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Abstract

Understanding diffusion in alumina is a long-standing challenge in ceramic science. The present article applies a novel combination of
metadynamics and kinetic Monte Carlo simulation approaches to the investigation of oxygen vacancy diffusion in alumina. Three classes
of diffusive jumps with different activation energies were identified, the resulting diffusion coefficient being best fitted by an Arrhenius
equation having a pre-exponential factor of 7.88 � 10�2 m2 s�1 and an activation energy of 510.83 kJ mol�1. This activation energy is
very close to values for the most pure aluminas studied experimentally (activation energy 531 kJ mol�1). The good agreement indicates
that the dominating atomic-scale diffusion mechanism in alumina is vacancy diffusion.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In order to improve ceramic materials such as alumina
(a-Al2O3) and obtain the very specific properties required
for novel high-performance applications, a fine control
over the microstructure is required. This requires in turn
a fundamental understanding of sintering, the underlying
atomic-scale diffusion mechanisms of the constituent oxy-
gen anions and aluminium cations, and how these mecha-
nisms are influenced by the presence of dopants. Despite
many years of intensive research on diffusion in alumina
these mechanisms are still the subject of much speculation,
as reviewed recently by Doremus [1] and Heuer [2]. Since
experimental investigations of a specific diffusion mecha-
nism are very difficult to carry out, simulations are a prom-
ising way to gain the required understanding of diffusion at
an atomistic scale.
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It is generally admitted that oxygen diffusion is lower
than aluminium diffusion under all conditions and will thus
be rate limiting. In his review articles [2,3] Heuer points out
that the experimental studies on oxygen diffusion in nomi-
nally undoped alumina are in rather good agreement, the
scattering being within one order of magnitude. He also
notes, however, that theoretical studies have so far not
been able to elucidate the atomic mechanism behind diffu-
sion processes. The theoretically calculated migration ener-
gies are of the order of 1–2.5 eV [1,2], whereas experiment
[3] gives migration energies of the order of 5 eV. This dis-
crepancy is so far unexplained, though a controversial
mechanism was published by Doremus [1], who suggested
that the possible presence of AlO bivacancies may be able
to better account for such discrepancies.

The formation of oxygen vacancies by intrinsic Schottky
and Frenkel defects has been studied by many authors [4–9]
using computational methods. The reported formation
energies per defect for the Schottky defect range from
4.18 to 5.86 eV and from 3.79 to 8.27 eV for the anion
Frenkel defect. The relatively high variability of defect
energies is attributed to the different interatomic potentials
rights reserved.
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and computational methods used in the theoretical
approaches. These relatively high formation energies will
result in a small population of defects and the comparable
formation energies make it difficult to determine the dom-
inant oxygen vacancy formation mechanism [10]. Oxygen
vacancies may also be formed as charge-compensating
defects when aliovalent dopants are present – though this
is beyond the scope of the present paper, which looks at
undoped alumina only.

To date, the most complete theoretical study on anion
migration has been carried out by Jacobs and Kotomin
[5], who used an empirical potential method to identify five
possible migration paths in the unit cell. Their saddlepoint
determination procedure is not well documented but seems
to be by interpolation between discrete ion positions.
Jumps are classified to be in ‘‘small” triangles, located in
between two octahedral aluminium ions and ‘‘large” trian-
gles in the vicinity of an octahedral interstitial site. They
found very low migration energies (0.34 eV) within the
small triangle and a higher one (2.5 eV) in the large trian-
gle. Migration between the triangles is possible by paths
with energies of 1.85 and 1.37 eV. There is a fifth migration
path with an activation energy of 5.1 eV, but no geometric
information is given as the authors do not consider this
jump to be of any importance. Jacobs and Kotomin finally
suggest two diffusion paths having limiting activation ener-
gies of 2.5 and 1.85 eV, respectively. They compare their
results to an experiment by Oishi and Kingery [11] and
report an ‘‘excellent” agreement. It has, however, to be
noted that the activation energy reported by Oishi and Kin-
gery to which they compare their theoretical calculations is
an ‘‘extrinsic” activation energy. According to Oishi and
Kingery this corresponds to ‘‘impurity or structure sensi-
tive diffusion” and is significantly different to the intrinsic
calculations they performed which were for pure alumina.
The same authors [6] published semi-empirical calculations
of the same migration energies, which showed significant
variations for the ‘‘small” triangle jumps (+0.15 eV com-
pared to the empirical calculations) and the one of the
inter-triangle migrations (+1.65 eV compared to the empir-
ical calculations). More recently vacancy migration has
been calculated using density functional methods [12] and
a migration energy of 3.7 eV for the lowest energy jump
has been obtained. This jump seems to be within a small
closed triangular path, whereas the migration energies for
the other jumps are unfortunately not given.

In summary these simulations cannot satisfactorily
explain oxygen diffusion mechanisms at an atomic scale
that are in agreement with experimental results. The exper-
imental measurements of diffusion coefficients are them-
selves fraught with difficulties both in the determination
of impurity concentrations [2] and data evaluation [1]. In
his second review [2] Heuer therefore formulates a series
of open questions related to diffusion in alumina. The
majority of these questions are linked to anion diffusion,
touching areas such as the significance of experimental acti-
vation energies, the nature of the buffering that seems to
occur in oxygen diffusion, the diffusion mechanisms, as well
as the ratios between anion and cation diffusion in the bulk
and grain boundaries. For better interpretation of data and
a deeper understanding of the basic diffusion mechanisms,
a better model at the atomistic level is needed.

The present study applies a novel simulation approach
based on empirical potential-based metadynamics (MTD)
and kinetic Monte Carlo (kMC) methods to the investiga-
tion of oxygen vacancy diffusion in alumina. This tech-
nique has the advantage of being able to deduce
migration free energies for individual diffusive jumps and
then use these to determine macroscopic diffusion coeffi-
cients through the kMC method.
2. Methods

The techniques used in the present work are MTD [13–
15] and kMC, which have been used separately in the liter-
ature [16,17] for this type of diffusion calculation. In MTD
one defines one or more so-called collective variables
(CVs), which allow us to differentiate between the states
of interest of the system. These can be interatomic dis-
tances, angles, coordination numbers or any other property
definable in terms of the atom positions. The MTD tech-
nique is very useful in studying systems with deep local
minima separated by high potential energy barriers. Tran-
sitions between these minima are made possible within the
simulation timescale by using a history-dependent bias
potential constructed by summing Gaussian contributions
of height hh and width hw in the space defined by the CV
as follows:

V biasð~s; tÞ ¼ hh

XnðtÞ
i¼1

exp �ð~s�~siÞ2

2ðhwÞ2

 !
; ð1Þ

where~s is a point in CV space, t the simulation time and~si

the position in CV space of the ith CV. The number of
steps n(t) is determined by the simulation time and the
insertion frequency of the bias contributions. The bias po-
tential is then applied to all atoms defining the CV, giving
them additional energy to overcome the free energy barri-
ers. Moreover the method allows the underlying free en-
ergy surface to be determined, as the sum of all
Gaussians is an unbiased estimator of the free energy [15].

For the present work, the method has been implemented
in the empirical potential molecular dynamics code
DL_POLY 2.0 [18]. Empirical potential codes have the
advantage of being able to calculate larger structures such
as low vacancy or dopant concentrations or near general
grain boundaries, which would not be possible using exist-
ing first-principles MTD implementations due to the high
number of atoms.

To prepare crystals for the MTD runs, a bulk supercell
(6 � 6 � 2) of the hexagonal alumina unit cell [19] has been
heated in steps of 100 K (100 ps each) using the NPT (var-
iable volume) ensemble in the unmodified DL_POLY 2.0
code with Lewis and Catlow [20] pair potentials, which
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are known to describe bulk, surfaces and grain boundaries
in a-alumina with reasonable accuracy [21–23]. Table 1
gives the most important bulk properties calculated using
the present potential and compares them to experimental
values. As can be seen, except for a slight compression of
the unit cell along the hexagonal c-axis, experimental val-
ues are reproduced reasonably well. Normally so-called
‘‘ab initio” methods are considered more accurate than
empirical potentials even though the local density approx-
imation and generalized gradient approximation exchange
and correlation functionals used in modern density func-
tional theory (DFT) calculations are known to over- and
underbind for unphysical reasons and to completely
neglect dispersion interactions [24]. As we recently showed
by direct comparison with DFT calculated grain boundary
structures in alumina [25], the potential results in structures
with a maximum deviation of 0.3 Å with respect to the
DFT coordinates. As the results compare well with respect
to both experiment and DFT calculations, the empirical
potential can be considered to describe the alumina lattice
with good accuracy. Samples were extracted at 1, 300, 1100
and 1700 K. Parameters used for these simulations as well
as the MTD runs were a time step of 0.0001 ps, a short-
range cut-off of 10 Å and a Nose–Hoover thermostat as
well as Hoover barostat with relaxation times of 0.5 ps.
For each simulation run a single vacancy was generated
and for all neighbouring oxygen ions (cut-off distance
3.1 Å) MTD calculations of the jump into the created
vacancy position were performed. Runs were performed
for all oxygen sites within one unit cell of the supercell.
This may seem superfluous, as many of the jumps are
equivalent due to the crystal symmetry, however, as will
be seen later, a high number of runs were required for good
statistical averaging. Charge balance was achieved by
smearing the charge of the vacancy over the aluminium
sublattice, resulting in a charge of 2.9977 on these ions.
The small change and the isotropic nature of this modifica-
tion should lead to negligible modifications of the electro-
static interactions in the system.

The CV for MTD runs was defined as the distance
between the jumping and the position previously occupied
Table 1
Comparison between calculated and experimental properties of alumina:
lattice constants a and c, dielectric tensor elements eii, elastic tensor
elements Cii and potential energy Upot.

Property Experiment Calculation

a (Å) 4.76 4.72
c (Å) 12.99 12.43
e11 (–) 9.34 8.24
e33 (–) 11.54 12.52
C11 (GPa) 497.35 666.09
C12 (GPa) 163.97 269.10
C13 (GPa) 112.20 191.59
C33 (GPa) 449.11 519.88
C44 (GPa) 147.39 157.96
Upot (kJ mol�1) �15916 �15533
by the ion removed to create the vacancy. Compared to
alternative possibilities, such as coordination numbers or
interatomic distances and angles, this CV setup has the
advantage that a single CV can determine which atom is
to jump, thus requiring only a one-dimensional CV space
to be filled by the bias potential. The projection of this
CV into real space is a sphere centred on the vacancy posi-
tion (a certain CV value represents the union of all points
at this distance from the vacancy position), meaning the
bias potential added on one point of the sphere will also
be applied in all other points of the spherical shell with
the same radius. However, as the jumping atom will start
far from the centre of the sphere and follow a single tran-
sition path out of its potential well, the sphere will be tra-
versed in only one position. Once the atom is at the centre
of the sphere, the CV setup will lead to ambiguities with
respect to positioning in CV space, and the backwards
reaction is not possible in the same run.

Since the structure will relax as a result of the vacancy
creation, MTD was started only after 500 time steps, which
was found to be sufficient for relaxation. Gaussian-shaped
contributions of 80 J mol�1 height and 0.3 Å width were
added to the bias potential every 20 time steps. Compared
to similar MTD studies using semi-empirical methods [16],
the height is about 60 times smaller, leading to a more pre-
cise filling of the underlying free energy surface.

MTD runs were stopped once the jumping atom reached
the vacancy position and the free energy barrier separating
the two minima calculated by locating the peak on the bias
potential along the CV. The hopping rates for the kMC
simulations were estimated from these barriers (DGi) using
transition state theory and more specifically Eyring’s equa-
tion [26] (Eq. (2) below). Using the hypothesis that the par-
tition functions for the vibrational states qvib at lattice sites
and at the saddlepoint are similar, the approximate version
given on the right-hand side of Eq. (2) is obtained:

ri ¼
1

2

qsaddle
vib

qlattice
vib

kT
h

exp �DGi

kT

� �
� 1

2

kT
h

exp �DGi

kT

� �
: ð2Þ

In this equation k is Boltzmann’s constant, T the tempera-
ture and h Planck’s constant. The ½ pre-factor is the trans-
mission coefficient, taking into account that an atom
having reached the saddlepoint has an equal probability
of falling forward into the next free energy well or back-
ward into the originating well. It should be noted [27] that
from a strictly physical point of view Planck’s constant
would not appear in the relation for the rate constant as
it cancels out with the h also appearing in the vibrational
partition functions. The present use of Planck’s constant
as a conversion factor between energy and frequency is
an ambiguous result of the approximation that the vibra-
tional partition functions are similar for the lattice site
and saddlepoint, which for tightly bound states such as
in a bulk crystal is a reasonable assumption. Given the
accuracy of the free energy barriers attainable using empir-
ical potentials, more precise approaches for the evaluation
of the partition functions, such as the harmonic transition
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Fig. 1. Migration energies for 1300, 1100 and 1700 K as a function of the
jump distance at 1 K.
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state theory [28], are unlikely to yield a more accurate
description of the system.

kMC simulations were carried out by randomly placing
the vacancy on an oxygen site in the unit cell and then
locating all possible transitions with nearest neighbours.
The cumulative function was calculated as:

Ri ¼
Xi

j¼1

rj: ð3Þ

The transition i to be carried out was defined by a random
number u uniformly distributed between 0 and 1 imposing
Ri�1 < uRn � Ri, where n is the index of the last element of
the cumulative function. The simulation time is advanced
for each transition as given by Eq. (4), where v is another
random number uniformly distributed between 0 and 1:

Dt ¼ � log v
Rn

: ð4Þ

A slight modification of this standard kMC method was re-
quired in the present case for reasons to be described in
Section 3.2, where the required modifications will be intro-
duced as well.

kMC simulations were run for at least 500,000 jumps,
and 100 runs per temperature were performed to obtain
a reliable average. The temperatures looked at were
1400, 1600, 1800, 2000 and 2200 K, and are thus situ-
ated within the range of standard alumina sintering
temperatures.

The mean square displacement (MSD) was calculated
over all kMC runs as:

MSDðtÞ ¼ hj~rðtÞ �~rð0Þj2i; ð5Þ
where~rðtÞ is the position of the vacancy at time t and the
angle brackets denote an averaging over all runs. The dif-
fusion coefficient D was finally deduced using Einstein’s
relation:

D ¼ lim
t!1

MSDðtÞ
6t

: ð6Þ
3. Results and discussion

3.1. Metadynamics calculations

The minimum migration energies calculated over all
samples at each temperature (1, 300, 1100 and 1700 K)
are reported in Fig. 1 as a function of the jump distance
in the 1 K structure. As can be seen, there are three distinct
groups of jumps corresponding to very specific interatomic
distances in the low-energy structure. Jumps of lowest
energy are the shortest and have migration free energies
of about 1.5–3.0 eV at low temperatures, an increase in
temperature leading to a decrease and a widening of the
migration energy distribution. The medium distance class
of jumps has very high migration free energies of the order
of 7–9 eV at low temperature, an increase in temperature
again lowering the energy but also leading to a larger dis-
tribution of values. The same is also observed for the class
of longest jumps, which has activation free energies of 5–
6 eV at low temperature. In the following these jumps will
be referred to as jumps belonging to classes 1, 2 and 3,
ranked by increasing distance. The scatter of values, which
is rather large even for the 1 K case, comes from the fact
that close to the transition state the amount of energy
inserted by the hills is significant with respect to the
changes in the underlying free energy surface. This leads
to a loss in precision in determining the exact free energy
barrier, depending on the position in CV space, where
the hill is inserted. Techniques such as adaptive hills as
implemented in the CPMD code [29] could help to improve
this limitation.

It would seem that the previously reported migration
energies [5,30] were of class 1; however, the highest energy
reported without geometric information by Jacobs and
Kotomin [5] is most likely part of class 3. Although the
jump calculated using DFT methods [12] seems to be of
class 1 according to the geometrical information given by
Carrasco et al. [12], it has an activation energy in between
those of jumps belonging to classes 1 and 3 of the present
work. It is not clear if this is a result of the method (con-
strained search vs. MTD) or the energy calculation (DFT
vs. empirical potentials). Methods such as a transition state
search would locate the lowest saddlepoint energies only,
which are jumps represented by class 1. This shows the
clear advantage of the present approach, which systemati-
cally probes jumps between all pairs of sites in the struc-
ture, thus giving a more complete picture.

Fig. 2 shows a typical transition path of a neighbouring
oxygen ion (a series of semitransparent spheres) to the
vacancy position. As can be seen, the transition path is
not linear: the jumping ion swings around the nearest alu-
minium ion. Jacobs and Kotomin probed both linear and
curved transition paths, rejecting the latter due to higher
saddlepoint energies. Compared to their method, the pres-
ent approach has the advantage of not imposing a path but
letting the system locate the lowest saddlepoint, thus find-
ing the most favourable transition path. This suggests that
the transition path is in fact curved but complex and thus



Fig. 2. Typical transition path of a neighbouring oxygen ion (series of
semitransparent spheres) to a vacancy position (green sphere) within the
alumina lattice (aluminium = ochre nodes, oxygen = red nodes). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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not easily guessed. The non-linearity could be one of the
main reasons for the slight differences in migration free
energies compared to previous studies.
Fig. 3. Distribution of oxygen vacancy jumps in the alumina unit cell (alumini
and (c) class 3. (For interpretation of the references to colour in this figure le
The distributions of the jumps of the three classes within
the hexagonal alumina unit cell are shown in Fig. 3. The
low-energy jumps of class 1 are found in triangles located
in the mid-plane between two adjacent aluminium ions,
which is in agreement with the results by Jacobs and Kot-
omin [5]. It can be seen that there is no connection between
the low-energy diffusive jumps in this class, the vacancy
remaining within the triangle when only this class of jumps
is active. The second class of jumps being of the highest
energy forms three linear but not interconnected diffusion
paths, whereas the third class forms an interconnected
network. This data shows that the low-energy jumps, pre-
viously predicted and simulated, do not contribute to the
macroscopic diffusion coefficient as they only allow
migration of the vacancy within the small triangles. This
non-continuity was one of the hypotheses put forward by
Harding et al. [31], and is now confirmed by the present
results and may explain the discrepancy between simula-
tion and experimental migration energies pointed out by
Heuer [2]. The next lowest energy class is the third one,
which due to its interconnected nature is expected to be
the diffusion-dominating class. The second class, being of
such high energy, is expected to play a minor role.

Plotting the mean value of the energy clouds in Fig. 1 as
a function of temperature yields the graph shown in Fig. 4.
The error bars shown represent the standard deviation
within the cloud of jumps. In traditional diffusion theory
the activation energy is often assumed not to vary with
temperature. The present results, however, show a varia-
tion that can be attributed to the additional kinetic energy
provided to the jumping atoms due to the vibration of its
neighbours. The migration free energy is expected to follow
um = green, oxygen = red) shown by red bonds for: (a) class 1, (b) class 2
gend, the reader is referred to the web version of this article.)
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a temperature (T)-dependent law of the form given by Eq.
(7), containing both enthalpy (DH) and entropy (DS)
terms:

DGmigrationðT Þ ¼ DHmigration � TDSmigration: ð7Þ
A linear fit of the data shown in Fig. 4 would, however,
only be acceptable for classes 2 and 3. For this reason
the discrete data points were used to deduce migration free
energies at different temperatures for the kMC simulations,
using linear interpolation between points and linear extrap-
olation at higher temperatures.

3.2. Kinetic Monte Carlo calculations

The large difference in migration free energies would,
according to Eq. (2), result in about 107 class 1 jumps in
between each two class 3 jumps. A standard kMC implemen-
tation would thus be extremely inefficient since a high num-
ber of class 1 jumps, which do not contribute to diffusion,
have to be carried out in order to get a good statistical aver-
age of class 3 jumps. It was therefore decided to alter the
kMC method as follows to implicitly include class 1 jumps.
The series of class 1 jumps will result in the vacancy migrat-
ing from one site in the triangle to another (or the same) site.
This process can thus be described by placing the vacancy
randomly on one of the triangle sites. The time step associ-
ated with this process can be written as given by Eq. (8),
where rfast is the rate of the fast class of jumps, Dtlast is the
time step of the last slow jump, and u a random number
between 0 and 1:

Dt ¼ rfastDtlast

1

rfast

2u ¼ Dtlast � 2u: ð8Þ

It can be seen that the first two factors express the number of
fast jumps, the third gives the time step of a fast jump, and the
last takes into account the stochastic nature of the process by
multiplying the number of steps by a random number cen-
tred on 1. Simulations carried out in this way result in ran-
dom vacancy migration paths, an example of which
projected into the crystallographic a–c plane is shown in
Fig. 5.

It is worth emphasizing that we are modelling extrinsic
diffusion where existing defects are responsible for atom
transport, and hence the activation energy for diffusion
depends only on the migration energy. In contrast, intrin-
sic diffusion is dependent on the sum of the formation
and migration energies. At the temperatures considered
in this work (1400–2200 K), intrinsic diffusion will not
be significant, as can be illustrated by looking at the
defect formation energies. The formation energy for an
oxygen vacancy is known to be about 5 eV per defect
for either Frenkel or Schottky disorder [4–9]; the poten-
tials used in the present work predict the lowest energy
to be the Frenkel defect with 4.6 eV per defect. This
means that in the temperature range of interest (1400–
2200 K) the atomic fraction of intrinsic vacancies is of
the order of 10�17–10�11. If one of the purest materials
possible in experiments (0.1 ppm Mg) is considered, the
atomic fraction of charge-compensating vacancies that
would have to be present would be 0.05 ppm = 5 � 10�8.
The concentration of impurity-induced vacancies is there-
fore at least three orders of magnitude larger than those
created intrinsically, and oxygen vacancy diffusion can be
assumed to be dominated by extrinsic vacancies in the
considered temperature range. Even though impurities
and other oxygen vacancies are present in the extrinsic
diffusion regime, their concentration is so low that their
average population in the considered simulation box
would be well below one atom. As a first approximation
the present simulation cell without the presence of these
defects can therefore be considered a good representation
of an experimental system.

Plotting the MSD as a function of time for different
numbers of runs gives the graph shown in Fig. 6. It can
be seen that whereas for one run the oscillations are still
significant, after only 10 runs the graph approaches its final
slope. Hundred runs result in clear trends, whereas for 1000
runs an almost straight line is obtained. This shows that in
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the present case 100 runs should be enough to obtain a
good statistical average.

The mean square displacements for temperatures
between 1400 and 2200 K obtained using this method are
plotted in Fig. 7. The diffusion coefficient at a certain tem-
perature is deduced according to Eq. (6) by dividing the
slope of each linear trend line by six. If one finally plots
the diffusion coefficient as a function of the inverse temper-
ature, the plot shown in Fig. 8 is obtained. It can be seen
that an almost straight line is obtained, showing the good
statistical averaging obtained in the kMC simulations. This
data can be fitted to an Arrhenius equation with a pre-
exponential factor of 7.88 � 10�2 m2 s�1 and an activation
energy of 510.83 kJ mol�1.

The activation energy is slightly lower but of the same
order of magnitude as those summarized in the reviews
of Doremus [1] and Heuer [2], which are reported in Table
2 together with the most relevant impurities. From Table 2
it seems that there is a tendency of decreasing activation
energy with increasing purity of the material, especially vis-
ible in the recent work by Ikuhara and co-workers [32,33].
Impurities will influence the energy landscape by interac-
tion with oxygen vacancies by electrostatic and van der
Waals type forces as well as by misfit strains in the lattice,
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changing activation energies and giving a possible explana-
tion for the fact that the activation energies in the perfectly
pure simulated crystal are lower than experimental ones.
Vacancy–impurity interaction and its effect on vacancy
migration is, however, far from trivial, and its study will
be an interesting future application of the present method.
However, given the fact that the activation energy is
roughly the same as found experimentally, it seems reason-
able to assume that the simulations describe the experimen-
tally relevant diffusion mechanism.

The present study looks at the diffusion of vacancies and
not the resulting diffusion of oxygen ions. Since, to our
knowledge, no suitable theory correlating the jumps of
these two entities exists for the alumina lattice, comparison
of the pre-exponential factors with those measured by tra-
cer diffusion experiments is at this time not possible. Future
kMC studies based on the present work should, however,
also be able to numerically determine ion diffusion
coefficients.

This good agreement with experimental activation ener-
gies gives strong support to the atomic-scale diffusion
mechanism found using the MTD calculations. This eluci-
dates the long-standing problem of oxygen diffusion in alu-
mina, and provides an explanation for the disagreement
between previous theoretical studies and experiment. The
present method has the advantage over previous studies
that it does not restrict the transition path in any way, thus
allowing the system to locate the lowest energy saddle-
point. The method developed here will allow further study
of a manifold of diffusion mechanisms in alumina and
other ceramics, opening the way to understanding of diffu-
sive phenomena in the solid state. Possible future research
using the present approach include looking at ion diffusion



Table 2
Summary of previous experimental results from the literature.

Refs. Q (kJ mol�1) D0 (m2 s�1) Impurities (ppm)

Na Mg Ca Fe Si Ti Others

[32] 531 2.9 � 10�1 <1 <0.1 <0.1 <1 2.8 K < 1, Ba < 0.1, Zn < 1, Mo < 6, W < 6,
Mn < 0.2, Cd < 2

[33] 562 2.4 � 10�4 4 3 5 1 3 <0.5 K = 3
[34] 572 1.5 � 10�3 Unspecified: 80–100
[35] 589 ± 19 6.8 � 10�4 <12 <2 <4 <4 <6 <4 As < 283, B < 6, Cr < 6, Mo < 13, Ni < 6,

P < 98, Pb < 54, Sb < 66, Se < 65,
Sn < 20, V < 4

[36] 615 ± 40 2.7 � 10�2 5 26 16 60 4 Sn = 66
[37] 636 ± 20 2.1 � 10�2 63 382 14 817
[38] 665 5.6 � 10�2 5 10
[39] 787 ± 29 6.4 � 101 <1 9 11 Cu < 1
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coefficients, other mechanisms such as interstitial diffusion,
the interaction of diffusing species with dopants, and diffu-
sion in grain boundaries.
4. Conclusions

Oxygen vacancy diffusion in alumina was investigated
using a combination of MTD and kMC simulation meth-
ods. It was found that using MTD simulations resulted in
three distinct classes of diffusion jumps in alumina,
although the lowest energy one does not contribute to bulk
diffusion as they do not form a continuous network. The
next highest energy class forms such a network and is thus
the diffusion-dominating class. kMC simulations using
these migration free energies resulted in vacancy diffusion
coefficients that reproduce experimental activation energies
very well, thus validating the present approach. The pres-
ent data shows that the dominating atomic-scale diffusion
mechanism in alumina is based on vacancy migration.
The approach is generic and can now be applied to other
structural elements of the alumina system (such as grain
boundaries) as well as other ceramic materials.
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