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Introduction

I The gyrokinetic code GENE [1], has been extended from its original flux-tube version to a global
geometry.

I Includes radial variation of temperature and density profiles, as well as of magnetic geometry.
I Non-periodic boundary conditions allow for profile relaxation.
I Heat sources & sinks enable quasi-stationary microturbulence simulations.
I Interface with the MHD equilibrium code CHEASE [2,3].
I Various benchmarks, including comparisons with other global codes are presented.

Global GENE Model

I Field aligned coordinate system ~X = (x : radial, y : binormal, z: parallel) =⇒ ~B0 = C(x) ~∇x × ~∇y .
I Gyrokinetic equation with radial (x) variations of equilibrium quantities.
I Particle distribution function fj(~X , v‖, µ) = f0j + f1j , with f0j a local Maxwellian.

I Gyrokinetic equation is solved for the perturbed distribution function f1j .
I Perturbed electrostatic and vector potentials (Φ1,A1‖) are self-consistently computed through

the quasineutrality (Q.N.) equation and parallel component of Ampère’s law.
I Gyrokinetic ordering |k‖| � |k⊥| =⇒ Neglect ∂/∂z compared to ∂/∂x and ∂/∂y .

The Gyrokinetic Equation
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I where g1j = f1j + qj v‖Ā1‖f0j/T0j , χ̄1 = Φ̄1 − v‖Ā1‖, Γα,j = ∂α f1j + qj ∂αΦ̄1 f0j/T0j for α = (x , y , z).

I The overbar denotes gyroaveraged quantities.

I Background density, temperature and pressure profiles: n0j(x), T0j(x), p0(x).
Corresponding inverse logarithmic gradients: LA(x) = −(d ln A/dx)−1 for A = [nj ,Tj ,p].

IKx(x , z) and Ky(x , z) are related to curvature and gradients of ~B0.
J(x , z) = [(~∇x × ~∇y) · ~∇z]−1 is the Jacobian.

I Ωj(x , z) = qj B0/mj , and B?0‖(x , z, v‖) = B0 + (mj/qj)v‖(~∇× ~b0) · ~b0, with ~b0 = ~B0/B0.

Benchmarking and Code Comparisons

Codes Used for Comparisons

I Comparison with linear and non-linear global PIC codes
GYGLES [4] and ORB5 [5] based on δf scheme.

I Analytic, "ad-hoc” equilibrium with circular concentric magnetic
surfaces is considered here.

I Global GENE :
I Solving in direct space except y -direction for which Fourier representation is

used.
I Derivatives in real space computed with finite differences.
I Dirichlet radial boundary conditions.
I Direct space anti-aliasing scheme in radial direction.
I Direct space integral gyroaveraging operator in radial direction.

Linear ITG Spectra for CYCLONE Base Case [6] with
Adiabatic Electrons

CYCLONE parameters with adiabatic electrons : a/R = 0.36,
ρ? = ρs/a = 1/180, q = 0.85 + 2.4(x/a)2, Ti/Te = 1, peaked T and n profiles
with R/LTi(x0) = 6.96, R/Ln(x0) = 2.2, and x0 = 0.5a.

Linear growth rates. Real frequencies.
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I Good agreement on growth rates and real frequencies.
I Remaining discrepancies at high ky can be assigned to

differences in the field solvers (2nd order expansion in k⊥ρs in
GYGLES, all orders kept in GENE).

Rosenbluth-Hinton Test

Parameters : a/R = 0.1, ρ? = 1/180, q = 1 + 0.75(x/a)2 , Ti/Te = 1,
R/LT = R/Ln = 0, f1(t = 0) = cos(πx/lx). Adiabatic electrons.
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Evolution of the flux-surface-
averaged, radial electric field.

Initial electrostatic potential, so-
lution to the Q.N. equation.

I Good agreement obtained for GAM frequency and damping
rate, as well as for residual.

I Remaining discrepancies related to ρ? approximations in
GENE, in particular in the gyroaveraging appearing in Q.N.
equation.

I After correcting these ρ? approximations on gyroaveraging:
I Very good agreement is reached on the Q.N. solution.
I However, zonal modes become unstable! ( under investigation ).

I Current simulation results are thus still obtained using the
uncorrected gyroaveraging operator.

Linear ITG-TEM Spectra for CYCLONE Base Case with
Kinetic Electrons

I CYCLONE parameters with kinetic electrons (mi/me = 400).

Linear growth rates. Real frequencies.
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Eigenmode for kyρs = 0.35 with fine structures at mode rational surfaces

I Transition from ITG to TEM at higher kyρi .
I Differences between global GENE and ORB5 results may be

related to ORB5 treating only trapped electrons kinetically
(adiabatic response for passing), while GENE treats electrons
fully kinetically.

I Resolution for global GENE simulations: (320× 64× 64× 32)
in the (x , z, v‖, µ) directions =⇒ High resolutions in (x , v‖, µ)

required for resolving non-adiabatic response of passing
electrons at mode rational surfaces.

I Do the corresponding radial fine structures in the linear
eigenmodes survive in the non-linear regime? In particular, do
they affect the non-linear fluxes?

Non-Linear ITG Simulations without Sources =⇒ Relaxation
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Evolution of ion heat diffusivity χi
for CYCLONE parameters with
peaked gradient profiles.

(R/LT , χi) trace for CYCLONE
parameters with flat gradient
profiles [7].

I Same initial conditions =⇒ Remarkable agreement: Time
traces of the first burst are essentially identical.

I Global GENE recovers well the non-linear relaxation traces in
the (R/LT , χi) plane published in [7].
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Non-Linear ITG Simulations with Sources
=⇒ Quasi-Stationary Microturbulence

I Radially dependent heat source/sink over whole system,
conserving surface-averaged density and parallel momentum:

df1
dt

= −γh

〈f1(~X , |v‖|, µ)〉 − 〈f0(~X , |v‖|, µ)〉
〈
∫

d~v〈f1(~X , |v‖|, µ)〉〉

〈
∫

d~v〈f0(~X , |v‖|, µ)〉〉

 .
I Relaxation coefficient γh ∼ 10−1 γITG

=⇒ Background temperature profile is approximately maintained,
while avoiding direct effect on microturbulence.

I CYCLONE parameters with flat gradient profiles.
I Numerical resolution for GENE:

(120× 48× 16× 48× 16) in the (x , y , z, v‖, µ) directions.
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Time evolution of (a) heat diffusivity χi , and (b) temperature gra-
dient R/LTi for CYCLONE parameters with heat sources/sinks.

Dependance of Ion Heat Diffusivity on System Size and
Gradient Profile Width =⇒ Effective ρ?

I Nonlinear electrostatic simulations of ITG turbulence with heat
sources, assuming adiabatic electrons. CYCLONE Base Case
equilibrium parameters.

I Study of global effects by carrying out both a scan in ρ? = ρs/a at
fixed relative temperature gradient profile width ∆T/a, as well as
in ∆T/a at fixed ρ?.
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(b)

GENE−Local

GENE−Global, ρ* scan

GENE−Global, δ T scan
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ORB5, δ T scan

Heat diffusivity χi in Gyro-Bohm units (χGB = ρ2
scs/a) as a function

of (a) 1/ρ? = a/ρs at fixed ∆T/a, and (b) as a function of 1/ρ?eff =
∆T/ρs varying both ρ? at fixed ∆T/a and ∆T/a at fixed ρ?.

I The main variation of χi from global effects is caught by its
dependence with respect to the effective parameter
ρ?eff = ρs/∆T = ρ?(∆T/a)−1, which represents the width of the
strong gradient region in gyroradius units.

I Global results converge towards local, flux-tube results for
1/ρ?eff→∞: Agreement within less than 10% for 1/ρ?eff

∼
> 200.

I The reduction of the heat diffusivity due to global effects thus
does not appear to result from profile shearing but rather from
the constriction of non-linear turbulent structures within the
unstable gradient region.

I Global effects may not only be important in small machines
(i.e. low 1/ρ?) but also in larger machines with short gradient
lengths such as found in transport barriers.
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