monitoring overhead. Second, performance profiling 
should generate as little as possible performance overhead for the 
VMM. It should not slow down the whole system too much. To 
achieve these goals, we only introduce additional switches be-
tween the VMM and the guest when absolutely necessary. For all 
our implementations, except during the profiling initialization 
phase, only virtual interrupt injection into the guest causes addi-
tional context switches, but these are inevitable for PMU-based 
performance profiling. 

4.1 Hardware Assistance 

KVM is a Linux kernel infrastructure which leverages hardware 
virtualization extensions to add a virtual machine monitor capabil-
ity to Linux. With KVM, the VMM is a kernel module in the host 
Linux, while each virtual machine resides in a normal user space 
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process. Although KVM supports multiple hardware architectures, 
we choose the x86 with virtualization extensions to illustrate our 
implementation, because it has the most mature code. 

The virtualization extensions augment x86 with two new oper-
ation modes: host mode and guest mode. KVM runs in host mode, 
and its guests run in guest mode.  Host mode is compatible with 
conventional x86, while guest mode is very similar to it but de-
privileged in certain ways. Guest mode supports all four privilege 
levels and allows direct execution of the guest code. A virtual 
machine control structure (VMCS) is introduced to control vari-
ous behaviors of a virtual machine. Two transitions are also de-
fined: a transition from host mode to guest mode called a VM-
entry, and a transition from guest mode to host mode called a 
VM-exit. Regarding performance profiling, if a performance 
counter overflows when the CPU is in guest mode, the currently 
running guest is forced to exit, i.e., the CPU switches from guest 
mode to host mode. The VM-exit information filed in the VMCS 
indicates that the current VM-exit is caused by a non-maskable 
interrupt (NMI). By checking this field, KVM is able to decide 
whether a counter overflow is contributed by a guest. This ap-
proach assumes all NMIs are caused by counter overflows in a 
profiling session. To be more precise, KVM could also check the 
content of all performance counters to make sure that NMIs are 
really caused by counter overflows. 

Our guest-wide profiling implementation requires no modifica-
tions to the guest and its profiler. The guest profiler reads and 
writes the physical PMU registers directly as it does in native 
profiling. KVM is responsible for virtualizing the PMU hardware 
and forwarding NMIs due to performance counter overflows to 
the guest. A user can launch the profiler from the guest and do 
performance profiling exactly as in a native environment. 

We implement system-wide profiling by the full-delegation 
approach, since KVM is built upon hardware virtualization exten-
sions and supports synchronous virtual interrupt delivery in the 
guest. In a profiling session, we run one unmodified profiler 
instance in the host and one in each guest. These profiling in-
stances work and cooperate as we discussed in Section 3.2. The 
only changes to KVM are clearing the bit in an APIC register after 
each VM-exit (see below) and injecting NMIs into a guest that 
causes a performance counter overflow. 

When CPU switch is enabled, KVM saves all the relevant 
MSRs when a VM-exit happens and restores them when the cor-
responding VM-resume occurs. By configuring certain fields in 
the VMCS, this is done automatically in hardware.  When domain 
switch is enabled, we tag all (Linux kernel) threads belonging to a 
guest and group them into one domain.  When the Linux kernel 
switches to a thread not belonging to the current domain, it saves 
and restores the relevant registers (in software). 

In the process of implementing these two profiling techniques 
in KVM, we also observe the following two noteworthy facts. 
First, in the x86 architecture, there is one bit of a register in the 
Advanced Programmable Interrupt Controller (APIC) that speci-
fies the delivery of NMIs due to performance counter overflows. 
Clearing this mask bit enables interrupt delivery and setting it 
inhibits delivery. After the APIC sends a counter overflow NMI to 
the CPU, it automatically sets this bit. To allow subsequent NMIs 
to be delivered, a profiler should clear this bit after it handles each 
NMI. In theory, exposing the register containing this bit to the 
guest would require the virtualization of the APIC. However, the 
current implementation of KVM does not virtualize the APIC, but 
emulates it in software. To bypass this problem, we simply clear 
the bit after each VM-exit, no matter whether the exit is caused by 
a performance counter overflow or not. 

Second, for guest-wide profiling with CPU switch, we find 
that the CPU receives NMIs due to counter overflows in host 
mode, typically right after a VM-exit. For guest-wide profiling, 
however, performance monitoring is only enabled in guest mode, 
and NMIs due to performance counter overflows are not supposed 
to happen in host mode. We could not with 100% certainty deter-
mine the reason for this problem because of the lack of a hardware 
debugger. One plausible explanation is that the VM-exit operation 
is not “atomic”. It consists of a number of sub-operations, includ-
ing saving and restoring MSRs. A counter may overflow during 
the execution of VM-exit, but before performance monitoring is 
disabled. The corresponding NMI is not generated immediately, 
because the instruction executing when an NMI is received is 
completed before the NMI is generated [15]. The NMI due to a 
performance counter overflow in the middle of a VM-exit is thus 
generated after the VM-exit operation finishes, when the proces-
sor is in host mode.  We solve this problem by registering an NMI 
handler in the host to catch those host counter overflows and 
inject the corresponding virtual NMIs into the guest. 

4.2 Binary Translation 

We present the implementation of system-wide profiling by the 
interpretation-delegation approach in QEMU, a VMM based on 
binary translation. In this environment, the guest profiler runs in 
the guest kernel space; the guest runs in QEMU; QEMU runs in 
the user space of the host; and the host profiler runs in the host 
kernel space. The implementation takes more engineering effort 
than that of the full-delegation approach in KVM. The implemen-
tation touches a number of major components in the whole soft-
ware stack, including the host, the host profiler, the guest, and the 
guest profiler. 

The conventional x86 is not virtualizable because some in-
structions do not trap when executed in the unprivileged mode. 
Dynamic binary translation solves this problem by rewriting those 
problematic instructions on the fly. A binary translator processes a 
basic block of instructions at a time. The translated code is stored 
in a buffer called the translation cache, which holds a recently 
used subset of all the translated code. Instead of the original guest 
code, the CPU actually executes the code in the translation cache. 

Virtual interrupts injected to a guest are delivered asynchro-
nously in QEMU. Once a virtual interrupt injection request is 
received, QEMU first unchains the translated basic block being 
executed and forces the control back to itself after this basic block 
finishes execution. It then sets a flag of the guest virtual CPU to 
indicate the reception of an interrupt. The injected interrupt is 
handled when the guest resumes execution.  

To reduce the VM exit rate due to information exchange 
among the guest, QEMU, and the host, we design an efficient 
communication mechanism for interpretation-delegation. This is 
important because in a typical profiling session interactions 
among all these participants can occur at the rate of thousands of 
times per second. If each interaction involves one VM exit, the 
profiling results would be polluted and far from being accurate. 
The key data structure underlying this communication mechanism 
is a buffer shared among the three participants. All the critical 
information in a profiling session, such as the PCs and pointers to 
process descriptors, is exchanged through this buffer. Each profil-
ing participant reads the buffer directly whenever it needs any 
information and no VM exits are triggered.  

The shared buffer is allocated in the guest and shared through 
the following control channel. The guest exchanges information 
with QEMU through a customized virtual device added to QEMU 
and the corresponding device driver in the guest kernel. QEMU 
and the host kernel talk with each other through common us-
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er/kernel communication facilities provided by the host. After the 
address of the buffer is passed from the guest profiler to the host 
profiler, the guest profiler accesses the shared buffer by an ad-
dress in the guest kernel space; QEMU uses this buffer through an 
address in its own address space; the host profiler accesses it with 
an address in the host kernel space.  

In our implementation, QEMU is responsible for rewriting the 
PC value sampled by the host profiler into an address of the guest 
pointing to the original guest code. To reduce the overall overhead 
of PC value rewriting, the address mapping cache proposed in 
Section 3.2 does not map the host address of each instruction in 
the translation cache to its corresponding guest address. Instead, 
the cache only maintains one entry for one basic block. All the 
addresses of the instructions in a translated basic block are 
mapped to the starting address of the corresponding original basic 
block in the guest. This does not hurt the accuracy of performance 
profiling with functions as the interpretation granularity because 
of two reasons. First, a profiler always interprets any address 
pointing to the body of a function to the name of that function. 
Second, a basic block does not span across more than one func-
tion, because it terminates right after the first branch instruction.  

Putting all the pieces together, the process of system-wide pro-
filing for binary translation can be described as follows.  

1. In the initialization phase, the host profiler is loaded to the 
host kernel, and the guest profiler is loaded to the guest kernel. 
A communication channel across all the profiling participants 
is established and a buffer is shared among them.  

2. The user starts a profiling session by launching the host profil-
er. The host profiler sends a message to the guest to start the 
guest profiler. 

3. When profiling is being conducted, the guest records the ad-
dress pointing to the descriptor of each process right before it 
schedules the process to run. There is only one entry in the 
shared buffer for this address. The guest keeps overwriting this 
entry because it is only useful when the execution of the corre-
sponding process triggers a performance counter overflow. 
When a counter overflows and if it is contributed by the guest, 
the host profiler copies the sampled PC value, the event type, 
and the address to the descriptor of the corresponding guest 
process to a sampling slot in the shared buffer. It then sends a 
signal to QEMU running in user space. After the counter over-
flow NMI is handled and QEMU is scheduled to run again, the 
signal from the host profiler is delivered first. The signal han-
dler rewrites the sampled PC value, records the current privi-
lege mode of the virtual CPU in the same sampling slot, and 
injects an NMI into the guest. Upon handling the injected 
NMI, the guest profiler processes all the available sampling 
slots one by one.   

4. The user finishes the profiling session by stopping the host 
profiler. The host profiler sends a message to the guest to stop 
the guest profiler. The output of the host profiler and the guest 
profiler is merged together as the final profiling results. 

Because the host knows little about the internals of a guest and 
the guest code is dynamically translated, the host profiler can only 
obtain limited runtime information about the guest under an NMI 
context. Both the guest and QEMU are required to help record or 
process sampling information on behalf of the host profiler. This 
leads to changes to all the participants involved in system-wide 
profiling based on interpretation-delegation.   

5. Evaluation 

We first verify the accuracy of our profilers by comparing the 
results of native profiling with profiling in various virtualized 
environments. We then show how guest-wide profiling can be 
used to profile two guests simultaneously. Next, by comparing the 
results of CPU switch and domain switch for guest-wide profiling, 
we show that domain switch sometimes provides considerably 
more information about the guest’s execution. We also demon-
strate the power of guest-wide profiling by using it on a couple of 
examples to explain why one virtualization technique performs 
better than the other. Finally, we quantify the overhead of our 
profilers by comparing the execution time of a computation-
intensive program with and without profiling. 

Our experiments involve two machines.  The first one is a Dell 
OptiPlex 745 desktop with one dual-core Intel Core2 E6400 pro-
cessor, 2GB DDR2 memory, and one Gigabit Ethernet NIC. The 
second machine is a Sun Fire x4600 M2 server with four quad-
core AMD Opteron 8356 processors, 32GB DDR2 memory, and a 
dozen of Gigabit Ethernet NICs. Unless explicitly stated, all the 
experiments are conducted on the Intel machine. 

For hardware-assisted virtualization, the VMM consists of the 
2.6.32 Linux kernel with the KVM kernel module loaded and 
QEMU 0.11 in user space [7]. For virtualization based on binary 
translation, the VMM is QEMU 0.10.5 in user space, which runs 
on top of the 2.6.30 Linux kernel with virtualization extensions 
disabled. All guests are configured with one virtual CPU and run 
Linux with the 2.6.32 kernel. The profiler is OProfile 0.9.5.  

For both guest-wide and system-wide profiling, CPU switch 
for KVM adds 170 lines of C code to the Linux kernel, while 
domain switch consists of 272 lines of C code. QEMU system-
wide profiling with CPU switch introduces 1115 lines of C code 
to QEMU, the host kernel, and the guest kernel. 

5.1 Computation-intensive Workload 

To verify the accuracy of our profilers for computation-intensive 
workloads, we use the code given in Figure 2 as the profiled 
application, and we compare the output of native profiling with 
virtualized profiling. The program consists of an infinite loop 
executing two computation-intensive functions compute_a() and 
compute_b(), which perform floating point arithmetic and 
consume different number of CPU cycles. We run this program in 
two different processes, process1 and process2. We launch 
both processes at the same time and pin them to one CPU core. 

 
int main(int argc, char *argv[]) 

{ 

    while (1) { 

        compute_a(); 

        compute_b(); 

    } 

}  

 

Figure 2. Code used to verify the accuracy of VM profilers for 

computation-intensive programs. 

Table 2 to Table 5 present the output of profiling runs of this 
program in which we measure the number of CPU cycles con-
sumed, for native profiling (Table 2), guest-wide profiling in 
KVM (Table 3), system-wide profiling in KVM (Table 4), and 
system-wide profiling in QEMU (Table 5)1. The results for the 

                                                 
1
 For system-wide profiling, only CPU cycles consumed in the guest are 

counted in the percentages. 



7 
 

VM profilers are roughly the same as those for the native profiler. 
As expected, the two processes, process1 and process2, con-
sume roughly the same number of cycles, and the ratio between 
cycles consumed in compute_a() and in compute_b() is also 
roughly similar.  

 

% CYCLE Function Module 

40.3463 compute_a process2 
38.2010 compute_a process1 
10.6135 compute_b process2 
10.2371 compute_b process1 
0.1505 vsnprintf vmlinux 
0.1129 (no symbols) bash 
0.0376 (no symbols) libc.so 
0.0376 mem_cgroup_read vmlinux 

Table 2.  % of cycles consumed in two processes running the 

program given in Figure 2, native profiling. 

% CYCLE Function Module 

38.8114 compute_a process1 
38.5913 compute_a process2 
10.3815 compute_b process2 
10.0880 compute_b process1 
0.5503 native_apic_mem_write vmlinux 
0.2201 (no symbols) libc.so 
0.2201 schedule vmlinux 
0.1101 (no symbols) bash 

Table 3. % of cycles consumed in two processes running the 

program given in Figure 2, KVM guest-wide profiling. 

% CYCLE Function Module 

39.9220 compute_a process1 
39.4209 compute_a process2 
10.3563 compute_b process2 
10.0223 compute_b process1 
0.0557 __switch_to vmlinux 
0.0557 ata_sff_check_status vmlinux 
0.0557 run_time_softirq vmlinux 
0.0557 update_wall_time vmlinux 

Table 4. % of cycles consumed in two processes running the 

program given in Figure 2, KVM system-wide profiling. 

% CYCLE Function Module 

40.0000 compute_a process2 
36.2963 compute_a process1 
9.2593 compute_b process1 
8.5185 compute_b process2 
0.7407 update_wall_time vmlinux 
0.3704 __schedule vmlinux 
0.3704 __tasklet_hi_schedule vmlinux 
0.3704 cleanup_workqueue_thread vmlinux 

Table 5. % of cycles consumed in two processes running the 

program given in Figure 2, QEMU system-wide profiling. 

These results are further confirmed by Figure 3, which shows 
the average and the standard deviation of the percentage of CPU 
cycles consumed by compute_a() and compute_b() over 10 
runs with all four profilers. Our profilers provide stable results, 
with standard deviations ranging from 0.44% to 2.87%. Native 
profiling has the smallest variance and system-wide profiling for 
QEMU has the largest.  

Figure 4 shows the results of simultaneous guest-wide profil-
ing of two KVM guests running the program described in Figure 

2. The percentage of CPU cycles consumed by each function is 
the same in both guests, and similar to the percentage for each 
function for native profiling, indicating the accuracy of our profil-
er when used with multiple virtual machines.  

Although the data in this experiment do not constitute “proof 
of correctness”, they give us reasonable confidence that our de-
sign and implementation work reasonably well in terms of CPU 
cycles. We obtain similar results for instruction retirements. 
 

Figure 3. Average and standard deviation of the percentage of 

cycles consumed by compute_a() and compute_b(). 

Figure 4. Average and standard deviation of the percentage of 

cycles consumed by compute_a() and compute_b() in two 

KVM guests, KVM guest-wide profiling. 

5.2 Memory-intensive Workload 

We use the program described in Figure 5 to demonstrate the 
operation of the KVM guest-wide profiling with memory-
intensive programs. This program makes uniformly distributed 
random accesses to a fixed-size region of memory. We run this 
program with a working set of 512KB for which the entire execu-
tion fits in the L2 cache, and with a working set of 2048KB that 
causes many misses in the L2 cache.  

Table 6 presents the profiling results for L2 cache misses for 
the 512KB working set, and Table 7 presents the results for the 
2048KB working set. The results clearly reflect the higher number 
of L2 misses with the larger working set. 
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struct item { 

    struct item *next; 

    long pad[NUM_PAD]; 

} 

 

void chase_pointer() 

{ 

    struct item *p = NULL; 

    p = &randomly_connected_items; 

    while (p != null) p = p->next; 

} 

 

Figure 5. Code used to verify the accuracy of VM profilers for 

memory-intensive programs. 

L2 Miss Function Module 

1250 chase_pointer cache_test 
100 (no symbols) bash 
100 (no symbols) ld.so 
100 (no symbols) libc.so 
50 sync_buffer oprofile.ko 
50 do_notify_resume vmlinux 
50 do_wp_page vmlinux 
50 find_first_bit vmlinux 

Table 6. L2 cache misses (in thousands) for the program given in 

Figure 5 with a working set of 512KB, KVM guest-wide profil-

ing. 

L2 Miss Function Module 

150750 chase_pointer cache_test 
2050 native_apic_mem_write vmlinux 
250 idle_cpu vmlinux 
250 run_posix_cpu_timers vmlinux 
200 account_user_time vmlinux 
200 unmap_vmas vmlinux 
200 update_curr vmlinux 
150 do_timer vmlinux 

Table 7. L2 cache misses (in thousands) for the program given in 

Figure 5 with a working set of 2048KB, KVM guest-wide profil-

ing. 

Figure 6 shows the average number of L2 cache misses trig-
gered by one pointer access of our memory-intensive benchmark. 
We run the benchmark with different working set sizes in four 
different computing environments. For system-wide profiling of 
both KVM and QEMU, we only count the cache misses reported 
in the guest profiler. The number of cache misses per pointer 
access for native Linux, the KVM guests, and the QEMU guest 
follow a similar pattern. After the size of the working set exceeds 
a certain value, the amount of L2 cache available for the bench-
mark, the miss rate increases dramatically. For native Linux and 
KVM, the available L2 cache is about 1024 KB. For QEMU, it is 
512 KB, because QEMU involves the execution of more software 
components, such as the binary translator and the MMU emula-
tion code. The cache miss rate after these points grows linearly 
with the working set size.  

5.3 CPU Switch vs. Domain Switch 

For guest-wide profiling, there are two possible places to save and 
restore the registers related to profiling. CPU switch saves and 
restores the relevant registers when the CPU switches from run-
ning guest code to VMM code, or vice versa. Domain switch does 

this when the VMM switches execution from one guest to another 
one.  

To show the difference between CPU switch and domain 
switch, we use guest-wide profiling for KVM on a guest that 
receives TCP packets. In the experiment, as much TCP traffic as 
possible is pushed to the guest from a Gigabit NIC on a different 
machine.  The virtual NIC used by the guest is RTL8139. 

 

% INSTR Function Module 

14.1047 csum_partial vmlinux 
8.9527 csum_partial_copy_generic vmlinux 
6.2500 copy_to_user vmlinux 
3.9696 ipt_do_table ip_tables.ko 
3.6318 tcp_v4_rc vmlinux 
3.2095 (no symbols) libc.so 
2.8716 ip_route_input vmlinux 
2.7027 tcp_rcv_established vmlinux 

Table 8. Instruction retirements for TCP receive in a KVM guest, 

guest-wide profiling with CPU switch. 

% INSTR Function Module 

31.0321 cp_interrupt 8139cp.ko 
18.3365 cp_rx_poll 8139cp.ko 
14.1916 cp_start_xmit 8139cp.ko 
5.7782 native_apic_mem_write vmlinux 
5.1331 native_apic_mem_read vmlinux 
2.6215 csum_partial vmlinux 
1.4411 csum_partial_copy_generic vmlinux 
1.2901 copy_to_user vmlinux 

Table 9. Instruction retirements for TCP receive in a KVM guest, 

guest-wide profiling with domain switch. 

Table 8 presents the eight functions with the largest number of 
instruction retirements with CPU switch, and Table 9 with domain 
switch. The total number of samples with CPU switch is 1184 vs. 
7286 with domain switch. In other words, more than 80% of the 
retired instructions involved in receiving packets in the guest are 
spent outside the guest, inside the device emulation code of the 
VMM. The VMM spends a large number of instructions emulat-
ing the effects of the I/O operations in the virtual RTL8139 NIC 
and the virtual APIC. The top three functions in Table 9 are from 
the RTL8139 NIC driver, and the next two program the APIC.  

Figure 6. The number of L2 cache misses per pointer access for 

different working set sizes in four computing environments. 
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Only below those five appear the three guest functions appearing 
at the top in Table 8. 

This example clearly shows that domain switch can provide 
more complete information than CPU switch for I/O intensive 
programs. 

5.4 The Power of Guest-wide Profiling 

One of the advantages of guest-wide profiling is that it does not 
require access to the VMM. Nevertheless, it allows advanced 
performance debugging, as we demonstrate next with the follow-
ing two examples. 

We first profile the benchmark described in Figure 7 to show 
why hardware-supported nested paging [8] provides more effi-
cient memory virtualization than shadow page tables [19]. This 
program is a familiar UNIX kernel micro-benchmark that stresses 
process creation and destruction.2  

 
int main(int argc, char *argv[]) 

{     

        for (int i = 0; i < 32000; i++) { 

            int pid = fork(); 

            if (pid < 0) return -1; 

            if (pid == 0) return 0; 

            waitpid(pid); 

        } 

        return 0; 

    } 

 

Figure 7. A micro-benchmark that stresses process creation and 

destruction [3]. 

CYCLE Function Module 

1300 do_wp_page vmlinux 
1100 do_wait vmlinux 
750 page_fault vmlinux 
400 get_page_from_freelist vmlinux 
400 wait_consider_task vmlinux 
350 unmap_vmas vmlinux 
200 flush_tlb_page vmlinux 
200 native_flush_tlb_single vmlinux 

Table 10. Cycles (in millions) consumed in the program given in 

Figure 7 in a KVM guest with nested paging, KVM guest-wide 

profiling. 

CYCLE Function Module 

5450 native_set_pmd vmlinux 
5350 do_wp_pge vmlinux 
3500 native_flush_tlb_single vmlinux 
3050 get_page_from_freelist vmlinux 
2650 schedule vmlinux 
1100 native_flush_tlb vmlinux 
1050 do_wait vmlinux 
950 page_fault vmlinux 

Table 11. Cycles (in millions) consumed in the program given in 

Figure 7 in a KVM guest with shadow page tables, KVM guest-

wide profiling. 

Running natively, we measure 4.97 seconds to create and de-
stroy 32000 processes. With nested paging, the guest takes 5.52 

                                                 
2
 This experiment is conducted on our AMD machine, because KVM’s 

modular implementation on AMD CPUs can easily be switched between 
shadow page tables and hardware-supported nested paging. 

seconds, slightly slower than at native speed. When using shadow 
page tables, the execution time grows to 20.06 seconds. By profil-
ing the benchmark in the guest, a developer can easily figure out 
which operations involved in process creation and destroying are 
expensive.  

Table 10 presents the eight functions that consume the most 
CPU cycles with nested paging, and Table 11 presents the same 
results for shadow page tables. By comparing the profiling results 
presented in these two tables, we observe that operations related 
to page table manipulation, such as native_set_pmd() and 
do_wp_page(), become more expensive with shadow page 
tables. The shadow page table mechanism causes a large number 
of VM exits, including when loading and updating a page table in 
the guest, when accessing protected pages, and when performing 
privileged operations like TLB flushing. With nested paging, most 
of these operations do not cause a VM exit. 

Our second example is again TCP receive, similar to the ex-
periment described in Section 5.3. The difference in this experi-
ment is that, instead of RTL8139, we use the E1000 virtual NIC 
and a virtual NIC based on VirtIO [20]. VirtIO is a paravirtualized 
I/O framework that provides good I/O performance for virtual 
machines.   
 

% INSTR Function Module 

25.2399 e1000_intr e1000.ko 
16.8906 e1000_irq_enable e1000.ko 
12.1881 e1000_xmit_frame e1000.ko 
4.6065 native_apic_mem_write vmlinux 
4.4146 csum_partial vmlinux 
3.3589 e1000_alloc_rx_buffers e1000.ko 
3.2630 native_apic_mem_read vmlinux 
3.0710 __copy_user_intel vmlinux 

Table 12. Instruction retirements for TCP receive in KVM guest 

with E1000 virtual NIC, guest-wide profiling with domain switch. 

% INSTR Function Module 

52.3312 native_safe_halt vmlinux 
7.7244 native_apic_mem_write vmlinux 
6.6806 csum_partial_copy_generic vmlinux 
1.8903 native_write_cr0 vmlinux 
1.4614 ipt_do_table ip_tables.ko 
0.9047 (no symbols) libc.so 
0.9047 get_page_from_freelist vmlinux 
0.9047 schedule vmlinux 

Table 13. Instruction retirements for TCP receive in KVM guest 

with VirtIO virtual NIC, guest-wide profiling with domain switch. 

Table 12 presents the profiling results of packet receive 
through the E1000 virtual NIC in a KVM guest. Similar to the 
results of RTL8139, interrupt handling functions retire more than 
40% of all instructions, because of the high network I/O interrupt 
rate. Table 13 presents the results of the VirtIO-based NIC. The 
function native_safe_halt() retires more than half of all 
instructions, but this function actually executes the HLT instruc-
tion, which halts the CPU until the next external interrupt occurs. 
The frequent execution of this instruction in the guest shows that 
the guest is not saturated while handling 1Gbps TCP traffic. 
Compared with the data in Table 12, we do not find a single func-
tion related to interrupt handling, which indicates that the interrupt 
rate due to network I/O is low. Our profiling results validate the 
design of VirtIO, which improves virtualized I/O performance by 
batching I/O operations to reduce the number of VM exits. 

Therefore, as these two experiments demonstrate, guest-wide 
profiling with domain switch helps developers understand the 
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underlying virtualized environment without the need for accessing 
the VMM.  

5.5 Profiling QEMU 

With our system-wide profiling extensions for QEMU, we profile 
TCP receive of both the host and the guest. The experiment con-
figuration is similar to the one described in Section 5.4. Instead of 
KVM, we use QEMU running in user space as the VMM. The 
virtual NIC is based on VirtIO. The observed TCP receive 
throughput is around 50MB/s. This amount of traffic saturates the 
physical CPU but does not keep the virtual CPU of the guest busy. 

Table 14 presents the profiling results of the host part. Func-
tion cpu_x86_exec() retires a large portion of all the instruc-
tions. Its functionality is similar to vmx_vcpu_run() in KVM, 
which switches the CPU from the host context to the guest con-
text.  

Table 15 shows the results of the guest part, which is obtained 
by running a customized OProfile in the guest. The appearance of 
function __schedule() indicates that the virtual CPU is not 
saturated. The reason why function strcat() retires most in-
structions in the guest may be that the corresponding translated 
native code of this operation is expensive. 
 

% INSTR Function Module 

68.9548 cpu_x86_exec qemu 
6.0842 __ldl_mmu qemu 
4.2902 helper_cc_compute_c qemu 
1.7161 cpu_x86_handle_mmu_fault qemu 
1.7161 phys_page_find_alloc qemu 
1.4041 ld_phys qemu 
1.2480 tlb_set_page_exec qemu 
0.6240 helper_cc_compute_all qemu 

Table 14. Instruction retirements for TCP receive in QEMU host 

with VirtIO virtual NIC, system-wide profiling with CPU switch.  

% INSTR Function Module 

10.5178 strcat vmlinux 
3.8835 ipt_do_table vmlinux 
2.7508 olpc_ec_cmd vmlinux 
2.4272 __schedule vmlinux 
2.4272 __slab_alloc vmlinux 
2.2654 ip_route_input vmlinux 
2.2654 skb_gro_receive vmlinux 
1.9417 vring_add_buf virtio_ring.ko 

Table 15. Instruction retirements for TCP receive in QEMU guest 

with VirtIO virtual NIC, system-wide profiling with CPU switch. 

5.6 Profiling Overhead 

Profiling based on CPU performance counters inevitably slows 
down the profiled program, even in a native environment, because 
of the overhead of handling the counter overflow interrupts. In a 
virtualized environment, these interrupts need to be forwarded to 
the guest, adding more context switches between the host and the 
guest and therefore more overhead. In addition, the VMM needs 
to save and restore the performance counters on a VM switch. 

We evaluate the overhead of our profiling extensions by com-
paring the execution time, with and without profiling, of the pro-
gram in Figure 2, which is modified to execute a fixed number of 
iterations. The program runs in the guest, and we take a sample 
every 5 million CPU cycles (or about 400 times per second). 

Table 16 presents the results for profiling overhead. In the na-
tive environment, the overhead of profiling is about 0.048%. For 
KVM guest-wide profiling, the overhead is about 0.386%. We 

further breakdown the overhead into two parts: additional context 
switches due to interrupt injection account for about 80% of over-
all overhead and interrupt handling in the guest takes the remain-
ing 20%. For KVM system-wide profiling, the overhead is 
0.441%. This is roughly the sum of the overhead of native and 
KVM guest-wide profiling, because KVM system-wide profiling 
also runs a profiler in the host Linux. System-wide profiling for 
QEMU incurs more overhead, around 0.942%. The overhead 
comes from multiple sources. First, QEMU runs in user space, 
and forwarding an interrupt to the guest requires a change in CPU 
privilege level and a signal to the user space process. Second, 
QEMU needs to query the address mapping cache and rewrite the 
sampled address. Third, frequent context switches also hurt the 
performance of QEMU’s binary translation engine. 

 

Profiling environment Execution time overhead 

Native  0.048% ± 0.0042% 

KVM guest-wide  0.386% ± 0.0450% 

KVM system-wide  0.441% ± 0.0435% 

QEMU system-wide  0.942% ± 0.0441% 

Table 16. Profiling overhead. The sample rate of the profiler is 

about 400 times per second. 

6. Discussion 

Although both guest-wide and system-wide profiling are feasible 
and useful for diagnosing performance problems in a virtualized 
computing environment, there are still a number of issues that 
need to be considered before these techniques can be deployed in 
production use, as discussed next. 

Virtual PMU interface Since the PMU is not a standardized 
hardware component of the x86 architecture, the programming 
interfaces for PMUs differ between hardware vendors and even 
between different models from the same hardware vendor. In 
addition, different processors may also support different profiling 
events. Therefore, for guest-wide profiling to be portable to dif-
ferent processors, a proper interface between the guest profiler 
and the virtualized PMU must be defined. There are two ways to 
expose PMU interfaces to the guests. 

The first method is to rely on the CPUID instruction to return 
the physical CPU family and model identifier to the guest. This 
information tells the guest profiler how to program the PMU 
hardware directly. The burden on the VMM is minimal, but the 
solution breaks one fundamental principle of virtualization: de-
coupling software from hardware.  

The second approach is to expose to the guest a standardized 
virtual PMU with a limited number of broadly used profiling 
events, such as CPU cycles, TLB and cache misses, etc.  The 
guest profiler is extended to support this virtual PMU, and the 
VMM provides the mapping of operations between the virtual 
PMU and the underlying physical PMU. This approach decouples 
software from hardware, but imposes additional work on the 
VMM.  

Profiling accuracy In addition to the statistical nature of sam-
pling-based profiling, there are other factors that potentially affect 
profiling accuracy in virtualized environments. 

The first problem is that the multiplexing of some hardware re-
sources inevitably introduces noise into profiling results. For 
instance, TLBs are flushed when switching between the VMM 
and the guests. If TLB misses are being monitored, the profiling 
results in a guest are perturbed by the execution of the VMM 
and/or other guests. This problem also exists in native profiling. 
Although it can be mitigated by cache/TLB entry tagging, profil-
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ing results for these events are still not guaranteed to be entirely 
accurate. 

The second problem is specific to profilers based on domain 
switch. If the VMM is interrupted to perform some action on 
behalf of another guest, the handling of this interrupt is incorrectly 
charged to the currently executing guest. The issue is similar to 
the resource accounting problem in a conventional operating 
system [5], and can possibly be solved by techniques such as early 
demultiplexing [10].  

PMU emulation In addition to virtualizing the PMU, for 
VMMs based on binary translation and pure emulators, it is also 
possible to emulate the PMU hardware in software. In this case, 
the PMU of the physical CPU is not involved during the profiling 
process, and the entire functionality of the PMU is emulated in 
software. By emulating the PMU the VMM can support some 
events that are not implemented by the physical PMU. For in-
stance, if the energy consumption of each CPU instruction is 
known, one could build an energy profiler in this way.  

We use PMU emulation to count instruction retirements. When 
a basic block is translated, we count the number of guest instruc-
tions in the block and insert a few instructions at the beginning of 
the translated basic block. When the translated block is executed, 
these instructions increase the emulated performance counter. If 
the emulated counter reaches the predefined threshold, an NMI is 
injected into the virtual CPU. The difficulties of PMU emulation 
lie in supporting a large number of hardware events. Emulating 
these events may incur high overhead and emulating some of 
them may not even be possible for a binary translator or an in-
struction-level CPU emulator. 

7. Related Work 

The XenOprof profiler [18] is the first profiler for virtual ma-
chines. According to our definition, it does system-wide profiling. 
It is specifically designed for Xen, a VMM based on paravirtual-
ization. A newer version of Xen, Xen HVM, supports hardware-
assisted full virtualization. Xen HVM saves and restores MSRs 
when it performs domain switches, but it does not attribute sam-
ples from domain 0, in which all I/O device emulation is done, to 
any guest. VM exits in a domain that do not require the interven-
tion of domain 0 are handled by Xen HVM under the context of 
that domain. As a result, guest-wide profiling in Xen HVM re-
flects neither the characteristic of the physical CPU nor that of the 
CPU plus the VMM. 

Linux perf [2] is a new implementation of performance coun-
ter support for Linux. It runs in the Linux host and can profile a 
Linux guest running in KVM [1]. It obtains samples of the guest 
by observing its virtual CPU state. Because this is done outside 
the guest, only PC and CPU privilege mode can be recorded. The 
address of the descriptor of the current process is not known. As a 
result, Linux perf can only interpret samples that belong to the 
kernel of the Linux guest, and cannot handle samples contributed 
by user space applications. The binary image and the virtual 
memory layout of the guest kernel, necessary for sample interpre-
tation, are obtained through an explicit communication channel.   

VMware vmkperf [14] is a performance monitoring utility for 
VMware ESX. It runs in the VMM and only records how many 
hardware events happen in a given time interval. It does not han-
dle counter overflow interrupts, and it does not attribute them to 
functions. It does not support the profiling mechanisms presented 
in this paper. 

VTSS++ [9] demonstrates a profiling technique similar to 
guest-wide profiling. It requires the cooperation of a profiler 
running in the guest and a PMU sampling tool running in the 
VMM. It relies on sampling timestamps to attribute hardware 

events sampled in the host to the corresponding threads in the 
guest. Although it does not require modifications to the VMM, 
VTSS++ requires access to the VMM to run a sampling tool, and 
the accuracy of the profiling results is affected by the estimation 
algorithm it uses. 

The work in this paper builds on our earlier work [11], which 
proposes some basic ideas of virtual machine profiling and only 
concentrates on guest-wide profiling for VMMs based on hard-
ware-assisted virtualization. This paper extends the earlier work in 
several ways. We implement system-wide profiling for a VMM 
based on binary translation. We also evaluate our implementations 
through extensive experiments to demonstrate the feasibility and 
usefulness of virtual machine profiling. 

8. Conclusions 

Profilers based on CPU performance counters help developers 
debug performance problems in complex software systems, but 
they are not well supported in virtual machine environments, 
making performance debugging in such environments hard. 

We define guest-wide profiling, which allows profiling of a 
guest without VMM access, and system-wide profiling, which 
allows profiling of the VMM and any number of guests. We study 
the requirements for each type of profiling. Guest-wide profiling 
requires synchronous interrupt delivery to the guest. System-wide 
profiling requires cooperation between the VMM and the guest to 
interpret samples belonging to the guest. We describe two ap-
proaches to implement this cooperation, full-delegation and inter-
pretation-delegation. 

We develop a guest-wide and a system-wide profiler for a 
VMM based on hardware-assisted virtualization (KVM), and a 
system-wide profiler for a VMM based on binary translation 
(QEMU). We demonstrate the accuracy and the power of these 
profilers, and show that their performance overhead is very small. 

As more and more computing is migrated to virtualization-
based cloud infrastructures, better profiling tools for virtual ma-
chines will facilitate performance debugging and improve re-
source utilization in the cloud. 

Acknowledgements  

We would like to thank Mihai Dobrescu, Simon Schubert and the 
anonymous reviewers for their valuable comments and help in 
improving this paper. 

References  

[1] Enhance perf to collect KVM guest os statistics from host side. 2010.  
http://lwn.net/Articles/378778. 

[2] Performance Counters for Linux. 2010. http://lwn.net/Articles/-
310176. 

[3] K. Adams and O. Agesen. A comparison of software and hardware 
techniques for x86 virtualization. In Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2006. 

[4] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, 
S.T.A. Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and 
W.E. Weihl. Continuous profiling: where have all the cycles gone? 
Operating Systems Review, 1997. 

[5] G. Banga, P. Druschel, and J.C. Mogul. Resource containers: A new 
facility for resource management in server systems. Operating Sys-
tems Review, 1998. 

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, 
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtual-
ization. In Proceedings of the 9th ACM Symposium on Operating 
Systems Principles, 2003. 



12 
 

[7] F. Bellard. QEMU, a fast and portable dynamic translator. In Pro-
ceedings of the USENIX 2005 Annual Technical Conference, FREE-
NIX Track, 2005. 

[8] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating 
two-dimensional page walks for virtualized systems. In Proceedings 
of the 13th International Conference on Architectural Support for 
Programming Languages and Operating Systems, 2008. 

[9] Stanislav Bratanov, Roman Belenov, and Nikita Manovich. Virtual 
machines: a whole new world for performance analysis. Operating 
Systems Review, 2009. 

[10] P. Druschel and G. Banga. Lazy receiver processing (LRP): A net-
work subsystem architecture for server systems. Operating Systems 
Review, 1996. 

[11] J. Du, N. Sehrawat, and W. Zwaenepoel. Performance profiling in a 
virtualized environment. In Proceedings of the 2nd USENIX Work-
shop on Hot Topics in Cloud Computing, 2010. 

[12] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call graph 
execution profiler. ACM SIGPLAN Notices, 1982. 

[13] Intel Inc. Intel VTune Performance Analyser, 2010. http://-
software.intel.com/en-us/intel-vtune/. 

[14] VMware Inc. Vmkperf for VMware ESX 4.0, 2010. 

[15] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual 
Volume 3: System Programming Guide. 

[16] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the 
Linux virtual machine monitor. In Linux Symposium, 2007. 

[17] J. Levon and P. Elie. Oprofile: A system profiler for linux. 2010.  
http://oprofile.sourceforge.net. 

[18] A. Menon, J.R. Santos, Y. Turner, G.J. Janakiraman, and 
W. Zwaenepoel. Diagnosing performance overheads in the Xen vir-
tual machine environment. In Proceedings of the 1st ACM/USENIX 
International Conference on Virtual Execution Environments, 2005. 

[19] M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current 
technology and future trends. Computer, 2005. 

[20] R. Russell. virtio: towards a de-facto standard for virtual I/O devices. 
Operating Systems Review, 2008. 

[21] B. Sprunt. The basics of performance-monitoring hardware. IEEE 
MICRO, 2002. 

[22] A. Srivastava and A. Eustace. ATOM: A system for building custom-
ized program analysis tools. In Proceedings of the ACM SIGPLAN 
1994 Conference on Programming Language Design and Implemen-
tation, 1994. 

[23] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance 
analysis using the MIPS R10000 performance counters. In Proceed-
ings of the 1996 ACM/IEEE Conference on Supercomputing,1996. 

 

 

 

 


