
Controlling Parallelism in a Multicore Software Router

Mihai Dobrescu, Katerina Argyraki
EPFL, Switzerland

Gianluca Iannaccone, Maziar Manesh,
Sylvia Ratnasamy

Intel Research Labs, Berkeley

ABSTRACT

Software routers promise to enable the fast deployment of

new, sophisticated kinds of packet processing without the

need to buy and deploy expensive new equipment. The chal-

lenge is offering such programmability while at the same

time achieving a competitive level of performance. Recent

work has demonstrated that software routers are capable of

high performance, but only for conventional, simple work-

loads (like packet forwarding and IP routing) and, even that,

after careful manual calibration. In contrast, we are inter-

ested in achieving high performance in the context of a soft-

ware router running multiple sophisticated packet-processing

applications. In particular: first, we identify the main fac-

tors that affect packet-processing performance on a mod-

ern multicore general-purpose server—cache misses, cache

contention, load-balancing across processing cores; then, we

formulate an optimization problem that takes as input a par-

ticular server architecture and a packet processing flow, and

determines how to parallelize the router’s functionality across

the available cores so as to maximize its throughput.

1. INTRODUCTION

Software routers—network equipment, in which all packet

processing is implemented in software, running on general-

purpose processors—could be an attractive alternative to the

traditional hardware routers. They could enable the develop-

ment of truly programmable networks, where changing the

network’s functionality would be equivalent to performing a

software upgrade. In other words, they could make it fea-

sible to try out new kinds of packet processing without the

need to buy and deploy expensive new equipment.

The Achilles’ heel of software routers has traditionally

been performance—a few years ago, when hardware routers

were reaching aggregate throughput of Tbps [1], software

routers had trouble scaling beyond the 1–5Gbps range [3].

Yet multicore technology is changing the scene: within the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM PRESTO 2010, November 30, 2010, Philadelphia, USA.

Copyright 2010 ACM 978-1-4503-0467-2/10/11 ...$10.00.

last year, we have seen commercial network appliances run-

ning on general-purpose processors, capable of handling tens

of Gbps [4]; on the research front, we have seen a filter-

ing platform running on a general-purpose server, capable of

performing multi-dimensional packet classification at 15Gbps [9],
a parallel software router architecture, capable of scaling to

hundreds of Gbps [6] and, more recently, an optimized I/O

software architecture that significantly improves the packet-

processing capability of one server and offers forwarding

rates of up to 10Gbps per core[7].

These recent advances have demonstrated that software

routers are capable of high performance provided they are

carefully programmed. For instance, in the context of the

RouteBricks prototype, a general-purpose server equipped

with two quad-core Nehalem processors was able to perform

IPv4 routing at 24Gbps [6]. This performance, however, was

achieved only after tedious manual tuning. Moreover, all

packets were subjected to the same kind of packet processing

(IP routing) and all necessary data structures (the forwarding

table) fit in the cache. A minor deviation from this careful

setup could result in a significant performance drop.

Yet the allure of software routers is that they could en-

able the network to evolve beyond conventional IP routing.

To prove this, it is not enough to demonstrate that a soft-

ware router can achieve good performance in a very partic-

ular context; we need to demonstrate that a software router

can achieve high performance for a range of sophisticated

packet processing applications without loosing programma-

bility.

This paper is a first attempt at determining how to simul-

taneously achieve both high performance and ease of pro-

grammability in a software router. For this, a high-level goal

is to develop a compiler that automates the process of par-

allelizing a packet-processing flow. Hence, we ask: given a

particular multicore server architecture and a particular set of

packet-processing applications, how do we parallelize router

functionality across the available cores so as to maximize

throughput? and what do we need to know about the server

architecture and each application in order to perform such an

optimization? In some sense, our work builds on early work

by Chen and Morris on SMP Click [5] that sought to extend

Click for multi-processor architectures. They evaluated two

approaches to scheduling a Click program across multiple

cores: (1) the “dynamic” approach, where processing ele-

ments are assigned to cores in a manner that seeks to balance

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147968781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CPU utilization across cores, without taking into account the

overheads that result from partitioning the processing of a

packet across different processors (e.g. cache misses); (2)

the “static” approach, which relies on a static assignment of

elements to cores—this assignment is determined manually

by an “ambitious” programmer and is fixed for the duration

of the program’s execution. Their results suggest that the

static approach typically outperforms the dynamic one. The

goal of our work is to automate the manual assignment deci-

sion made by the ambitious programmer of SMP Click and,

subsequently, to allow this scheduling decision to be made

in a dynamic manner at runtime.

The rest of the paper is organized as follows. In Section 2,

we describe what are the general approaches for exposing

parallelism in a multicore software router. In Section 3, we

describe the overheads incurred by each approach and for-

mulate an optimization problem that determines which ap-

proach is better for a particular server architecture and a

given workload. We outline the limitations of our model and

our plan toward addressing them in Section 4, and conclude

in Section 5.

2. SETUP

At a high level, our goal is: given a packet-processing ap-

plication, we want a method that automates the paralleliza-

tion of the application to maximize performance. This ques-

tion falls, of course, under the general question of whether/how

we can parallelize code to exploit multicore hardware—a

hard problem and the subject of much ongoing research on

multicore systems. For tractability, we narrow our explo-

ration to a specific data-flow programming model and con-

sider first the question of how we parallelize a single data-

flow under several simplifying assumptions that we elabo-

rate on as introduced in the text. While we believe our ap-

proach would generalize to multiple data-flows, we leave the

validation of this to future work.

Programming Model. We want to determine how to con-

figure a software router so as to combine programmability

and performance; hence, we assume that our router is pro-

grammed using the Click programming model [8]—to our

knowledge, the most successful research effort that sought

to combine these two properties. More specifically, we as-

sume that a packet-processing application is written as a set

of modular “elements”, each specifying a packet-processing

task; hence, a router’s functionality can be described by a

data-flow graph, which specifies the sequence of elements

traversed by each received packet. A simple example of a

data-flow graph is shown in Figure 1(a).

Opportunities for Parallelism. When configuring a mul-

ticore software router, a key question is how to parallelize

router functionality across the available processing cores,

i.e., determine which part of the data-flow graph will be ex-

ecuted by each core. This “parallelization” has a dramatic

impact on the router’s performance—it is easy to imagine

(a) A simple data-flow graph with two elements: IP routing and
NetFlow. All packets received by the router are subjected first
to IP routing, then NetFlow processing, before being forwarded
to the next hop.

(b) The cloning approach: Incoming traffic is split among the
two cores. Each core performs all processing for all packets it
receives.

(c) The pipelining approach: Incoming packets traverse both
cores. Each core performs a different kind of packet processing.

Figure 1: Two approaches to parallelizing router func-

tionality across two processing cores.

how over- or underestimating the number of cores required

for a particular task can lead to bad utilization of the router’s

resources.

There are two general approaches to performing this par-

allelization (illustrated in Figures 1(b) and 1(c)) [5].

• Cloning: In this approach, each core executes the en-

tire data-flow graph. I.e., incoming traffic is split across

all cores, and each core performs all the processing re-

quired for each packet it receives.

• Pipelining: In this approach, the data-flow graph is

partitioned, and each part is assigned to a different core.

I.e., each incoming packet traverses multiple cores, and

each core performs a different processing task on the

packet.

Recent work that uses multicore general-purpose hard-

ware for packet processing follows the cloning approach,

because it has been shown to yield higher performance for

simple workloads, e.g., where the router performs IP routing

on all packets [6, 7]. But is this always the right choice?

Consider, for instance, the example of Figure 1, where

we want to run IP routing and NetFlow (a widely deployed

router application that collects per-flow statistics [2]) on a

server architecture with two cores. Suppose each core has

an αMB last-level cache (LLC), while each application uses

a data structure (e.g., a forwarding table and a flow table, re-

spectively) of approximately αMB. If we apply the cloning

approach, each core runs both applications, which means

that it accesses 2αMB of data through the αMB cache. In

contrast, if we apply the pipelining approach, each core runs

only one of the two applications, hence accesses its entire

data structure from the cache. So, in this particular exam-

ple, it is possible that the pipeline approach leads to fewer

cache misses; and (depending on the server’s bottleneck)

fewer cache misses could translate to higher performance.

This simple, yet realistic scenario suggests that each approach—

cloned or pipelined—may be the right choice (i.e., yield higher

performance) in different scenarios. Extending this choice to

multiple elements in a more complex data-flow, results in a

large space of potential parallelizations—cloned, pipelined

and various combinations of the two (i.e., where some por-

tions of the data-flow are cloned and others are pipelined).

Our Approach to Parallelization. We want to answer the

following question: given a multicore server architecture

and a data-flow graph representing a set of packet-processing

applications, which part of the graph should each core exe-

cute so as to maximize the router’s performance?

We set out to design a decision process that takes as in-

put (1) a server hardware profile; (2) a data-flow graph; and

(3) a profile of each element in the data-flow graph; and

outputs which element(s) should be run by each core. The

server hardware profile should specify the set of available re-

sources (e.g., number of processors, number of cores, cache

sizes, etc.); the element profiles should specify the resource

requirements for each element; the decision process should

compare all the possible parallelization options (cloning, pipelin-

ing, or any combination of the two) and choose the option

that maximizes the router’s performance.

Several questions must be answered for this overall strat-

egy to work. For example, what should a server hardware

profile and an element profile look like, in the sense of what

are the right measures to include in them, can/should these

measures be compiled statically or at run-time, and so forth.

We leave these (admittedly non-trivial) questions to future

work. Our focus in this paper is on the decision process

and in particular on understanding the trade-offs between

the cloning and pipelining approaches which is at the core

of any decision process.

Hence, as a first step, in this paper, we focus on the ques-

tion: assuming perfect knowledge of the server architecture

and the applications running on it (i.e., the elements of the

data-flow graph), what factors must we consider in making

the cloning vs. pipelining decision? This boils down to un-

derstanding when and how the two approaches differ in the

overheads they incur (e.g., cache misses, synchronization

overheads) under different scenarios; implicitly, understand-

ing these overheads also reveals the extent of performance

improvement that we stand to gain by making the “right”

decision.

3. CONTROLLING PARALLELISM

3.1 Parallelization Overheads

We start by identifying the overheads associated with dif-

ferent parallelization options. Note that, since our goal is to

make the cloning-vs-pipelining decision, we need only focus

on distinguishing overheads—i.e., overheads incurred under

cloning but not pipelining, and vice versa. We identify three

such overheads: due to synchronization, cache contention,

and pipeline imbalance; we describe each one and present a

simple experiment that justifies our statements.

Experimental Setup. We use a general-purpose server,

equipped with two quad-core Intel Nehalem Xeon 5560 pro-

cessors; the four cores of each processor share an 8MB L3

cache, while each core has a private 256KB L2 cache and

a private 32KB L1 cache. The server is also equipped with

two network cards, each with two 10Gbps ports. In all pre-

sented experiments, the server is fed a workload of 64-byte
packets, because this is the workload for which the server’s

performance is most affected by the cloning-vs-pipelining

decision (we explain why below). Traffic arrives at all 4
ports at the same rate; all traffic received at one port is sent

out the other port of the same card. The server runs SMP

Click [5].

We use a data-flow graph with two processing elements,

similar to the one of Figure 1(a) (the only difference is that

instead of IP forwarding and NetFlow, we use synthetic packet-

processing applications). Each received packet is processed

by both elements. For each received packet, element i (where

i = {1, 2}) reads the packet headers, then reads Ni random

memory locations from an array of size Si bytes, where Ni

and Si are configurable parameters. As we will see, although

simple, this functionality captures those aspects of packet-

processing applications that determine whether cloning or

pipelining is the right choice.

When we use the cloning approach, each of the 8 cores re-
ceives an 8th of incoming traffic, executes the functionality

of both elements, and sends the packets out in the network.

When we use the pipelining approach, processor 1 receives

the incoming traffic and executes the functionality of the first

element, then passes the packets to processor 2, which exe-

cutes the functionality of the second element and sends the

packets out in the network; this is done such that each core

handles a fourth of the traffic.

In all experiments we present, whether we use the cloning

or pipelining approach, the server is bottlenecked at the CPU

(i.e., the processing cores run out of cycles) and most cycles

are spent waiting for memory accesses to complete—which

makes sense, since our elements do nothing but read from

memory.

Synchronization. With pipelining, each packet is processed

by multiple cores that do not share a cache. This requires

synchronization between multiple cores due to the follow-

ing operations:

1)Metadata sharing: In Click, one core “passes” a packet

to another core by storing a pointer to the packet’s socket

buffer descriptor (the Linux-kernel data structure that con-

tains the packet’s metadata, e.g., where the packet is stored

in memory) in a first-come-first-serve queue served by the

second core. These enqueuing and dequeuing operations re-

quire extra cycles. Moreover, there is an extra cache miss

when the second core reads the pointer. Finally, book-keeping

the queue (e.g., when the cores check whether the queue is

full/empty) leads to extra cache misses when the status of

the queue has changed.

2) Content sharing: Every time a core processes a new

packet, it reads the contents of the corresponding socket buffer

descriptor and the packet headers. Moreover, if the core per-

forms deep-packet inspection, it also reads the contents of

the packet. Each of these read operations results in cache

misses when the socket buffer descriptor and the packet do

not reside in a cache accessible by the core. With cloning,

each packet is processed by one core, hence these read oper-

ations are performed once. In contrast, with pipelining, these

read operations are performed every time a packet is passed

from one core to another, resulting in more cache misses and

lower router performance.

3) Memory recycling: In Click, each core that reads a

packet from the network (the “receiving” core) stores it in a

pre-allocated memory pool, and there is a separate pool for

each core. With cloning, the receiving core is the one that

also sends the packet out into the network (the “transmit-

ting” core); hence, once the packet is transmitted, the core

can easily recycle the corresponding packet buffer back into

its pool. In contrast, with pipelining, the receiving core is

different from the transmitting core; hence, the transmitting

core has two options for recycling the packet buffer: into the

receiving core’s pool, which requires synchronization be-

tween the two cores for accessing the same pool; or, into

the transmitting core’s pool, which will cause the receiving

core to exhaust its pool and re-allocate memory—a costly

operation in terms of cycles.

We identified these as the main sources of synchroniza-

tion overhead by running the following experiment. We con-

figured the two processing elements with parameter values

S1 = S2 = 2MB and N1 = N2 = 1 memory access per

packet, i.e., for each received packet, each element reads

one random memory location from a 2MB array. We picked

Si such that the data structures needed by both elements

fit comfortably in our L3 cache, in order to avoid cache

misses due to cache contention. Given this setup, the router

achieves throughput 8.56Gbps with cloning and 2.89Gbps
with pipelining, i.e., with pipelining, throughput drops by

66%. To understand this drop, we profiled our router un-

der each approach. We found that cloning results in about 4
L3 cache misses per packet (two associated with the socket-

buffer descriptors and two with the packet headers), whereas

pipelining results in 13–14 additional cache misses per packet

(which correspond to the read operations mentioned above).

We conclude that pipelining introduces significant syn-

chronization overhead, hence we expect cloning to perform

better in scenarios where compulsory cache misses are the

dominant cost factor (in terms of cycles spent per packet).

Cache Contention. With cloning, each core runs all ele-

ments, which means that all elements contend for the cache

(at all levels). This can lead to cache contention, when the

aggregate working set size of the elements does not fit in

the LLC (in our setup, the L3 cache). In contrast, pipelining

allows different elements to use different L3 caches, which

should reduce cache contention. To understand the impact

of cache contention on router performance, we repeated the

last experiment multiple times, for different Si and Ni val-

ues, and measured the “benefit” of pipelining over cloning,

i.e., the router’s throughput under pipelining divided by the

router’s throughput under cloning. Hence, a benefit larger

than 1 means that pipelining performs better than cloning,

whereas a benefit below 1 means the opposite.

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ip

el
in

in
g

th
ro

ug
hp

ut
 n

or
m

al
iz

ed
 to

 c
lo

ni
ng

 [%
]

Si [MB]

(a) Ni = 200.

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ip

el
in

in
g

th
ro

ug
hp

ut
 n

or
m

al
iz

ed
 to

 c
lo

ni
ng

 [%
]

Si [MB]

(b) Ni = 20.

Figure 2: Cache contention overhead.

Figure 2(a) shows the benefit of pipelining over cloning

for Ni = 200 memory accesses per packet, as a function of

Si; we see that the benefit of pipelining increases with Si

until it reaches a maximum point (at Si = 6MB), then it de-

creases. We explain this as follows. For small numbers of

Si, the arrays of both elements fit in the L3 cache, hence nei-

ther cloning nor pipelining incur cache contention; due to the

synchronization overhead of pipelining, cloning performs

better. Beyond some point (Si = 3MB), one element’s array

still fits in the L3 cache, whereas both arrays together do not,

hence, cloning incurs cache contention whereas pipelining

does not, and pipelining performs better. However, beyond

a second point (Si = 6MB), even one element’s array does

not fit in the L3 cache, hence, pipelining cannot avoid cache

contention either, which causes its benefit to decrease. Fi-

nally, beyond a third point (Si = 9MB), cache contention

under pipelining becomes so strong that the synchronization

overhead of pipelining outweighs its cache-contention ben-

efit over cloning, and cloning starts performing better again.

Figure 2(b) shows the benefit of pipelining over cloning

for Ni = 20 memory accesses per packet, as a function of

Si; we see that cloning always performs better (the benefit

of pipelining over cloning is below 1) independently from

Si. This is because, when memory accesses are relatively

infrequent, the L3 cache manages to absorb them to some

extent, such that the cache-contention benefit of pipelining

is outweighed by its synchronization overhead. We argued

above that pipelining results in additional cache misses every

time a packet is passed to a core that uses a different L3

cache (once, in our setup); hence, pipelining outperforms

cloning, only if the latter introduces more additional misses

due to cache contention.

We conclude that pipelining does reduce cache contention

relatively to cloning, however, this benefit is easily outweighed

by its synchronization overhead. Hence, we expect pipelin-

ing to perform better than cloning, only in scenarios that in-

volve large, contention-sensitive data structures and frequent

memory accesses.

Pipeline Imbalance. To work well, pipelining must have

balanced pipeline stages, otherwise CPU cycles are wasted

(since the packet rate through the pipeline is gated by the

slowest stage). To demonstrate this effect, we configured the

two elements with parameter values S1 = S2 = 6MB and

N1 = 396, N2 = 4 memory accesses per packet. Given this

setup, the router achieves throughput 728Mbps with cloning

and 375Mbps with pipelining, i.e., cloning increases through-

put by a factor of 2. This is because, with pipelining, 4 cores
(those that run the first element) perform 99% of the work.

We conclude that, even when we have large, contention-

sensitive data structures, we expect cloning to outperform

pipelining if the pipeline stages are imbalanced.

In summary, we have identified three overheads that can

lead to significant performance differences between a cloned

vs. pipelined parallelization of the same data-flow. The na-

ture of the identified overheads (they all consist of extra per-

packet cycles) means that they affect performance only when

the server is bottlenecked at the CPU—this is why we pre-

sented results obtained with a small-packet workload.

3.2 Problem Formulation

We now turn to the question of how we should combine

the competing factors identified in the previous section to

formulate the problem of choosing the “right” parallelization

approach.

Consider a data-flow graph that consists of one sequence

of n packet-processing elements (i.e., each packet must be

sequentially processed by each element). Assume that ele-

ments do not share data structures other than socket buffer

descriptors and packet headers and payloads. Element i is

characterized by the number of cycles per packet consumed

when running in isolation C(i), the size of its data structures
S(i), and the number of memory requests issued per packet

N(i).
We want to implement this data flow on a server with m

processors, each with multiple cores, a budget of B cycles,

and a separate LLC of size LLC. We assign elements to

processors, not individual cores, i.e., we only allow configu-

rations where: if one core of processor j runs an instance of

element i, then all cores of processor j run an instance of el-

ement i. Hence, when we say that “processor j runs element

i,” we mean that each core of processor j runs an instance

of element i, and all cores share the same data structure ac-

cessed through the processor’s LLC. Moreover, we impose

the following restriction: any packet received by processor j

is processed by all the elements on processor j. We define

the “element placement” matrix A, of dimensions n×m, as

follows:

Aij =

{

1, if processor j runs element i

0, otherwise.

We denote by Cj the aggregate number of cycles per packet

consumed by processor j, and by Sj =
∑

i Aij ·S(i) the ag-
gregate data-structure size of the elements run by processor

j.

Incoming traffic is load-balanced across all processors that

run element 1. When processor j receives a packet to be

processed according to element i, it does so, then: if i = n,

sends the packet out; else, if processor j runs element i+ 1,
it processes the packet according to element i + 1; else, it
passes the packet to a processor that runs element i + 1 (if

there are many such processors, it load-balances the traf-

fic across them). Load-balancing across processors happens

based on processor throughput, i.e., processor j gets a frac-

tion of the traffic that is inversely proportional to Cj .

We want to identify the element-placement matrix A that

maximizes the throughput (in packets per second) of the

router R:

R = min
i







∑

j

{

B

Cj

·Aij

}







(1)

This is essentially the throughput of the “slowest” element,

i.e., the one that processes the fewest packets per second.

We make three simplifying assumptions: (1) Every LLC

miss costs Om cycles. (2) Inter-processor synchronization

(i.e., passing a packet from one processor to another) costs

Os cycles. (3) When element i run by processor j accesses

its data structure, the probability of a LLC miss is πj = 1−

LLC
Sj

. I.e., we assume that each of the Sj memory locations

served by the processor’s LLC is equally likely to be in the

cache.

Based on these three assumptions, the term Cj (the num-

ber of cycles per packet consumed by all elements run by

processor j) can be broken into three components:

Cj =
∑

i

C(i) ·Aij +Os
j +Oc

j

The first one is the aggregate number of cycles needed by all

the elements run by processor j to process a packet, while

the other two represent the synchronization and cache-contention

overhead, respectively. We approximate the synchronization

overhead as

Os
j =

n
∑

i=2

Aij · (1−Ai−1j) ·Os,

where Aij · (1 − Ai−1j) is the number of times processor j

gets each packet from another processor and Os is the num-

ber of cycles spent for inter-processor synchronization. We

approximate the cache-contention overhead as

Oc
j =

∑

i

Aij · πj ·N(i) ·Om,

where πj ·N(i) ·Om is the expected number of cycles spent

dealing with cache misses due to contention.

In summary, Eq. 1 specifies the throughput of the router,

in scenarios where the bottleneck is the CPU (i.e., the server

starts dropping packets because it does not have enough pro-

cessing cycles to perform the necessary per-packet compu-

tation and/or memory accesses). Maximizing this through-

put requires a closed formula for Cj ; we build one, assum-

ing that cycles are spent either performing per-packet com-

putation or dealing with cache misses resulting from inter-

processor synchronization and cache contention.

4. FUTUREWORK

We have taken a small first step toward automating the de-

cision of how to parallelize a packet-processing flow inside

a software router so as to maximize throughput. Much work

remains to be done before we achieve our goal:

Quantifying the Performance Gain. Once we validate our

model in more complex scenarios than the ones presented in

Section 3.1, the next question is whether careful paralleliza-

tion is necessary. We will know by comparing the through-

put achieved with the element placement recommended by

our model to the throughput achieved by (1) pure cloning,

(2) pure pipelining, and (3) “obvious” hand-crafted solu-

tions, when considering realistic packet-processing applica-

tions like IP forwarding, statistics collection, intrusion de-

tection, encryption, etc.

Our results so far indicate that, at least for shared-memory

architectures like Nehalem, pure cloning achieves the high-

est throughput, except from the cases where we have fre-

quent memory accesses to large, contention-sensitive data

structures and nearly perfectly balanced pipeline stages—

so, we need to assess how realistic these cases are. On the

other hand, the ever-increasing size of routing tables, access-

control lists, etc., suggests that minimizing cache contention

for data structures (hence, introducing some amount of pipelin-

ing) will become increasingly important in the near future.

Implementation and Evaluation. If we confirm that care-

ful parallelization is worthwhile, then we need to arrive at

a practical implementation and a comprehensive evaluation,

i.e., generalize our problem formulation, understand how to

put together server and application profiles, build a practical

compiler (which includes providing a solution to the prob-

lem formulated in Section 3.2), and test it on different server

hardware.

5. CONCLUSION

A large part of the appeal of software routers has been that

they will be easy to program. Counter-balancing this, is the

need to achieve high performance which may require paying

attention to lower-level, potentially hardware-specific details

such as cache misses. Our high-level goal is to achieve high

performance without losing programmability by developing

a compiler that automates the decision process of how to par-

allelize a data-flow. As a first step towards this, we under-

stand what parallelization options are possible—we defined

these as pipelining vs. cloning. Then we identify three key

factors that determine which parallelization approach is de-

sirable: inter-socket synchronization costs, cache contention

for data structures and the “imbalance” in a data-flow. Fi-

nally, we propose a strawman optimization framework that

takes as input a profile of server resources and a data flow el-

ement’s resource consumption and outputs an optimal map-

ping of elements to cores based on weighing the relative im-

pact of the above factors.

6. REFERENCES
[1] Cisco Carrier Routing System. http:

//cisco.com/en/US/products/ps5763/index.html.
[2] Cisco IOS NetFlow.

http://www.cisco.com/web/go/netflow.
[3] Vyatta Series 2500. http://vyatta.com/downloads/

datasheets/vyatta_2500_datasheet.pdf.
[4] Vyatta Series 3500. http://vyatta.com/downloads/

datasheets/vyatta_3500_datasheet.pdf.
[5] B. Chen and R. Morris. Flexible Control of Parallelism in a

Multiprocesor PC Router. In Proceedings of the USENIX Annual

Technical Conference, 2001.
[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks:
Exploiting Parallelism to Scale Software Routers. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP), 2009.

[7] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A
GPU-accelerated Software Router. In Proceedings of the ACM
SIGCOMM Conference, 2010.

[8] E. Kohler, R. Morris, B. Chen, J. Jannoti, and M. F. Kaashoek. The
Click Modular Router. ACM Transactions on Computer Systems,
18(3):263–297, August 2000.

[9] Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging Parallelism for
Multi-dimensional Packet Classification on Software Routers. In
Proceedings of the ACM SIGMETRICS Conference, 2010.

