

Development and Benchmarking of the Global Gyrokinetic Code GENE

X. Lapillonne¹, B. F. McMillan¹, T. Görler², J. Chowdhury³, F. Merz², T. Dannert², F. Jenko², L. Villard¹, and <u>S. Brunner¹</u>

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland ² Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany ³ Institute for Plasma Research, Bhat, Gandhinagar, India

Introduction

The Gyrokinetic Equation

- The gyrokinetic code GENE [1], has been extended from its original flux-tube version to a global geometry.
- Includes radial variation of temperature and density profiles, as well as of magnetic geometry.
- Non-periodic boundary conditions allow for profile relaxation.
- ► Heat sources & sinks enable quasi-stationary microturbulence simulations.
- ► Interface with the MHD equilibrium code CHEASE [2,3].
- Various benchmarks, including comparisons with other global codes are presented.

Global GENE Model

Field aligned coordinate system
$$\vec{X} = (x : radial, y : binormal, z : parallel) \implies \vec{B}_0 = C(x) \vec{\nabla} x \times \vec{\nabla} y$$

$$-\partial_{t} g_{1j} = \frac{1}{\mathcal{C}} \frac{B_{0}}{B_{0\parallel}^{\star}} \left[\frac{1}{L_{nj}} + \left(\frac{m_{j} v_{\parallel}^{2}}{2T_{0j}} + \frac{\mu B_{0}}{T_{0j}} - \frac{3}{2} \right) \frac{1}{L_{Tj}} \right] f_{0j} \partial_{y} \bar{\chi}_{1} + \frac{1}{\mathcal{C}} \frac{B_{0}}{B_{0\parallel}^{\star}} \left(\partial_{x} \bar{\chi}_{1} \Gamma_{y,j} - \partial_{y} \bar{\chi}_{1} \Gamma_{x,j} \right) \\ + \frac{B_{0}}{B_{0\parallel}^{\star}} \frac{\mu B_{0} + m_{j} v_{\parallel}^{2}}{m_{j} \Omega_{j}} \left(\mathcal{K}_{x} \Gamma_{x,j} + \mathcal{K}_{y} \Gamma_{y,j} \right) - \frac{1}{\mathcal{C}} \frac{B_{0}}{B_{0\parallel}^{\star}} \frac{\mu_{0} v_{\parallel}^{2}}{\Omega_{j} B_{0}} \frac{P_{0}}{L_{p}} \Gamma_{y,j} + \frac{\mathcal{C} v_{\parallel}}{B_{0} J} \Gamma_{z,j} - \frac{\mathcal{C} \mu}{m_{j} B_{0} J} \partial_{z} B_{0} \partial_{v_{\parallel}} f_{1j} ,$$

 $\blacktriangleright \text{ where } g_{1j} = f_{1j} + q_j v_{\parallel} \bar{A}_{1\parallel} f_{0j} / T_{0j}, \ \bar{\chi}_1 = \bar{\Phi}_1 - v_{\parallel} \bar{A}_{1\parallel}, \ \Gamma_{\alpha,j} = \partial_\alpha f_{1j} + q_j \partial_\alpha \bar{\Phi}_1 f_{0j} / T_{0j} \text{ for } \alpha = (x, y, z).$

► The overbar denotes gyroaveraged quantities.

- Gyrokinetic equation with radial (x) variations of equilibrium quantities.
- ▶ Particle distribution function $f_j(\vec{X}, v_{\parallel}, \mu) = f_{0j} + f_{1j}$, with f_{0j} a local Maxwellian.
- Gyrokinetic equation is solved for the perturbed distribution function f_{1i} .
- Perturbed electrostatic and vector potentials (Φ₁, A_{1||}) are self-consistently computed through the quasineutrality (Q.N.) equation and parallel component of Ampère's law.
- Gyrokinetic ordering $|k_{\parallel}| \ll |k_{\perp}| \Longrightarrow$ Neglect $\partial/\partial z$ compared to $\partial/\partial x$ and $\partial/\partial y$.

► Background density, temperature and pressure profiles: $n_{0j}(x)$, $T_{0j}(x)$, $p_0(x)$. Corresponding inverse logarithmic gradients: $L_A(x) = -(d \ln A/dx)^{-1}$ for $A = [n_j, T_j, p]$.

► $\mathcal{K}_{X}(x, z)$ and $\mathcal{K}_{Y}(x, z)$ are related to curvature and gradients of \vec{B}_{0} . $J(x, z) = [(\vec{\nabla}x \times \vec{\nabla}y) \cdot \vec{\nabla}z]^{-1}$ is the Jacobian.

•
$$\Omega_j(\mathbf{X}, z) = q_j B_0/m_j$$
, and $B_{0\parallel}^{\star}(\mathbf{X}, z, v_{\parallel}) = B_0 + (m_j/q_j)v_{\parallel}(\vec{\nabla} \times \vec{b}_0) \cdot \vec{b}_0$, with $\vec{b}_0 = \vec{B}_0/B_0$.

Benchmarking and Code Comparisons

Codes Used for Comparisons

- Comparison with linear and non-linear global PIC codes GYGLES [4] and ORB5 [5] based on δf scheme.
- Analytic, "ad-hoc" equilibrium with circular concentric magnetic surfaces is considered here.
- ► Global GENE :
- Solving in direct space except y-direction for which Fourier representation is used.
- Derivatives in real space computed with finite differences.
- Dirichlet radial boundary conditions.
- Direct space anti-aliasing scheme in radial direction.
- Direct space integral gyroaveraging operator in radial direction.

Linear ITG Spectra for CYCLONE Base Case [6] with

Linear ITG-TEM Spectra for CYCLONE Base Case with Kinetic Electrons

• CYCLONE parameters with kinetic electrons ($m_i/m_e = 400$).

Non-Linear ITG Simulations with Sources \implies Quasi-Stationary Microturbulence

Radially dependent heat source/sink over whole system, conserving surface-averaged density and parallel momentum:

$$\frac{df_{1}}{dt} = -\gamma_{h} \left[\langle f_{1}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle - \langle f_{0}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \frac{\langle \int d\vec{v} \langle f_{1}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \rangle}{\langle \int d\vec{v} \langle f_{0}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \rangle} \right]$$

Relaxation coefficient γ_h ~ 10⁻¹ γ_{ITG} ⇒ Background temperature profile is approximately maintained, while avoiding direct effect on microturbulence.
CYCLONE parameters with flat gradient profiles.
Numerical resolution for GENE: (120 × 48 × 16 × 48 × 16) in the (x, y, z, v_{||}, μ) directions.

Adiabatic Electrons

CYCLONE parameters with adiabatic electrons : a/R = 0.36, $\rho^* = \rho_s/a = 1/180$, $q = 0.85 + 2.4(x/a)^2$, $T_i/T_e = 1$, peaked *T* and *n* profiles with $R/L_{Ti}(x_0) = 6.96$, $R/L_n(x_0) = 2.2$, and $x_0 = 0.5a$.

Good agreement on growth rates and real frequencies.

► Remaining discrepancies at high k_y can be assigned to differences in the field solvers (2nd order expansion in k_⊥ρ_s in GYGLES, all orders kept in GENE).

Rosenbluth-Hinton Test

Parameters : a/R = 0.1, $\rho^* = 1/180$, $q = 1 + 0.75(x/a)^2$, $T_i/T_e = 1$, $R/L_T = R/L_n = 0$, $f_1(t = 0) = cos(\pi x/lx)$. Adiabatic electrons.

еФ₁/Те

- Transition from ITG to TEM at higher $k_y \rho_i$.
- Differences between global GENE and ORB5 results may be related to ORB5 treating only trapped electrons kinetically (adiabatic response for passing), while GENE treats electrons fully kinetically.
- ► Resolution for global GENE simulations: $(320 \times 64 \times 64 \times 32)$ in the $(x, z, v_{\parallel}, \mu)$ directions \implies High resolutions in (x, v_{\parallel}, μ) required for resolving non-adiabatic response of passing electrons at mode rational surfaces.
- Do the corresponding radial fine structures in the linear eigenmodes survive in the non-linear regime? In particular, do they affect the non-linear fluxes?

Time evolution of (a) heat diffusivity χ_i , and (b) temperature gradient R/L_{T_i} for CYCLONE parameters with heat sources/sinks.

Dependance of Ion Heat Diffusivity on System Size and Gradient Profile Width \Longrightarrow Effective ρ^{\star}

- Nonlinear electrostatic simulations of ITG turbulence with heat sources, assuming adiabatic electrons. CYCLONE Base Case equilibrium parameters.
- Study of global effects by carrying out both a scan in ρ^{*} = ρ_s/a at fixed relative temperature gradient profile width Δ_T/a, as well as in Δ_T/a at fixed ρ^{*}.

- Good agreement obtained for GAM frequency and damping rate, as well as for residual.
- Remaining discrepancies related to p* approximations in GENE, in particular in the gyroaveraging appearing in Q.N. equation.
- After correcting these p^{*} approximations on gyroaveraging:
 Very good agreement is reached on the Q.N. solution.
- However, zonal modes become unstable! (under investigation).
- Current simulation results are thus still obtained using the uncorrected gyroaveraging operator.

stephan.brunner@epfl.ch

Evolution of ion heat diffusivity χ_i for CYCLONE parameters with peaked gradient profiles. $(R/L_T, \chi_i)$ trace for CYCLONE parameters with flat gradient profiles [7].

10

-ORB5

-- GENE

--- LLNL fit

- Global GENE recovers well the non-linear relaxation traces in the (*R*/*L*_T, χ_i) plane published in [7].

References :
[1] F. Jenko, et al., Phys. Plasmas 7, 1904 (2000).
[2] H. Lütjens, et al., Comp. Phys. Comm. 97, 219 (1996).
[3] X. Lapillonne, et al., Phys. of Plasmas 16, 032308 (2009).
[4] M. Fivaz, et al., Comp. Phys. Comm. 111, 27 (1998).
[5] S. Jolliet, et al., Comput. Phys. Comm. 177, 409 (2007).
[6] A. M. Dimits, et al., Phys. Plasmas 7, 969, (2000).
[7] G. L. Falchetto, et al., Plasma Phys. and Control. Fusion 50, 124015 (2008).

Heat diffusivity χ_i in Gyro-Bohm units ($\chi_{GB} = \rho_s^2 c_s/a$) as a function of (a) $1/\rho^* = a/\rho_s$ at fixed Δ_T/a , and (b) as a function of $1/\rho_{eff}^* = \Delta_T/\rho_s$ varying both ρ^* at fixed Δ_T/a and Δ_T/a at fixed ρ^* .

• The main variation of χ_i from global effects is caught by its dependence with respect to the effective parameter $\rho_{\text{eff}}^{\star} = \rho_s / \Delta_T = \rho^{\star} (\Delta_T / a)^{-1}$, which represents the width of the strong gradient region in gyroradius units.

Global results converge towards local, flux-tube results for

 $1/\rho_{eff}^{\star}$ → ∞: Agreement within less than 10% for $1/\rho_{eff}^{\star} > 200$. ► The reduction of the heat diffusivity due to global effects thus does not appear to result from profile shearing but rather from

the constriction of non-linear turbulent structures within the unstable gradient region.

Global effects may not only be important in small machines (i.e. low 1/p*) but also in larger machines with short gradient lengths such as found in transport barriers.

Gyrokinetics in Laboratory and Astrophysical Plasmas, Isaac Newton Institute for Mathematical Sciences, Cambridge, July 19 - August 13