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Abstract—The particle-in-cell code ORB5 is a global gyroki-
netic turbulence simulation code in tokamak geometry. It has
been developed at CRPP, Lausanne, Switzerland, with major
contributions from IPP, Garching, Germany, and IPP, Greifswald,
Germany, under a long-standing collaboration. The code ORB5
solves the gyrokinetic equations in the whole plasma core, includ-
ing the magnetic axis. A field-aligned filtering procedure and so-
phisticated noise-control and heating operators allow for accurate
simulations. Recently, the code ORB5 has been extended to include
self-consistent perpendicular magnetic field perturbations. The
inclusion of magnetic perturbations allows for a comprehensive
study of finite β effects on microinstability. In this paper, we
present the first linear and nonlinear code results concerning
electromagnetic effects on tokamak microinstabilities.

Index Terms—Particle-in-cell methods, plasma confinement,
plasma stability, tokamaks.

I. INTRODUCTION

PARTICLE-IN-CELL (PIC) methods have been widely
used for solving the gyrokinetic equations and simulat-

ing turbulence in tokamaks and stellarators (see, for example,
[1]–[3]). Most of the existing gyrokinetic PIC codes are based
on the δf method [3], [4]. In the δf method, the distribution
function f of each plasma species is split into a time-
independent background distribution function f0 and a time-
dependent perturbation δf , f = f0 + δf . In the δf method,
only the perturbed part (δf) is discretized using numerical
particles, also called markers. As long as the perturbation δf
remains small as compared to f0, the δf method reduces the
statistical noise. The δf method can be interpreted as a “con-
trol variate” algorithm [5], [6], a variance reduction technique
widely used in Monte Carlo methods. Many linear and non-
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linear global gyrokinetic δf PIC codes exist and are routinely
used for simulating electrostatic perturbations. However, the
electrostatic approximation is expected to break down in the
core of high βe (βe ≡ μ0neTe/B2) plasmas or in any region
where pressure gradients are large. For a finite value of βe, the
magnetic fluctuations modify the evolution of the electrosta-
tic instabilities and eventually introduce new electromagnetic
(EM) modes [7]. Therefore, a complete EM treatment of the
plasma instabilities is desirable and must be included in the
models and codes. EM simulations using a conventional δf
method are much more demanding with respect to numeri-
cal resources than electrostatic simulations. In particular, the
parallel electron dynamics imposes a strong constraint on the
size of the time step. In addition to this, the EM simulations
require a much larger number of numerical particles in order to
describe correctly the evolution of the nonadiabatic part of the
electron distribution function. Indeed, the physically relevant
nonadiabatic part of the electron distribution function is over-
whelmed by the adiabatic response to the magnetic potential A‖
leading to a severe accuracy problem, known in the literature
as the “cancellation problem” (see [6] and references therein).
An accurate enough description of this small signal requires a
very low statistical noise or, in other words, a huge number of
numerical particles. Two main methods have been proposed to
overcome this difficulty: the so called “split-weight” scheme,
originally proposed in [8], and the use of an appropriate ad-
justable control variate method in a conventional δf scheme
[6]. In particular, the control variate method reduces, by almost
two orders of magnitudes, the number of numerical particles re-
quired for solving the cancellation problem [6]. The adjustable
control variate method has been successfully applied in linear
EM tokamak simulations [9]. In this paper, we show that the
same method can also be applied to nonlinear simulations.

The code used in this paper is the global δf PIC code ORB5
[10]. The ORB5 solves the set of gyrokinetic equations in the
whole plasma core down to the magnetic axis. The use of MHD
equilibria leads to a consistent inclusion of geometrical param-
eters, such as the Shafranov shift, and allows for simulating
most of the existing tokamak experiments and future reactor-
size machines. A field-aligned filtering procedure and sophis-
ticated noise-control and heating operators allow for accurate
simulations with smaller numbers of markers than the standard
δf PIC simulations [11]. The code ORB5 has been proven to
scale up to 32 thousand cores on a BlueGene/P architecture. The
strong scaling for the standard Cyclone base case, described
in [12], is shown in Fig. 1. Note that this particular case
has been selected as a reference benchmark case for global
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Fig. 1. Electrostatic ORB5: Strong scaling. Relative speedup from 4096 up
to 32 768 cores for the Cyclone base case [12]; grid size of (128, 512, 256);
3 × 109 markers. Simulations performed on BlueGene/P, in collaboration with
RZG Garching.

simulations by the EFDA Integrated Tokamak Modelling task
force on instabilities and transport (IMP4) [13]. The Cyclone
base case is based on the parameters of an existing experiment,
the DIII-D tokamak in San Diego, USA. The grid size used in
these simulations is (128, 512, 256) (for radial, poloidal, and
toroidal directions, respectively), and the distribution function
has been discretized by using 3 × 109 markers. The code shows
a parallel efficiency of more than 75% at 32 thousand cores.
The recent ORB5 simulations made on the IBM POWER6 and
IBM BlueGene/P supercomputers showed that the inclusion of
Ampère’s law does not degrade the scaling properties of the
ORB5 since the field solver time remains a small fraction of the
total computational time.

The organization of this paper is as follows. In Section II, the
gyrokinetic model used in the ORB5 is presented. Section III
is dedicated to the discussion of the numerical implementation
of the model focusing particularly on the problems related
with the discretization of the field equations, particularly the
cancellation problem. The simulation results are presented in
Section IV.

II. MODEL

The code ORB5 is based on the gyrokinetic Vlasov-Maxwell
system of equations of Hahm et al. [14], [15] and Brizard
[16]. The latter consists of a set of self-consistent and energy-
conserving nonlinear gyrokinetic equations for the particles and
fields. Those equations are particularly suitable for the PIC
simulations. They have the desirable feature that the polariza-
tion drift appears in the gyrokinetic Poisson equation and not
in the gyro-averaged Vlasov equation. The full derivation of
the equations using the Hamiltonian formalism and the Lie
transforms can be found in [14] and [16]. In this paper, we
report the final version of the gyrokinetic equations as they are
implemented in the ORB5. The time evolution of the particle
distribution function Fs, for a plasma species s, is determined
by the gyro-averaged Vlasov equation

dFs

dt
=

∂Fs

∂t
+

∂FS

∂R
· Ṙ +

∂Fs

∂p‖
ṗ‖ = 0. (1)

The characteristics are given by
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B∗
‖ ≡B·h+

msp‖
qs

(∇×h)·h, h≡ B
B

(4)

where R, p‖, and μ are the gyrocenter position, the parallel
momentum per unit mass, and the magnetic moment per unit
mass, μ ≡ v2

⊥/2B, respectively. B∗
‖ is the phase-space Jacobian

of the gyrocenter phase-space while 〈〉s indicates the gyro-
averaged quantities. As compared to the original gyrokinetic
equations, the second-order terms in the component of the mag-
netic potential parallel to the magnetic field, A‖, are neglected
in both the generalized momentum and the gyro-averaged ef-
fective potential 〈Ψ〉s

〈Ψ〉s ≡ 〈φ〉s − p‖〈A‖〉s. (5)

The self-consistent gyrokinetic field equations are given by
the parallel component of the gyrokinetic Ampère’s law

βi

ρ2
i

A‖ +
βe

ρ2
e

A‖ − ∇⊥ ·
[
(1 − βi)∇⊥A‖

]
= μ0

(
〈j‖,i〉 + j‖,e

)
(6)

and the gyrokinetic Poisson equation (quasi-neutrality) for the
electrostatic potential φ

−∇⊥ ·
(

Zin0

BΩi
∇⊥φ

)
= 〈ni〉 − ne (7)

where ρs is the thermal gyroradius and βs ≡ μ0nsTs/B2
0 of the

species s. The two previous equations have been written under
the assumption of an equilibrium Maxwellian distribution func-
tion f0s of density n0s and considering the electrons and main
ions only (n0s ≡ n0i = n0e). Moreover, the field equations (6)
and (7) have been obtained by applying the so-called long-
wavelength approximation (O(k⊥ρi)2) and the drift-kinetic
approximation for the electrons to the original equations
of [16].

The particle and current densities, 〈ns〉 and 〈j‖s〉, are

〈ns〉(x) ≡
∫

Fs(R, p‖, μ)δ(R + ρs − x)d6Z

〈j‖s〉(x) ≡
∫

p‖Fs(R, p‖, μ)δ(R + ρs − x)d6Z. (8)
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The code ORB5 solves the particle and field equations in
magnetic coordinates, (s, θ∗, ϕ)

s ≡
√

ψ

ψedge
(9)

where ψ is the poloidal magnetic flux and

θ∗ ≡
1

q(ψ)

θ∫
0

B · ∇ϕ

B · ∇θ′
dθ′ (10)

θ, and ϕ are the poloidal and toroidal angles, respectively.
The Jacobian J−1

∗ = ∇θ∗ · (∇ψ ×∇ϕ) is given by

J∗ = J
∂θ

∂θ∗
=

R2q(ψ)
F (ψ)

(11)

where J−1 = ∇θ · (∇ψ ×∇ϕ). The poloidal and magnetic
angle coordinates are related by

∂θ∗
∂θ

=
1

q(ψ)
B · ∇ϕ

B · ∇θ′
=

F (ψ)J
q(ψ)R2

(12)

where q is the safety factor.
The magnetic field is defined as

B = F (ψ)∇ϕ + ∇ψ ×∇ϕ (13)

where F (ψ) is the poloidal current flux function.
A detailed description of the implementation of the ORB5

equations in the magnetic coordinates in the electrostatic limit
is given in [10].

In the EM case, the equations of motion solved by the ORB5
in the magnetic coordinates are
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where J∗ψ ≡ (∇θ∗ × ∇ψ) · ∇ϕ)−1 and J∗s ≡ (∇θ∗ × ∇s) ·
∇ϕ)−1. The definition of p′ appearing in the previous equations
depends on the type of equilibrium chosen. Two kinds of
magnetic equilibria are implemented in the ORB5: the circular
concentric flux surfaces, referred to as the ad hoc equilibrium
in [10], and the true MHD equilibrium solution of the Grad-
Shafranov equation. For the latter case, the ORB5 is coupled
to the fixed-boundary equilibrium code CHEASE [17]. For the
MHD equilibria, p′ is the first derivative of the pressure profile
in ψ while for the ad hoc equilibria

p′(ψ) = − g(ψ)
R2

g(ψ) ≡∇2ψ − 2
R

∂ψ

∂R
.

III. NUMERICAL IMPLEMENTATION

A detailed description of the numerical implementation of
the model equations in the electrostatic approximation is given
in [10]. In this paper, we just remind that the Vlasov equation
for the perturbed distribution function δfs is solved using the
PIC method: δfs is discretized with a finite number N of
numerical particles or markers. Each marker p is defined by a
weight wp and a position (Rp, p‖p, μp) in the 5-D phase space
of the gyrocenters

δfs =
Nph

N

N∑
p=1

1
2πB∗

‖
wp(t)δ (R − Rp(t))

×δ
(
p‖ − p‖,p(t)

)
δ (μ − μp(t0)) (18)

where Nph is the total number of physical particles.
Inserting the previous equation into the gyrokinetic Vlasov

equation (1) and integrating on a volume Ωp on which δfs is
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assumed to be a constant, we obtain an evolution equation for
each single weight wp. The resulting equation and the particle
trajectory equations (14:17) are integrated in time for each
numerical particle using a Runge–Kutta integrator of order four.

The field equations are discretized using B-spline finite
elements

φ(x, t) =
∑

μ

φμ(t)Λμ(x)

A‖(x, t) =
∑

μ

A‖,μ(t)Λμ(x)

where μ stands for (i, j, k) on the three spatial components and
Λμ denote the tensor products of the 1-D B-splines (see, for
example, [18]). Note that all the simulations presented in this
paper have been computed using cubic B-splines.

Ampère’s law is discretized and solved using the same algo-
rithm described in [10] for the Poisson equation.

In addition to the introduction of Ampère’s law and the
inclusion of A‖ in the particle equations, the main modifications
to the algorithms of the ORB5 code are related to the so-
called cancellation problem (see, for example, [6]). In the p‖
formulation, the adiabatic component of the current 〈j‖s〉ad ≡
〈j‖s〉 − 〈j‖s〉nonad cancels exactly the skin term βs/ρ2

sA‖ on
the left-hand side of (6). Accordingly, only the nonadiabatic
current represents a physically relevant quantity. This imposes a
severe constraint on the required accuracy for the discretization
of Ampère’s law equation. Indeed, the numerically discretized
current (using numerical particles) has to represent both the
adiabatic and nonadiabatic parts. The nonadiabatic part is, in
general, a small fraction of the total current and can easily
be swamped by discretization errors associated with the finite
number of markers used in the simulations.

The cancellation problem of the unphysical adiabatic cur-
rents is solved using an adjustable control variate method pro-
posed in [6]. The control variate used to reduce the numerical
error corresponds, in this case, to the part of the distribu-
tion function of the electrons responding adiabatically to the
magnetic potential A‖. This scheme is described in detail in
[6, Sec. 8.2]. Note that the same scheme has been successfully
applied in the linear PIC simulations in tokamak geometry [19].

In addition to this, the field equations have been modified in
the following way

CA

(
βi

ρ2
i

+
βe

ρ2
e

)
A‖ − ∇⊥ ·

[
(1 − βi)∇⊥A‖

]

= μ0

(
〈j‖,i〉 + j‖,e

)
− Cq∇⊥ ·

(
en0

kBΩi
∇⊥φ

)

= 〈ni〉 − ne

where CA and Cq take into account the finite extent of the
velocity space domain in the simulation. The value of CA is
close to unity and varies with the radius. The inclusion of this
factor is crucial for the correct solution of the cancellation
problem [9].

Fig. 2. Linear growth rate as a function of βe in tokamak geometry; circular
cross section ρ∗ � 1/55.

Fig. 3. Real frequency as a function of βe in tokamak geometry, ρ∗ = 1/55.
Positive sign corresponds to the ion diamagnetic direction.

IV. SIMULATION RESULTS

The EM version of the ORB5 has been tested and bench-
marked against the linear EM code GYGLES (see [19] and
references therein) in a simpler cylindrical geometry. In this
paper, we report the first linear and nonlinear results in the
tokamak geometry. Figs. 2 and 3 show the growth rate and
the real part of the frequency of the most unstable mode for
different values of βe for a tokamak equilibrium. For these
simulations, we have used a circular ad hoc equilibrium with
major radius R0 = 2.0 m, minor radius a = 0.5 m, and ρ∗ ≡
ρs/a 
 1/55 at midradius. The value of the density on the
axis has been varied in the simulations in order to perform a
scan in βe. The background profiles have been chosen to give
R/LTe ≡ R/LTi 
 10 at r/a = 0.6.

With this choice of parameters and profiles, the most unstable
mode for the electrostatic case (βe = 0) should be an ion-
temperature-gradient-driven (ITG) mode, driven by the inter-
play between the magnetic drifts of the plasma particles and
the background temperature gradient. The code recovers this
result. For the case of βe = 1%, the dominant mode is still an
ITG mode partially stabilized by finite βe effects. For βe > 2%,
the most unstable mode is an EM kinetic ballooning mode (see
Figs. 2 and 3). Note that only the mode with toroidal mode
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Fig. 4. Linear ORB5 simulations: Typical example of a poloidal cross section
of the parallel magnetic potential, A‖ (βe = 2%).

Fig. 5. Linear ORB5 simulations: Typical example of a poloidal cross section
of the electrostatic potential, ϕ (βe = 2%).

number n = 12 has been kept in the simulation. A similar set of
parameters and profiles has been used in the βe scan presented
in [16, Fig. 11] with the linear code GYGLES. In this case,
the ORB5 and GYGLES results are in good qualitative and
quantitative agreement. Figs. 4 and 5 show the spatial structure
of the electrostatic and magnetic potentials in the tokamak
cross section for a typical case. Both fields show the ballooning
structures and the presence of rational surfaces as already seen
in the other global linear simulations (see, for example, [20]).
The nonlinear simulations of Fig. 6 are based on the parameters
and profiles of the Cyclone base case, described in [12], and are
already used for the strong scaling of Fig. 1. The mass ratio is
mi/me = 1000, and the value of the central density has been
adjusted to have βe = 0.3%. Note that, in these simulations (as
well as in [12]), no heat sources are applied, and the initial tem-
perature gradient (R/LT 
 10) relaxes during the time evolu-
tion toward the critical gradient value. The EM simulation was
performed using 512 million numerical particles per species
and with a time step 20 times smaller than the electrostatic
case (Δt = 1 Ωi, where Ωi is the ion cyclotron frequency).
The radial resolution (512 grid points) is four times higher
than that in the electrostatic simulations (128 grid points). The
initial nonlinear EM ORB5 simulations demonstrated that such
high radial resolutions are required to describe the nonadiabatic
electron dynamics in the vicinity of resonant surfaces. When
the radial resolution is too poor, spurious modes appear in the
EM simulations [22], which are not present in the electrostatic
simulations with adiabatic electrons. The dissipation necessary
to assure entropy saturation is provided by a residual zonal
flow conserving the noise-control algorithm [11], [21]. Fig. 6
compares the time evolution of the ion thermal diffusivity of a
β = 0.3% EM simulation (red) with that of one of the original
electrostatic simulation of [12]. The ion thermal diffusivity is

Fig. 6. Time evolution of the ion thermal diffusivity for (red) an EM βe =
0.3% simulation and the standard electrostatic Cyclone case.

Fig. 7. Time evolution of the ion thermal diffusivity for (red) an EM βe =
0.3% simulation and electrostatic simulation (black and dashed) with and
(blue) without trapped electrons.

clearly larger in the βe = 0.3% simulation as compared to that
in the reference benchmark case. It is important to notice that, in
the reference benchmark simulations, the electrons are assumed
to be adiabatic. The trapped electron dynamics, present in the
EM simulation but absent in the benchmark case, contributes to
further destabilize the ITG instability (see, for example, [23]).
We have performed an additional electrostatic simulation con-
sidering the gyrokinetic ions, adiabatic passing electrons, and
drift-kinetic trapped electrons, following the numerical scheme
described in [24] and [25]. Fig. 7 shows that the ion thermal
diffusivity for the electrostatic simulation, including the trapped
electrons, is comparable with that of the EM case. A detailed
analysis of the heat fluxes shows that, in the β = 0.3% case,
the magnetic flutter terms are almost two orders of magnitude
smaller than the electrostatic contribution and do not affect the
ions, which is in agreement with the existing flux-tube results
[26]–[28]. During the simulation, the signal/noise diagnostics
[29] gives a noise/signal ratio ranging between 5% and 10%.

Fig. 8 shows the spectrum of the electrostatic and EM
potentials at the end of the simulation. Both A2

‖ and φ2 spectra
reach a maximum for the same value of toroidal mode number
and show an identical power-law decay behavior for a high n.
The same result is present in gyrofluid simulations. An example
is given in Fig. 9, obtained with the GEMR [30] code, where
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Fig. 8. Spectrum of the potential fields at t � 800 [a/cs] as a function of the
toroidal mode number n.

Fig. 9. Spectrum of the potential fields (p in the figure) φ2 and (A in the
figure) βeA2

‖ for βe = 0.4% obtained with the gyrofluid code GEMR [30].

Normalization: φ[Te/e]A‖[Bρsβe].

the A2
‖ and φ2 spectra are plotted as a function of kyρs ∝ n.

The main difference between the gyrofluid and gyrokinetic
spectra appears at low n values, where the GEMR values are
significantly higher than the ORB5 ones. Note that the GEMR
code does not include the trapped electron dynamics.

V. CONCLUSION

In this paper, we have presented the first global nonlinear EM
simulations of the finite βe effects in the tokamak geometry.
The parallel component of Ampère’s law has been success-
fully added in the code ORB5, and we have proven that the
adjustable control variate method of [6] can be used to solve
the cancellation problem in the nonlinear simulations. Many
improvements in the algorithm are still possible; in particular,
an iterative procedure can be added to the adjustable control
variate method (see [6] and [19]). This iterative algorithm has
been implemented in the ORB5, and it is now under testing.
It is important to underline that, even using all the control
techniques available, the achievement of converged global non-
linear EM simulations requires a larger amount of numerical
resources than the standard electrostatic simulations with adi-

abatic electrons. This is mainly due to the constraints imposed
by the interplay of the Alfvén dynamics and kinetic electrons
which requires smaller time steps, finer spatial discretization,
and, consequently, a higher number of markers.
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