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Abstract 

In this work we report the successful application of an innovative method, based on the Sparse 

Representation of signals, to perform a real-time, unsupervised detection of the individual components 

in a frequency degenerate, multi-harmonic spectrum, using a small number of data un-evenly sampled 

in the spatial domain. This method has been developed from its original applications in astronomy, and 

is now routinely used in the JET thermonuclear fusion experiment to obtain the decomposition of a 

spectrum of high-frequency (~10-500kHz range) magnetic instabilities with a sub-ms time resolution, 

allowing the real-time tracking of its individual components as the plasma background evolves. This 

work opens a path towards developing real-time control tools for electro-magnetic instabilities in future 

fusion devices aimed at achieving a net energy gain. More generally, the speed and accuracy of this 

algorithm is recommended for instances of physics measurements and control engineering where an 

unsupervised, real-time decomposition of a degenerate signal is required from a small number of data. 
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1) Introduction 

The problem of unsupervised detection of different components in a multi-harmonic spectrum using 

un-even sampling is common to many areas of physics and engineering [1], and particularly in the field 

of Astronomy and Astrophysics (A&A), where the very long measurement series are often interrupted 

due to different environmental constraints (such as the weather and the Earth’s rotation). Much work 

has been done over the past 20 years to address this mathematical issue and improve on the limitations 

of the original methods, which were essentially based on the Lomb-Scargle periodograms [2-5]. 

In the field of plasma physics, analysis of electro-magnetic fluctuations is important for understanding 

and controlling the magneto-hydrodynamic (MHD) stability of the plasma. These instabilities can 

occur when a plasma is trapped and heated in a magnetic configuration and responds by generating its 

own oscillating magnetic field, i.e. an MHD instability. Considering the case of magnetically confined 

thermonuclear fusion plasmas in a tokamak device [6], the MHD analysis is based on magnetic and 

turbulence measurements, and involves an initial time/frequency Fourier decomposition of the data to 

obtain the individual frequency components ψ(ω). Since a tokamak has, to a first approximation, 2D 

boundary conditions along the longitudinal (toroidal) axis and on the plane perpendicular to it (the 

poloidal direction), the spatial structure of the MHD instabilities is determined by further decomposing 

each frequency component in its toroidal (n) and poloidal (m) harmonics: ψ(ω)=e-iωtΣn,mAmneinφeimθ. 

Here φ and θ are the toroidal and poloidal angle coordinates, respectively, and we have used the fact 

that in tokamak geometry one single toroidal component with a given n is usually made up of multiple 

poloidal components m’s due to toroidicity and various other geometrical effects. Note also that the 

data are actually acquired only at some specific angle positions φp and θp, p={1, …, P}, with a small 

number of unevenly spaced sensors, i.e. there is not a continuous measurement coverage of the toroidal 

and poloidal angle coordinates. The sensors are pick-up coils mounted on the vessel wall (as those used 

in this work), and 2D imaging systems such as reflectometry, X-rays and electron cyclotron emission. 

The number of mathematical methods in use to analyse MHD instabilities in tokamaks is rather high. 

With evenly spaced sensors, a simple discrete Fourier transform reveals the mode amplitude for each 

individual (n, m) component up to the Nyquist number [7]. However, such measurement arrangement is 

in general not available because of installation constraints. Hence, other methods have been developed 

for fusion plasmas [8-14]. All these methods work well for a spectrum of modes where the different 

components are well separated in frequency, but are unsuitable in case of modes superposition because 

of intrinsic mathematical difficulties or the too long computational time needed for the analysis. Hence 

these methods cannot be used for real-time detection of MHD instabilities in tokamaks for protection of 



the machine or optimization of the fusion performance [15], a functionality very much required for 

future thermonuclear fusion devices aimed at achieving a net energy gain, such as ITER [6, p.711; 16]. 

The problem of unsupervised decomposition of a multi component, frequency-degenerate spectrum, is 

a typical case where scientific cross-fertilization between two different fields, thermonuclear fusion in 

tokamaks and A&A, yields excellent results. Considering the similarities between these two areas, it is 

clear that an un-evenly distributed measurement time series of A&A data corresponds to an un-evenly 

spaced measurement array in the toroidal (poloidal) direction in a tokamak. Hence, the canonical time-

conjugate in A&A (a temporal frequency) corresponds to the spatial toroidal (poloidal) mode number 

in a tokamak. There are, however, minor differences between these two fields: real-valued data and 

real-valued temporal frequencies in A&A, complex electro-magnetic data and integer-valued (positive 

and negative) mode numbers in thermonuclear fusion plasmas in tokamaks. Moreover, the role of the 

mean value of the data is of no scientific interest in A&A, and even perturbs the data analysis, while for 

tokamak plasmas it represents the n=0 (m=0) mode, which can causes a major magnetic instability 

leading to an abrupt vertical displacement of the entire plasma column. Finally, the long measurement 

series of A&A data do not call for real-time analysis, whereas in tokamak plasma, sub-millisecond 

calculations are needed in order to protect the machine from the dangerous effect of MHD instabilities. 

To tackle the problem of an unsupervised signal decomposition of irregularly sampled A&A data, a 

new method has been recently proposed for fitting complex sinusoids to such data [17]. This algorithm 

is based on the Sparse Representation of Signals, as implemented in the SparSpec code. This method 

has also been initially adapted for post-pulse data analysis of MHD instabilities in the Joint European 

Torus (JET) tokamak [6, p.617], where it has been fully benchmarked with simulated and real data 

[18]. For JET data, the SparSpec method has proven to be extremely robust, and is especially useful for 

resolving the amplitudes and phases of multiple Alfvén Eigenmodes (AEs) (see chapter 7.15 in [6]) in 

the ~100-300kHz frequency range, which are ringing with the same or nearly the same frequency. 

This paper reports on the use of Sparse Representation methods for real-time application, and on their 

specific use for the sub-millisecond detection, discrimination and tracking of the individual toroidal 

mode numbers in the multi-components, frequency-degenerate spectrum of AEs excited in JET by an 

array of antennas used for MHD diagnostic purposes. Section2 reviews the mathematical foundation of 

Sparse Representations and the numerical approach used in the SparSpec code. Section3 gives a brief 

overview of the active MHD diagnostic system used in JET. Section4 shows the first examples of the 

application of the real-time version of the SparSpec code to the detection and discrimination of the 

different toroidal components in the multi-harmonics spectrum driven by the active MHD diagnostic 

system. Finally, in Section5 we briefly summarize our results and give an outlook towards future work. 



2) Sparse Representations and the SparSpec principle 

Our aim is to detect the toroidal (poloidal) mode numbers n (m) of the MHD instabilities present in the 

plasma and to estimate their amplitude from data yp acquired with detectors unevenly positioned at 

angles φp (θp) in radians, p={1, …, P}. Each yp is modelled as ( )1
expL

p l l p pl
y inα φ ε

=
= +∑ , where nl 

and αl are the unknown mode numbers and amplitudes, respectively, L the unknown number of modes 

and εp corresponds to the noise on the data for the given p-th sensor. The data yp, the mode amplitudes 

αl and noise εp are all complex values variables. This problem amounts to fitting multiple complex 

sinusoids to the data and is a general signal processing problem in many fields of physics. 

From an estimation viewpoint, evaluating the amplitudes αl and the modes number nl is a very difficult 

problem. Consider the best lest-square (LS) fitting: even if the number of modes is known, minimizing 

the LS criterion requires a combinatorial exploration for integer-valued mode numbers nl. A way to 

circumvent the problem is to estimate the amplitudes of all mode numbers in the range {−K, …, K} 

(where |K| is the maximum mode number), but to enforce the fact that most of these modes have a null 

amplitude. This amounts to approximating the data with the best linear combination of a small number 

of elementary known signals, which is called a Sparse Approximation [19]). Theoretically, the Sparse 

Approximation problem consists of minimizing the LS criterion penalized by the number of non-zero 

elements (the L0 norm). To minimize such criterion, one must sift through all possible combinations of 

elementary signals, which becomes intractable when multiple unknown modes could be present in the 

input spectrum. Hence, two methods have been proposed to solve this problem. The first one, based on 

greedy pursuit algorithms, iteratively adds elements to the approximation of the signal to improve it 

[20]. The second one, called convex relaxation, replaces the L0 norm with another penalization term, 

such that the criterion may be minimized more easily. Here we follow this convex relaxation approach, 

and use the L1-norm [19], i.e. the sum of the amplitudes of all the non-zero elements. Even if both 

penalizations may not lead to the same solution, such approximation has given excellent results in the 

performed simulations and real data processing [18]. This approach leads to the criterion: 
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Here y=[y1, y2, …, yP]T is the vector of data; W={exp(inkφp)}p,k, for p={1, …, P} and k={1, …, M}, 

with nk=k−K+1 and M=2K+1 and x=[x1, x2, …, xM]T is the vector of complex amplitudes of modes nk. 

For applications where the variance on the noise εp, or covariance matrix of the noise vector [ε1, ε2, …, 

εp]T, is known, it may be taken into account in the criterion through a weighted LS-term. It can then be 



easily shown that this criterion is convex, hence has no local minima. Many numerical methods are 

available to minimize such criterion, and we use an algorithm based on an Iterative Block Coordinate 

Descent procedure [17]. This algorithm is very efficient: a correct solution can be typically found in 

less than 1ms using the modest computational resources available to process real-time JET data. Note 

that it has been shown that minimizing eq.(1) leads to an under-estimation of the amplitudes of the 

detected mode numbers due to the λ penalization term, but this is not an issue for real-time analysis, as 

the main objective is to detect the existence of the modes, their mode numbers and frequency width. 

A real-time implementation of the proposed modes detection method requires an efficient tuning of the 

penalization parameter λ, which is related to the noise level. A rigorous interpretation of λ in a 

statistical framework can be found in [17]. An intuitive description of λ is that, since it increases the 

penalty for those solutions which invoke a larger number of modes, it influences the SparSpec 

detection ability, hence its role when analysing frequency-degenerated spectra. For spectral analysis, 

this parameter has interesting physical meanings. It can be shown that for λ>λMAX=max|WHy| the 

minimizer xMIN of eq.(1) is identically zero, i.e. the unique solution is the zero solution (no detected 

modes); and that for a given λ, the minimizer xMIN of eq.(1) satisfies max|WHr|<=λ where r=y-WxMIN 

is called the residual (data minus the model corresponding to the estimated modes). Moreover, as |WHr| 

corresponds to the periodogram of the residual, λ can be interpreted as the maximum peak amplitude 

allowed in the periodogram of the residual. Finally, since |WHy| corresponds to the periodogram of the 

data, it can be shown that choosing λ to be a fraction λNORM∈[0, 1] of the maximum of the periodogram 

of the data λ=λNORM×max(|WHy|), ensures the periodogram of the residual r to be lower up to this 

fraction relatively to the maximum of the data periodogram. The typical values for λNORM range from 

λNORM=0.1 in A&A where the number of time samples is very large (typically >103), to λNORM=0.95 

when the SparSpec algorithm is applied to the real-time detection of toroidal mode numbers in a JET 

experiment. Following detailed simulations using various models and direct estimates for the noise on 

the magnetic sensors used for real-time MHD analysis at JET, in our applications the most suitable 

value is λNORM=0.85. This value allows for a very rapid convergence of the optimization algorithm 

(typically within ~600μs) and is sufficient to detect and discriminate multiple modes whose amplitudes 

are of interest for MHD diagnostic purposes (physics, plant protection and control issues) at JET. 

 

3) The active MHD diagnostic system in use at JET 

A key physics issue for a usable fusion reactor is the understanding and control of the burning plasma 

regime, a situation in which the energy carried by the fusion produced alpha particles (αs) exceeds that 



externally injected [15]. One of the main elements of this regime is the interaction of the αs with waves 

that are naturally excited in the plasma. Such interaction can be resonant, lead to efficient energy and 

momentum exchange between waves and particles and drive instabilities, tapping the free energy 

contained in the αs pressure gradient. If a significant spatial redistribution of the αs occurs, then the 

overall plasma performance can be limited; moreover, if this redistribution goes as far as the machine 

boundaries, causing net losses of the αs, then damage to the first wall can also occur. Conversely, the 

knowledge of the mechanisms behind the mode stability, the interaction of the modes with the αs and 

their redistribution can be turned into tools for the control of their phase-space behaviour and of the 

plasma burn itself. An example of waves that can interact resonantly with the αs is Alfvén Eigenmodes 

(AEs): these modes are particularly important as they are a natural Eigenmode of any magnetically 

confined plasma, and also because the fusion-produced αs are born with a supra-thermal speed that is 

typically super-Alfvenic in the usual thermonuclear tokamak plasma conditions. Hence, AEs constitute 

a unique way to “communicate” with the plasma, allowing them to be used as a powerful diagnostic 

tool for the αs and the background plasma, the so-called MHD spectroscopy technique [21]. 

A simple active method to drive and detect low amplitude modes in the plasma was pioneered and used 

in JET, the so-called AE Active Diagnostic (AEAD) system [22-25]. One essential and worldwide 

unique element of the AEAD system is the AE Local Manager (AELM). The AELM is a digital VME 

plant control system, with a 1kHz clock-rate, used to control the AE excitation and track in real time 

the evolution of the detected modes. The AELM crate contains a VME Crate Service Module (to 

provide timer and trigger synchronisation with the plant systems), a Real-Time Processor (to execute 

software running under the Wind River VxWorks operating system), a Communications Processor (to 

setup pre-pulse information, synchronise the real-time processor with important time points within the 

pulse and communicate data recorded during the pulse for archiving), and four analogue/digital 

input/output cards [26]. One of two algorithms can be used to derive from the available input data a 

single amplitude and phase pair that will be for mode detection and tracking used in real-time: the first 

uses the “SparSpec” method, and the second performs a simpler signed sum of the selected input data. 

A Lorentzian-model fit of the complex antenna/plasma transfer function is used to obtain the mode 

frequency and quality factor in real-time [27]. When using SparSpec, the AELM has two methods, 

“highest” and “any”, for selecting the pair to use for tracking. The highest method picks at any time 

point tj the pair with the greatest amplitude. The any method looks for a pair where the amplitude is 

above a given threshold at the time point t1; if a resonance is detected, the same pair will be selected for 

all time points tj, j>1, until tracking is lost at tj+1 when the search for a new pair will commence. 



Figure1 illustrates the AEAD plant in the tracking mode of operation. In the full-frequency spectrum 

(shown in the left frame, which was only measured from t=13sec to t=17sec) we see a very narrow 

triangular waveform in an otherwise completely clean portion of the fluctuation spectrum: this is the 

system driving frequency, set to look for resonances around the frequency of an n=1 Toroidal AE 

(TAE) as evaluated in real-time for that shot. In the right frame, we have the synchronously detected 

signal (|δBMEAS|) from one magnetic pick-up coil, showing the real-time TAE frequency (fTAE) and the 

driving frequency. Narrow sweeps of the antenna frequency occur when the complex-valued δBMEAS is 

sufficiently close to the pre-set resonant shape: it describes a circle in the complex plan representation 

with a corresponding bell-shape in the |δBMEAS(ω)| representation (as shown in the two inserts). In these 

instances we are in the tracking mode of operation: the frequency (fMEAS) and damping (γDAMP) of the 

detected mode are measured in real-time. Such narrow sweeps occur between t=12 sec and t=18sec. 

After t=21sec, a much larger frequency sweep is seen in the right frame: no resonances close to the 

pre-set value have been detected in real-time. We are then in the scanning mode of operation, and the 

AELM looks for suitable antenna-driven plasma resonances in a different frequency range. 

Figure1. An example of real-time tracking of a resonant n=1 Toroidal Alfvén Eigenmode (TAE). 

 

4) Real-time, unsupervised detection and discrimination of different toroidal components in a 

frequency-degenerated spectrum of MHD instabilities 

One of the first results obtained with the AEAD diagnostic system in the most recent JET experimental 

campaigns has been that many modes with |n|~0-12 and very low-damping rate γ/ω<0.2% were found 



to be simultaneously present in plasmas without populations of resonant fast ions. Correct real-time 

detection and n-number discrimination of these modes is particularly important as their low γ/ω makes 

them very prone to become unstable if resonant fast ions were present in the plasma, and real-time 

control tools depend on their n’s. This has been achieved imbedding SparSpec in the AELM tracking 

algorithm, allowing the detection and tracking of hundreds of individual resonances during one single 

discharge, which are guaranteed to have the same n-number. 

100

150

200

250

fr
eq

. [
kH

z]

overview of AELM data for JET shot #77788 (using SparSpec "highest" algorithm)

 

 
reference n=1 TAE frequency
antenna swept frequency

0
10
10
10
10
10
1

D
ig

ita
l F

la
gs

 

 

−15

−10

−5

0

5

10

M
od

e 
N

um
be

r

0

0.2

0.4

0.6

|δ
B

M
E

A
S
|[1

0−
7 T

/s
]

 

 
n=3
n=4
n=5
n=6
n=7
n=8

n=3 found
n=4 found
n=5 found
n=6 found
n=7 found
n=8 found

4 6 8 10 12 14 16
0
10
10
10
10
10
1

time[sec]

D
ig

ita
l F

la
gs

 

 
n=+3 found
n=−3 found
n=+5 found
n=−5 found
n=+7 found
n=−7 found

0

0.2

0.4

0.6

|δ
B

M
E

A
S
|[1

0−
7 T

/s
]

 

 
n=+3
n=−3
n=+5
n=−5
n=+7
n=−7

"good" tracking flag as
digital flag =1 (HIGH)

a mode has been detected if flag =1 (HIGH = TRUE)

"bad" tracking flag as
mode=−15 AND digital
flag =0 (LOW)

n=7 highes first, then n=3 becomes
highest, corresponding digital flags
flip their value from =0 to =1

100

150

200

250

A
E

 fr
eq

.[k
H

z]

time (sec)

#77788: post−pulse analysis using the SparSpec algorithm

 

 

5 6 7 8 9 10 11 12 13 14 15 16

0.02

0.04

0.06

0.08

0.10

re
s.

 |δ
B

|[G
]

time [sec]

120

150

180

210

240

m
od

e 
fr

eq
.[k

H
z]

1

2

3

4

5

γ/
ω

[%
]

 

 

n=+3

n=−1

n=−3

n=+1

n=0

n=+7

n=−5

n=−7

n=+9

n=+5

n=−2

n=+13

n=−27

n=−23

n=+4

n=+17

n=+15

antenna swept frequency
 reference n=1 TAE frequency

average residue amplitude at the different pick−up
coils ~ mode amplitude at the plasma edge

mode damping rate

Figure2. An example of real-time tracking of individual TAEs for the shot #77788; the analogue signal 

|δBMEAS| shows the amplitude of each individual mode as detected in real-time using SparSpec. 

An example of unsupervised real-time detection and tracking of the individual n-number components 

in the antenna-driven spectrum is shown in fig2(a,b) for the JET shot #77788, where the AEAD system 

was configured to predominantly drive an odd-n spectrum, peaked towards the lower mode numbers 

|n|=3,5,7, with a negligible drive for components with |n|>10. In this shot the highest mode was 

selected in the real-time SparSpec algorithm: this explains the “switching” between detection of the 

different modes (and particularly between n=3 and n=7). In fig2a (left frame), we show separately the 

detection of all modes with 3≤n≤8, and the detection of odd-n modes rotating in the co-current (n>0, 

the preferential direction in the usual JET magnetic equilibrium) and counter-current (n<0) direction, 

with |n|=[3,5,7]. For comparison, in fig2b (right frame) we show the results of the post-pulse analysis 

using the full implementation of the SparSpec algorithm. All the digital signals shown at the bottom of 

fig2a indicate whether detection and tracking of a certain mode has been successful: if the flag is set to 



high (=1), then the corresponding mode has been correctly detected and tracking is occurring, 

otherwise the digital signal is set to low (=0). At the start of each real-time scan t, the global “mode” 

value is initialised to a “bad” tracking value of n=-15 and its associated digital validity flag is set to 0. 

When a mode is successfully detected, the “mode” value is set to n and the validity flag is set to 1. 

From fig2a, we note first that only very few even-n resonances (n=[4,6,8]) are detected in real-time 

(and confirmed by post-pulse analysis, see fig2b), compared to the number of n=3 resonance; second, 

the n=3 mode dominates the detected spectrum, as this is the one for which the AEAD system 

produces the maximum drive; third, not only co-and counter-rotating modes with the same n can be 

distinguished in real-time, but also we find that the plasma preferentially supports co-rotating modes 

(which are driven with the same amplitude as the corresponding counter-rotating modes). This result 

allows to discriminate whether the pressure profile of any resonant fast ion population is peaked on axis 

(reducing the damping rate of co-rotating modes) or off-axis (reducing the damping rate of counter-

rotating modes), with important consequences for plasma control and burn optimization. A statistical 

analysis of the real-time vs. the post-pulse data (performed over many different discharges) indicates 

that the toroidal mode number and the mode frequency are detected in real-time with a confidence level 

>90%, the confidence level in the damping rate data being ~70%; this confirms the overall accuracy of 

the real-time calculations. The mode amplitude cannot be directly compared as, due to computational 

reasons, in real-time we do not perform the renormalization needed because of the λ-penalization term. 

 

5) Summary and Conclusions 

In this work we have reported on the application to tokamak plasmas of a new algorithm for the 

unsupervised and real-time detection and decomposition of a degenerate frequency spectrum, where the 

frequency separation between the various components is less than their full-width at half-maximum. 

This algorithm is based on the sparse representation of signals, as derived from its original applications 

to astronomical data using the SparSpec code. The real-time and post-pulse implementation of this 

algorithm has allowed an accurate and numerically efficient analysis of the measurements made with 

the AEAD system, which would have not been possible otherwise. Using the modest computational 

resources available with the AELM (a 1GHz PowerPC with a 512MB RAM running on a 1kHz clock-

rate), the multi-components |δBMEAS(n)| spectrum can be fully resolved within ~650μs. The capability 

to perform an unsupervised and real-time detection and tracking of the individual n-components in the 

antenna driven spectrum constitutes an invaluable tool, which is unique to the JET tokamak. This 

provides accurate testing for the code prediction for the damping rate of Alfvén Eigenmodes [28], as it 



is paramount that the same mode be measured throughout the parameter scan. The efficiency with 

which the SparSpec method detects multiple modes in large datasets has suggested that it may be used 

for the concurrent real-time detection of different MHD instabilities, of interest for plasma control and 

machine protection in JET and ITER, as they can be accurately discriminated in real-time. This allows 

specifically tailored control schemes to be put in place for each individual instability, hence improving 

the overall control of plasma operation. This will be particularly important for future experiments 

approaching the burning plasma conditions, such as ITER, where real-time control of the stability of 

the fusion born alphas in the background “sea” of MHD modes that are expected to occur in such 

conditions, represents one of the key ingredients required to achieve a net energy gain. 

Furthermore, and while specifically applied for the analysis of astronomical data and mode numbers in 

thermonuclear fusion plasmas in a tokamak device, the use of sparse approximations methods are 

ideally suited for applications to all domains of data analysis and control engineering where an efficient 

decomposition of a multi-harmonics degenerate spectrum is required from irregularly sampled data. 

Moreover, the computational speed and accuracy of algorithms such as SparSpec makes such a method 

ideally suited for real-time applications with a small number of data. These domains range from the 

analysis/optimization of measurement devices (an example of this being the work done for the ITER 

high-frequency magnetic diagnostic system [29]), to the numerous, sophisticated developments on the 

Sparse Representations of signals and digital images for pattern recognition, possibly in real-time. 
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