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[1] Solute transport takes place in heterogeneous porous formations, with the log
conductivity, Y = ln K, modeled as a stationary random space function of given univariate
normal probability density function (pdf) with mean hYi, variance sY2, and integral scale IY.
For weak heterogeneity, the above mentioned quantities completely define the first‐order
approximation of the longitudinal macrodispersivity aL = sY

2IY. However, in highly
heterogeneous formations, nonlinear effects which depend on the multipoint joint pdf of Y,
impact aL. Most of the past numerical simulations assumed a multivariate normal
distribution (MVN) of Y values. The main aim of this study is to investigate the impact of
deviations from the MVN structure upon aL. This is achieved by using the concept of
spatial correlations of different Y classes, the latter being defined as the space domain
where Y falls in the generic interval [Y,Y + DY]. The latter is characterized by a length
scale l(Y), reflecting the degree of connectivity of the domain (the concept is similar to
the indicator variograms). We consider both “symmetrical” and “non‐symmetrical”
structures, for which l(Y′) = l(−Y′) (similar to the MVN), and l(Y′) ≠ l(−Y′), respectively,
where Y′ = Y − hYi. For example, large Y zones may have high spatial correlation,
while low Y zones are poorly correlated, or vice versa. The impact of l(Y) on aL is
investigated by adopting a structure model which has been used in the past in order to
investigate flow and transport in highly heterogeneous media. It is found that the increased
correlation in the low conductive zones with respect to the high ones generally leads to
a significant increase in aL, for the same global IY. The finding is explained by the
solute retention occurring in low Y zones, which has a larger effect on solute spreading
than high Y zones. Conversely, aL decreases when the high conductivity zones are more
correlated than the low Y ones. Dispersivity is less affected by the shape of l(Y) for
symmetrical distributions. It is found that the range of validity of the first‐order
dispersivity, i.e., aL = IYsY

2, narrows down for non‐symmetrical structures.
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1. Introduction

[2] Spreading of solutes in advective transport in hetero-
geneous porous formations is governed by spatial variations
of the hydraulic conductivity K. A large body of work has
been published in the last three decades in order relate solute
transport to the underlying heterogeneous medium structure.
Assuming a stationary log conductivity, Y = ln K, random
distribution, one of the earliest and successful approaches
proposed in the past is the first‐order analysis, which is
formally valid for small variations of Y around the mean, i.e.,
sY
2 � 1, where sY

2 is the log conductivity variance. One of the
main results of the first‐order analysis is the well‐known
formula for the longitudinal asymptotic macrodispersivity in
mean uniform flows, aL = sY

2IY, where IY is the longitudinal
integral scale of Y [see, e.g., Dagan, 1989; Rubin, 2003].
This result shows that aL depends on the second‐order
statistical moments of the Y field through the variance and
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the integral scale of Y, while the precise shape of the Y
covariance plays a minor role. Studies based on detailed
numerical simulations of solute transport in isotropic for-
mations have shown that the first‐order result is a valid
approximation for relatively large values of sY

2, up to sY
2 ’ 2

[see, e.g., Bellin et al., 1992; de Dreuzy et al., 2007]. In most
of the existing numerical studies, the selected log conduc-
tivity field was multi‐Gaussian, being generated with the aid
of a multivariate normal (MVN) distribution of Y values
at different points. Even if this is a convenient working
assumption, it is quite restrictive, and (more important) it is
not generally supported by field data. Indeed, while the latter
indicate that the univariate f (Y) is normal in many aquifers
[see, e.g., Dagan, 1989], they are too scarce to enable one to
identify the multi‐point joint pdf. Here we adopt a different
structure model which can be related to natural porous
formations [see, e.g., Hoeksema and Kitanidis, 1985; Ritzi,
2000; Ritzi et al., 2000; Labolle and Fogg, 2001]. In addi-
tion, it allows for freedom of characterization of heteroge-
neity of natural porous formations which is lacking in the
MVN model. Thus, it is well‐known [Journel, 1983] that by
selecting MVN fields, the extreme (low and high) values of
Y become less spatially correlated than conductivity values
close to the mean.
[3] Deviations from the first‐order aL have been observed

in numerical simulations of transport in highly heteroge-
neous formations (HHF) [Jankovic et al., 2003; De Dreuzy,
2007]. Such differences are related to the statistical moments
which are not taken into account by the first‐order approach,
as expressed for instance by theM‐point joint pdf of Y, with
M > 2, or equivalently by the different spatial correlation
structures of different classes of the hydraulic conductivity.
The latter case may lead to random Y fields quite different
from MVN, for given f (Y) and CY. This finding has stimu-
lated debates on the range of validity of the perturbation
expansions, and alternative approaches have been employed
[see, e.g., Dentz and Tartakovsky, 2008].
[4] There is an increasing evidence that the above men-

tioned properties may have an important role in transport in
HHF. A common approach is to investigate formations of
given univariate Y and integral scale IY, which differ how-
ever from the MVN at higher order. This has previously
been done by using, within a numerical context, the concept
of spatial connectivity of different Y classes. Thus, the dis-
tribution of the residual Y′ = Y − hYi was divided into classes
defined by intervals DY′. The space domain corresponding
to each class was characterized by an integral scale reflecting
the degree of correlation of the domain. The concept is
similar to the often employed indicator covariance [Journel,
1983], which is sometimes related to the concept of con-
nectivity, although the topic is still a matter of debate [see,
e.g., Western et al., 1998; Knudby and Carrera, 2005]. For
example, classes in the interval [Y′, Y′ +DY′] and [−Y′, −Y′ −
DY′] may have the same correlation length scales, coined here
as “symmetrical” structures (not necessarily equal to those
pertaining to the MVN). A more general structure is the
“non‐symmetrical” one, in which the two above classes
have distinct correlation lengths. For example, large K zones
may have high spatial correlation while low K zones are
poorly correlated, or vice versa.
[5] A few studies have examined the impact of different

correlation structures, in particular for the non‐symmetrical
case, i.e., the presence of different connectivities of Y′ and

−Y′ classes, while obeying the same univariate distribution
[Desbarats, 1990; Wen and Gomez‐Hernandez, 1998;
Guswa and Freyberg, 2002; Zinn and Harvey, 2003; Knudby
et al., 2006]. A conclusive result of all studies was that aL

may depend on the particular choice of the Y structure, for the
same f (Y) and global integral scale IY. This is, of course, a
nonlinear effect which is not captured by first‐order solu-
tions. The aforementioned studies were of a numerical
nature, mostly dealing with 2D transport, and were limited
to a few particular cases and computational techniques.
[6] The aim of the present study is to investigate this issue

indirectly by adopting a structure model which has been
used in the past to model flow and transport in highly
heterogeneous media [Dagan et al., 2003]. The advantage
of this model is that it permits to derive an approximate
semi‐analytical solution for aL (which is employed in the
present work) to provide useful insight on the impact of
spatial correlation of Y classes in a simple and systematic
manner. The model is able to represent any random hetero-
geneous medium of given f (Y), and it lends itself to useful
generalizations for any correlation structure of the Y classes.
Unlike previous investigations [e.g., Dagan et al., 2003],
which assumed a unique correlation scale of all Y classes,
the present work accounts for a variable degree of correla-
tion of different Y classes in order to mimic different degrees
of connectivity. It is worth to underline that, because the
different correlation lengths are the same for any spatial
direction, the model represents Y fields which are globally
isotropic.

2. Mathematical Framework

[7] We consider spreading of large (ergodic) plumes in
three‐dimensional heterogeneous formations of isotropic K
spatial distribution. Flow is of constant mean velocity U and
the flow domain is much larger than any of the correlation
scales of generic log conductivity classes; hence, Y is
modeled as a stationary, isotropic random field, and we
assume that there are no structures (such as lenses of low/
high Y) spanning the entire medium. Such a problem was
already solved for a medium consisting of spherical inclu-
sions of different conductivities characterized by the same
correlation length for any Y class [Dagan et al., 2003]. Thus,
several quantities of interest, such as the dispersion coeffi-
cients as well as the breakthrough curves, as function of the
conductivity statistical parameters were computed [e.g.,
Fiori et al., 2003]. The model results were tested against
detailed 3D transport numerical simulations in HHF
[Jankovic et al., 2003]. More recently, a good agreement
with the numerical results of de Dreuzy et al. [2007] was
found [Fiori et al., 2008].
[8] The primary focus of this work is the calculation of

the asymptotic longitudinal dispersivity aL reached by an
ergodic plume of a conservative solute after a large travel
distance from the injection zone. The general expression of
aL has been derived by Dagan et al. [2003], and its final
expression is written below:

�L ¼ 9

16
n

Z 1

0

Z 1

�1
dR dY

�

2þ �

X 2
M �ð Þ
R

f Y ;Rð Þ with

� ¼ K

Kef
;

ð1Þ
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where Kef denotes the effective medium conductivity, which
is determined from [Dagan, 1989]

Z
dK f Kð Þ Kef � K

2Kef þ K
¼ 0: ð2Þ

Equation (1) is based on determining aL by summation of
contributions from different isolated spheres of conductivity
K surrounded by a medium of conductivity Kef. The quantity

XM �ð Þ ¼ 2

3
R �� 1ð Þ 2

�
þ 3

2þ �
2 F1

2

3
; 1;

5

3
; 2

1� �

2þ �

� �� �
ð3Þ

represents the trajectory residual of the centerline crossing
an inclusion (2F1 being the hypergeometric function),
whereas f (Y, R) is the joint distribution of Y and the sphere
radius R. The latter is proportional to the integral scale per-
taining to a given class of hydraulic conductivity, and gen-
erally it is correlated with Y. This is observed both at regional
(see data collected by Hoeksema and Kitanidis [1985]), and
at formation scale [see Ritzi, 2000; Ritzi et al., 2000; Labolle
and Fogg, 2001] where it is seen that blocks with different
conductivity may have different sizes. The particular case
considered in the past of constant R = R* is mathemati-
cally expressed by replacing f (Y, R) = f (Y)d(R − R*) in
equation (1). Here we extend the analysis to variable R,
and to further simplify the problem, without loss of gen-
erality, we assume that Y and R are perfectly correlated,
i.e., f (Y, R) = f (Y)d[R − l(Y)], where l(Y) is a deterministic,
given, radius distribution. In such a manner, a given Y class is
characterized by an unique size R = l(Y) of its inclusions,
proportional to the correlation length for that class. For
example, classes of high conductivity may have a larger
spatial correlation scale (i.e., larger R) than those of low
conductivity, in line with the connectivity approach
mentioned in the section 1. The same assumption was
made by Firmani et al. [2009] for the calculation of the
effective conductivity in heterogeneous 2D formations.
Introduction of the above mentioned approximation into
equation (1) yields

�L ¼ 9

16
n

Z 1

�1
dY

f Yð Þ
� Yð Þ

�X 2
M �ð Þ

2þ �
: ð4Þ

This simple expression is employed in the sequel to
derive the dispersivity for a few noteworthy structures
pertaining to particular l(Y). The simple numerical
quadrature appearing in equation (4) is carried out for the
widely employed normal f (Y).

3. Dispersivity in Non‐symmetrical Structures

[9] As mentioned in section 1, non‐symmetrical struc-
tures are characterized by a different correlation length for
high and low conductivity. In our model, this is expressed
by l(Y′) ≠ l(−Y′). The simplest distribution, which still
preserves the main features of interest, is the one in which
the low and high Y are characterized by different and con-
stant values:

� Y 0ð Þ ¼
RH for Y 0 � 0

RL for Y 0 < 0:

8<
: ð5Þ

It is easy to verify [see Dagan et al., 2003] that the above
medium is characterized by a global correlation scale pro-
portional to RLþRH

2 .
[10] The longitudinal dispersivity can be easily calculated

after introducing equation (5) into equation (4) for f (Y)
normally distributed, and performing the quadrature. The
final result for the dimensionless dispersivity �L

IY
depends

only on the log conductivity variance sY
2 and the ratio, x = RH

RL

(0 < x < ∞), between the correlation scale of the high K and
that of the low K.
[11] Figure 1 displays the dimensionless dispersivity �L

nIY
(where n is the inclusions volume density, to be taken as
n = 1) as function of the log conductivity variance sY

2 for
a few values of the ratio x < 1, i.e., for low conductivities
zones more connected than the high ones. The first‐order
result �L

nIY
= sY

2 is also shown for reference. The case x = 1
(symmetrically correlated structure of uniform R) reproduces
the result already presented in the past [see, e.g., Fiori et al.,
2003, Figure 3]. It is observed that the increase in the cor-
relation of the low conductive zones with respect to the
high ones leads to a significant increase of the longitudinal
dispersivity.
[12] The above finding can be explained by considering

the different contributions to dispersivity related to large
∣Y′∣. In fact, for high Y′ > 0, the sphere’s interior velocity Vin

U =
3�
�þ2 > 1, and the related contributions to aL in equation (4) are
enhanced. However, the fluid velocity reaches the upper
bound Vin

U = 3 for Y→ ∞, due to the constraining effect of the
surrounding medium, and XM reaches a finite value as well.
On the contrary, Vin

U → 0 for Y → −∞ (� → 0). As a conse-
quence, solute particles may spend a very long time in low
conductive inclusions, leading to XM→∞ in equation (4) and
to a considerable increase of dispersivity (this mechanism is
thoroughly discussed by Dagan et al. [2003]). The latter is
further enhanced when the low conductive areas are highly
connected, as in the case x < 1. Hence, increasing the corre-
lation of low conductive zones implies the existence of large
volumes in which the solute hold‐up mechanism manifests,
leading to a larger dispersion. A similar effect was found by
La Bolle and Fogg [2001].
[13] Of particular interest is the behavior for small sY

2 (see
the small inset of Figure 1). It was already observed and
discussed in the past [Dagan et al., 2003] that for the
symmetrical structure (x = 1) the first order approximation is
valid for a broad range of sY

2 values, confirming results
based on numerical simulations [Bellin et al., 1992]. This
effect was attributed to the mutual cancellation of errors
associated with the first‐order expansion of the trajectories
for Y′ > 0 and Y′ < 0, which applies to symmetrical systems
[Dagan et al., 2003]. The cancellation was shown to stem
from the fact that in the neighborhood of Y′ = 0, the first‐
order approximation of the integrand in equation (4) with R =
const overestimates the exact solution for Y′ > 0 and under-
estimates it for Y′ < 0. The break of symmetry in equation (5)
for x ≠ 1, diminishes the effect, i.e., the errors are no longer
balanced at the same extent. As a consequence, the accuracy
of the first‐order approximation of aL starts to deteriorate
for smaller values of the log conductivity variance, say sY

2 >
0.3. This finding is somewhat similar to the results of Wen
and Gomez‐Hernandez [1998] and Fogg [1990], who also
observed a significant impact of the non‐symmetrical Y
structure even for small sY

2.

FIORI ET AL.: CONDUCTIVITY CLASSES AND MACRODISPERSIVITY W08601W08601

3 of 7



[14] The opposite case, of high conductivity zones more
correlated than the low‐K ones, i.e., x ≥ 1, is illustrated in
Figure 2. It is seen that this non‐symmetrical Y structure
generally leads to a decrease in the dispersivity. The
explanation is that the contribution of high K inclusions is
less than those of low K, and the increase in the connectivity

of large K elements does not compensate for the dispersivity
reduction caused by the decreased connectivity of the low
conductive inclusions. Thus, the final result is an overall
decrease of aL. We note an early departure from the first‐
order solution also for this case, which is again explained by

Figure 2. The asymptotic longitudinal dimensionless dispersivity �L
IY
as function of the log conductivity

variance sY
2 for a non‐symmetrical Y = ln K structure (equation (5)) for the case of low Y less correlated

than high Y.

Figure 1. The asymptotic longitudinal dimensionless dispersivity �L
IY
as function of the log conductiv-

ity variance sY
2 for a non‐symmetrical Y = ln K structure (equation (5)) for the case of low Y more

correlated than high Y.
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the role played by the break of the symmetry in the can-
cellation of errors, as discussed above.

4. Dispersivity in Symmetrical Structures

[15] In this section we analyze correlation structures of Y
which are symmetrical with respect to Y′, but not of uniform
R. The MVN is an important and widely adopted such
configuration, with log conductivity values close to the
mean more correlated than the extremes. In our approach,
the symmetry condition translates in the identity l(Y′) =
l(−Y′). For illustration purposes, we use the following
relationship:

� Y 0ð Þ ¼ R1 þ R0 � R1ð Þ exp �pY 02
� �

; ð6Þ

where 0 < p < ∞ and l(0) = R0, l(∞) = R∞. At both the
extreme values of the parameter p, i.e., p = 0 and p = ∞, the
medium degenerates into one with uniform correlation for
all classes of conductivity (R = R0 and R = R∞, respectively).
For any other p value there is a smooth transition between R =
R0 and R = R∞. The dimensionless dispersivity, �L

IY
, is calcu-

lated by equation (4), and it depends now on the three para-
meters: sY

2, p and the ratio R0
R1
.

[16] Figure 3 displays the dimensionless dispersivity �L
nIY

as function of sY
2 for the fixed ratio R0

R1
= 10, and a few

values of the coefficient p. Thus K values close to the mean
are much more correlated than the extremes, similar to the
MVN case, for any finite p. Figure 3 shows a decrease in aL

for intermediate values of p, between 0 and ∞, for the
given large difference between the correlation of Y classes
expressed by R0

R1
. Such a decrease appears at the highest values

of sY
2, and it is mostly a consequence of filtering out the low‐

conductive inclusions, which mostly contribute to solute
spreading. This is due to the diminishing of their radius l
relative to R0. The effect is pronounced for small values of p,
for which the smallest Y inclusions are filtered out while IY is
large (see equation (6)). At any rate, the differences between
the curves are generally smaller than in the previously ana-
lyzed non‐symmetrical case.
[17] The impact of the symmetrical distribution of R is

even smaller when the extreme values are more correlated
than the log conductivity close to the mean (case R0

R1
= 0.1,

represented in Figure 4). In this case, the partial filtering out
of the inclusions with log conductivity close to the mean
(which usually cause a limited spreading) does not change
much the overall plume dispersion.
[18] It is interesting to note that for different degree of

correlation expressed by the symmetrical l(Y), the mutual
cancellation of errors still occurs, as is the case of the first‐
order approximation, as described in the previous section.
Therefore, the first‐order result aL = IYsY

2 is accurate for a
broad range of values for sY

2, in agreement with the
numerical results based on MVN fields.

5. Summary and Conclusions

[19] In this work, the impact of the connectivity of
hydraulic conductivity on solute transport is investigated by
extending the theoretical framework on flow and transport
in highly heterogeneous media developed by Dagan et al.
[2003]. The focus is on the calculation of the asymptotic
longitudinal dispersivity aL, reached by an ergodic plume of
a conservative solute after a large travel distance from the
injection zone. We have adopted the concept of spatial
connectivity of different Y classes, each one characterized
by dividing the residual Y′ = Y − hYi into classes defined by

Figure 3. The asymptotic longitudinal dimensionless dispersivity �L
IY
as function of the log conductivity

variance sY
2 for a symmetrical Y = ln K structure (equation (6)) for the case of extreme Y less corre-

lated than Y close to the mean ( R0
R1

= 10).
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intervalsDY′. The space domain corresponding to each class
was characterized by an integral scale reflecting the degree
of correlation of the domain. We have analyzed both non‐
symmetrical structures, in which large K zones have high
spatial correlation while low K zones are poorly correlated,
or vice versa, and symmetrical structures, where the ex-
tremes have the same correlation scale (similar to the MVN
field).
[20] For the non‐symmetrical case, the increase in the

correlation of the low conductive zones with respect to
the high conductive ones leads to a significant increase in
the longitudinal dispersivity aL (Figure 1). The opposite
case, of high‐conductivity zones more correlated than the
low‐conductivity ones (Figure 2), leads to a relatively modest
decrease in the dispersivity. These findings are explained by
the solute retention occurring in low Y zones, which has a
larger effect on spreading than high Y zones.
[21] For symmetrical structures, when the conductivities

close to the mean are more correlated than the extremes
(similar to the MVN case), aL shows a decrease for certain
configurations, provided that there is a marked difference
between the correlation of Y classes. The decrease appears at
the highest sY

2 and it is mostly a consequence of the filtering
out the low conductive inclusions, which are those that
mostly contribute to spreading. However, the change of dis-
persivity is generally much smaller than the non‐symmetrical
case. The impact is even smaller when the extreme values are
more correlated than the mean values.
[22] It is also found that the break of symmetry in the log

conductivity structure leads to a narrowing down of the
validity of the first‐order dispersivity aL = IYsY

2. The validity
of the first‐order approximation was in the past attributed to
the mutual cancellation of errors associated with the first‐
order expansion of the trajectories for Y′ > 0 and Y′ < 0,
which applies to symmetrical Y structures [Dagan et al.,

2003]. The break of symmetry of Y diminishes the effect,
i.e., the errors are no longer balanced by symmetry to the
same extent. As a consequence, the accuracy of the first‐
order approximation for aL starts to deteriorate for smaller
values of the log conductivity variance. Conversely, the
cancellation of errors is still effective for symmetrical
structures (Figures 3 and 4), for which the first‐order aL

remains a valid approximation for a wide range of sY
2.

[23] We wish to emphasize that the results obtained here
are valid for three‐dimensional multi‐indicator random log
conductivity fields, and their extension to other structures,
like the commonly employed multi‐Gaussian one, is not
straightforward. Previous studies based on two dimensional
numerical simulations of multi‐Gaussian conductivity
fields, with different correlation scales of the Y classes, seem
to indicate a different behavior from the one observed here
[e.g., Wen and Gomez‐Hernandez, 1998; Zinn and Harvey,
2003]. Besides the different random fields, which greatly
differ for strongly heterogeneous formations, there are other
possible reasons for the above observed difference, such as
the numerical issues involved when solving highly hetero-
geneous flows [see, e.g., Fiori et al., 2008] as well as the
presence of Y classes with correlation scales which are not
much smaller than (or even comparable with) the domain
size leading to well connected, domain‐spanning structures.
A thorough analysis of the differences between our results,
and previous works is beyond the scopes of this note, and it
requires further investigations.
[24] Finally, the proposed model is applicable to stationary

(statistically homogeneous) porous media. However, there
are numerous geological formations where the high degrees
of heterogeneity stem from the presence of distinct hydro-
facies, therefore defying stationary statistical parameteriza-
tions. For such formations, other models (such as the one

Figure 4. The asymptotic longitudinal dimensionless dispersivity �L
IY
as function of the log conductivity

variance sY
2 for a symmetrical Y = ln K structure (equation (6)) for the case of extreme Y more correlated

than Y close to the mean (R0
R1

= 0.1).
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proposed by Winter and Tartakovsky [2002]) may be more
representative.
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project carried out in the frame of the June 2009, Summer School of Envi-
ronmental Dynamics, sponsored by the Istituto Veneto di Scienze Lettere
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