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Introduction

I The gyrokinetic code GENE [1], has been extended from its original flux-tube version to a global
geometry.

I Includes radial variation of temperature and density profiles, as well as of magnetic geometry.
I Non-periodic boundary conditions allow for profile relaxation.
I Heat sources & sinks enable quasi-stationary microturbulence simulations.
I Interface with the MHD equilibrium code CHEASE [2,3].
I Various benchmarks, including comparisons with other global codes are presented.

Global GENE Model

I Field aligned coordinate system ~X = (x : radial, y : binormal, z: parallel) =⇒ ~B0 = C(x) ~∇x × ~∇y .
I Gyrokinetic equation with radial (x) variations of equilibrium quantities.
I Particle distribution function fj(~X , v‖, µ) = f0j + f1j , with f0j a local Maxwellian.

I Gyrokinetic equation is solved for the perturbed distribution function f1j .
I Perturbed electrostatic and vector potentials (Φ1,A1‖) are self-consistently computed through

the quasineutrality (Q.N.) equation and parallel component of Ampère’s law.
I Gyrokinetic ordering |k‖| � |k⊥| =⇒ Neglect ∂/∂z compared to ∂/∂x and ∂/∂y .

The Gyrokinetic Equation
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I where g1j = f1j + qj v‖Ā1‖f0j/T0j , χ̄1 = Φ̄1 − v‖Ā1‖, Γα,j = ∂α f1j + qj ∂αΦ̄1 f0j/T0j for α = (x , y , z).

I The overbar denotes gyroaveraged quantities.

I Background density, temperature and pressure profiles: n0j(x), T0j(x), p0(x).
Corresponding inverse logarithmic gradients: LA(x) = −(d ln A/dx)−1 for A = [nj ,Tj ,p].

IKx(x , z) and Ky(x , z) are related to curvature and gradients of ~B0.
J(x , z) = [(~∇x × ~∇y) · ~∇z]−1 is the Jacobian.

I Ωj(x , z) = qj B0/mj , and B?0‖(x , z, v‖) = B0 + (mj/qj)v‖(~∇× ~b0) · ~b0, with ~b0 = ~B0/B0.

Benchmarking and Code Comparisons

Codes Used for Comparisons

I Comparison with linear and non-linear global PIC codes
GYGLES [4] and ORB5 [5] based on δf scheme.

I Global GENE :
I Solving in direct space except y -direction for which Fourier representation is

used.
I Derivatives in real space computed with finite differences.
I Dirichlet radial boundary conditions.
I Direct space anti-aliasing scheme in radial direction.
I Direct space integral gyroaveraging operator in radial direction.

Linear ITG Spectra for CYCLONE Base Case [6] with
Adiabatic Electrons

CYCLONE parameters with adiabatic electrons : a/R = 0.36,
ρ? = ρs/a = 1/180, q = 0.85 + 2.4(x/a)2, Ti/Te = 1, peaked T and n profiles
with R/LTi(x0) = 6.96, R/Ln(x0) = 2.2, and x0 = 0.5a.

Linear growth rates. Real frequencies.
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I Good agreement on growth rates and real frequencies.
I Remaining discrepancies at high ky can be assigned to

differences in the field solvers (2nd order expansion in k⊥ρs in
GYGLES, all orders kept in GENE).

Linear ITG-TEM Spectra for CYCLONE Base Case with
Kinetic Electrons

I CYCLONE parameters with kinetic electrons and mass ratio
mi/me = 400.

Linear growth rates. Real frequencies.
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I Transition from ITG to TEM at higher kyρi .
I Differences between global GENE and ORB5 results may be

related to ORB5 treating only trapped electrons kinetically
(adiabatic response for passing), while GENE treats electrons
fully kinetically.

I Resolution for global GENE simulations: (320× 64× 64× 32)
in the (x , z, v‖, µ) directions =⇒ High resolutions in (x , v‖, µ)

required for resolving non-adiabatic response of passing
electrons at mode rational surfaces.

Linear ρ? scan with Kinetic Electrons and EM Effects

I CYCLONE-like parameters with finite β = 2.5%.
I Simulations are carried out considering kinetic electrons

(proton-electron mass ratio) and both potentials (Φ1,A1‖).
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Growth rate γ for ρ? scan at kyρs = 0.28. Radial width of the sim-
ulation annulus is kept fixed with respect to (I) the Larmor radius,
and (II) the minor radius. Local flux-tube result in black.

I β = 2.5% =⇒ Kinetic ballooning modes dominate.
I Local flux-tube limit recovered by global code in limit ρ?→ 0.

Rosenbluth-Hinton Test

Parameters : a/R = 0.1, ρ? = 1/180, q = 1 + 0.75(x/a)2 , Ti/Te = 1,
R/LT = R/Ln = 0, f1(t = 0) = cos(πx/lx). Adiabatic electrons.
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Evolution of the flux-surface-
averaged, radial electric field.

Initial electrostatic potential, so-
lution to the Q.N. equation.

I Good agreement obtained for GAM frequency and damping
rate, as well as for residual.

I Remaining discrepancies related to ρ? approximations in
GENE, in particular in the gyroaveraging appearing in Q.N.
equation.

I After correcting these ρ? approximations on gyroaveraging:
I Very good agreement is reached on the Q.N. solution.
I However, zonal modes become unstable! ( under investigation ).

I Current simulation results are thus still obtained using the
uncorrected gyroaveraging operator.

Non-Linear ITG Simulations without Sources =⇒ Relaxation
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Evolution of ion heat diffusivity χi
for CYCLONE parameters with
peaked grad. profiles.

(R/LT , χi) trace for CYCLONE
parameters with flat grad. pro-
files [7].

I Same initial conditions =⇒ Remarkable agreement: Time
traces of the first burst are essentially identical.

I Global GENE recovers well the non-linear relaxation traces in
the (R/LT , χi) plane published in [7].

Non-Linear ITG Simulations with Sources
=⇒ Quasi-Stationary Microturbulence

I Radially dependent heat source/sink over whole system,
conserving surface-averaged density and parallel momentum:

df1
dt

= −γh

〈f1(~X , |v‖|, µ)〉 − 〈f0(~X , |v‖|, µ)〉
〈∫ d~v〈f1(~X , |v‖|, µ)〉〉
〈∫ d~v〈f0(~X , |v‖|, µ)〉〉

 .
I Relaxation coefficient γh ∼ 10−1 γITG

=⇒ Background temperature profile is approximately maintained,
while avoiding direct effect on microturbulence.

I CYCLONE parameters with flat grad. profiles.
I Numerical resolution:

(120× 48× 16× 48× 16) in the (x , y , z, v‖, µ) directions.
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Time evolution of (a) heat diffusivity χi , and (b) temperature gra-
dient R/LTi for CYCLONE parameters with heat sources/sinks.
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