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Abstract
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schemes - mainly dichotomous - this study implements the continuous treat-
ment matching approach to investigate the optimality of the modulation of
public funding. With this method, the marginal treatment effects can be
identified and sub-optimal amounts of public funding determined. Although
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seems to prevail also when unobserved heterogeneity is accounted for.
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1 Introduction

The positive relationship between R&D investment and economic growth is well

rooted in economic theory and, on this nexus, policies fostering private R&D in-

vestments are regarded as growth-conducive and therefore as desirable from a social

point of view.

But it is also on a mere efficient ground that these policies are viewed as nec-

essary in a market economy. The incomplete appropriation of the returns to R&D

that arises - a form of negative externality - inevitably leads to a deficient level

of R&D investment - a market failure. The role of public policy is then to propel

private R&D investment to a social optimal level.

This role could not be more apparent than in the recent economic crisis. As

noted by the OECD (2009), many governments have adopted a number of measures

aiming at supporting firms’ innovation. These measures reflect the conviction of

policy makers that an adequate level of innovation is not only crucial to business

success, but it is also a decisive factor to recover from the downturn.

Yet - even if governments allocate public resources in favor of those projects

that would not have been realized in absence of public support (crowding-in), it

is plausible that eligible firms simply substitute R&D investments they originally

planned to undertake with the public financial resources made available (crowding-

out), undermining the argument for “additional” effects of public aid.1 In our sam-

ple, for instance, firms which receive the largest subsidies are also those exhibiting

a significant dependence on public financing, with the public grant amounting to

almost half of the private R&D expenditure. And, interestingly, firms showing the

highest R&D intensity have the least dependency on public support.2

To strike a balance between “crowding-in” effects and “crowding-out” effects

that typically plague such public policies, policy makers are assigned the task of

1 For the use of this terminology - “crowding-in” - see Diamond (1999), p. 424 .
2 R&D intensity is defined as the ratio of R&D expenditure to sales.
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the modulation of public intervention. Therefore, an overall assessment of public

grant support to R&D activities should evaluate not only the advisability of public

support, but also its modulation, an equally important aspect, yet under-studied

in this literature.3 The aim of our analysis is precisely to make a step toward this

ultimate goal, proposing to investigate the modulation of public support by means

of the continuous treatment evaluation scheme.

The employment of such an econometric technique, together with the categor-

ical treatment evaluation scheme, allows us to introduce new perspectives on the

evaluation of public R&D subsidies, not least the part of the distribution of the

public subsidy to R&D where “crowding-in” or “crowding-out” effects are likely to

emerge as well as the marginal effect of benefiting from larger sums for the recipient

firms. To investigate the implications of the modulation of public support along

different dimensions, we divide recipient firms into a number of groups defined in

terms of the percentile of the public support received.

First, we simply consider how different amounts of R&D grants impact on the

advisability of public support. In fact, it is reasonable that a significant positive

overall ATT is just an algebraic sum of positive and negative (often even negligi-

ble) effects of different modulations of treatment. By comparing R&D outcomes

between similar funded and not funded firms within each group, we can establish

which groups of funded firms are mainly contributing to the aggregate growth of

R&D investment in the economy.

Second, we study the adequacy of the allocation of subsidies to firms’ R&D ac-

tivities. Employing a categorical treatment evaluation scheme we compare publicly

financed firms with similar characteristics across different groups. The policy rele-

vance of these comparisons is hard to question, as it is needed to determine whether

firms benefiting from the largest amounts of public funding are also investing (in

research) similarly to less supported firms. In this case, public authorities can im-

prove their policy target through funds re-allocation among recipients. We do not

3 See Blundell and Costa Dias (2000) and Aerts and Schmidt (2008).
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confine this type of our analysis to the short run, but, for the first time, we attempt

to extend it to the medium-run horizon to accommodate sensible lag effects of such

public policies.

Finally, we turn to the question of determining the proper modulation of R&D

public financing. By means of the continuous treatment matching evaluation

scheme, we can evaluate for every treated firm the causal effect of further in-

creasing the public grant on a firm’s R&D outcome, as this method can identify

the marginal effects of subsidies and their optimal amounts. The amount at which

the public support ceases to be beneficial can therefore be determined. The prac-

tical relevance of such an analysis is the possibility to scrutinize whether returns

to public R&D support are aligned to the governmental target.

Our findings corroborate the view that both “crowding-in” and “crowding-

out” effects can coexist depending on the modulation of the public support. In

particular, “crowding-out” effects prevail - as to be expected - for grants higher

than DKK 9 million (corresponding to 23% of the financed firms).

The recent work by Görg and Strobl (2007) is - in our opinion - closest related

to ours, implementing first the categorical matching, but neglecting - what is our

salient contribution - the continuous treatment approach in evaluating such policies

and the medium-run effects of these policies.

The reminder of the paper is organized as follows. The next section discusses

the state of the art in the evaluation of public R&D grants. Section 3 introduces

briefly the methodology employed in this paper, section 4 describes the data, and

section 5 presents and discusses our findings. Section 6 concludes.

2 Empirical Review

The empirical literature concerned with the evaluation of R&D policies has typ-

ically relied on the notion of additionality as an indicator of policy effectiveness.
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The concept of “additionality” was introduced by Buisseret et al. (1995) and

indicates the difference made by the state interference in the market play. The

argument can be summarized as follows: economic theory and empirical findings

robustly support the positive relationship linking R&D investment and economic

growth. Then, assuming that public aid for technological developments induces

private firms to undertake “additional” R&D investments (i.e. firms that would

have not undertaken those R&D investments without public support), it is possible

to infer that the policy intervention leads to economic growth and social welfare.

To address the inquiry of “additionality”, evaluations of public financing pro-

grams typically present casual analyses based on counterfactuals, what would have

occurred in absence of intervention. At the heart of this analysis is the recognition

that neither firms which have received support nor firms which have not applied

for funds can be considered random events. On the contrary, firms’ behavior is the

explicit consequence of the policy design, as firms are often aware of those criteria

on the basis of which governmental authorities will decide funds allocation (i.e.

self-selection).

In this respect, our study is no exception and follows this strand of literature,

assessing the Danish R&D grant support system performing an “after the fact”

analysis.

It is undeniable that a plethora of studies implementing different approaches

and overcoming database limitations in different ways has generated a vast mixed

evidence, ranging from being in favor of “crowding-in” effects (Görg and Strobl,

2007; Aerts and Schmidt, 2008; Hussinger, 2008) to being unable to reject “crowding-

out” effects (Lach, 2002; Heijs and Herrera, 2004).4 Our study contributes to this

literature proposing to assess the “additionality” question with yet another method

within counterfactual analyis, namely the continuous treatment scheme. We ar-

4 See also David et al. (2000), Garcia-Quevedo (2004), Aerts and Czarnitzki (2004, 2006), Almus
and Czarnitzki (2003), Czarnitzki and Fier (2001), Duguet (2004), Gonzalez et. al (2005), Gon-
zalez and Pazo (2008), Lööf and Heshmati (2005), Busom (2000), Suetens (2002), and Wallsten
(2000).
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gue that this method, when implemented together with the categorical treatment

scheme introduced by Görg and Strobl (2007), permits a sound assessment of a

country R&D policy.

Finally, using Danish data, we are able to complement and extend existing

analyses (Sørensen et. al., 2003; Kaiser, 2004; Bloch and Graversen, 2008) with a

reacher data set.

3 Methodology

In this section, we briefly present the estimation methods implemented in our

empirical assessment of public R&D funding policies.

Recent advances in the program evaluation analysis have regarded the overcom-

ing of the notion of dichotomous treatment. Specifically, categorical and continuous

treatment schemes have been proposed as promising alternatives to the traditional

binary approach.5 Because of their inclination to reduce biases arising from non-

random assignments, these methods have been widely applied in empirical research

about causal inference in observational studies. To provide some insights into the

methodology as well as to discuss the strengths and the weaknesses of each method,

we discuss them separately.

3.1 Continuous Treatment Matching

Although relevant enhancements have been carried out in the policy evaluation

methods, to our knowledge the present work is the first study applying the contin-

uous treatment matching in the literature on public R&D funding. Its implementa-

tion allows us to compare enterprises exposed to a specific level of public financing

with “matched” less and more exposed ones, and then to identify marginal effects

on firms’ private R&D investment.

5 Lechner (2001, 2004), Hirano and Imbens (2004).
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The continuous treatment approach appears extremely useful when the number

of treatment values is relatively large. In fact, by smoothing across treatment levels

it is possible to improve the precision of the inferences (Imbens and Wooldridge,

2009). The key assumption behind this estimation strategy is the so-called weak

unconfoundedness, introduced by Imbens (2000). Differently from the conditional

independence assumption (CIA) made by Rosenbaum and Rubin (1983) in the

binary case, here only the pairwise independence of the treatment with each (not

joint) of the potential outcomes is required. Thus, the problems of bias removal and

drawing causal inferences can be solved by adjusting for pre-treatment differences.

In this setting, the computation of the conditional probability of receiving a specific

level of treatment (not just receiving it) given the pre-treatment observables is

called general propensity score (GPS). Since the weak unconfoundedness given all

pre-treatment variables implies weak unconfoundedness given the GPS, the average

treatment effects can be obtained by conditioning just on the GPS (Hirano and

Imbens, 2004).

More formally, we define (a) a vector of pre-treatment characteristics Xi,t−1 for

each firm i, (b) a set of continuously distributed treatment values Di,t and (c) the

dose-response function Fi,t(d)d�D. Moreover, we assume Xi,t−1, Di,t and Fi,t(d)d�D

having common probability space. For the sake of simplicity, the subscripts will no

longer be reported. Thus, the propensity to obtain the R&D subsidy is defined as

the conditional density of the treatment given the covariates r(d, x) = fD|X(d|x),

and the GPS is R = r(D, X) , with the function r defined up to almost everywhere

equivalence.

Furthermore, the GPS is required to respect the following balancing property

condition

X ⊥ 1(D = d)|r(d, x) ,

where 1(·) is the indicator function.

As explained in details by Bia and Mattei (2008), the implementation of the
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GPS matching method mainly consists of three steps. In the first one, the score R

is estimated and the treatment D (or a monotone transformation of it), given the

covariates, is required to respect a normal distribution:

g(D)|X ≈ N
�
(γ, X), σ2

�
.

Here, g(D) is a suitable transformation of the treatment variable and (γ, X) is

a function of covariates with linear and higher-order terms, which depends on a

vector of parameters γ. In the second step, the conditional expectation of the

outcome variable Y , given D and R, is modelled as follows:

E(Y |D, R) = a0 + a1D + a2D
2 + a3D

3 + a4R + a5R
2 + a6R

3 + a7DR ,

where the power of the arguments can be even higher than 3 and parameters are

estimated by OLS. This procedure is useful to exclude that the explicative variables

induce any bias while no direct meaning is attributed to their relative coefficients.

Finally, the third step consists of averaging the estimated dose-response function

E(Ŷ ) over the estimated score function R̂ evaluated at the desired level of treat-

ment.

Although the longitudinal dimension of our unbalanced panel is quite short,

it partially allows us to combine the GPS matching with DiD approach in order

to make the unconfoundedness assumption less restrictive (Heckman et al., 1998).

The basic idea is that, even if the unconfoundedness does not hold, it may be

reasonable to assume that the evaluation bias is constant over time (or at least it

is the same for a date before and after the treatment occurs). Thus, we evaluate

the effect of the treatment on the change in the outcome variables rather than on

its level, so correcting for time-invariant firm characteristics.

A general drawback of our matching analysis has roots in the almost impossible

exact identification of the decision rule adopted by public authorities. Therefore,
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the typical omitted variable issue arises since we may miss variables (in our data set)

that the public actor uses for the attribution of the subsidies. However, the richness

of our data set allows us to include several key factors used in the evaluation process

of grants, definitively a longer list than typically included in earlier studies.

3.2 Categorical Treatment Matching

It is tautological that the final private R&D spending will depend on the amount

of the public subsidy received by a firm. But coupling the information on the

R&D grant receipt by a firm with the information on the amount received opens

the prospective of an analysis based on the categorical treatment matching. Mim-

icking the dichotomous propensity score matching, the categorical one evaluates

the expected class of treatment a firm may receive given the pre-treatment vari-

ables. Consistent with the rationale of the continuous treatment matching, the

estimation of the public intervention impact is based on the comparison of firms

with similar scores, but belonging to two different classes or categories. These are

defined in the present paper by looking at the terciles of the public funding dis-

tribution. It surely represents an objective rule and therefore it is not subject to

fully arbitrary and potentially misleading categorization criteria. This estimation

method is well suited for comparisons not only between two consecutive categories

of treated groups, but also between treated and untreated (which is not allowed

in the continuous treatment case) groups. It helps a lot in understanding whether

a given effect obtained from the single-treatment framework is simply driven by

a single category of treated or it is concretely confirmed for all categories (the

homogeneity of treatment in the last case may be more acceptable).

Thus, we have the outcomes
�
Y 0, Y 1, .., Y M

�
of M + 1 different mutually ex-

clusive treatment categories (the 0-category is exclusively composed of untreated).

Obviously, we can observe only a realization of the potential outcome vector, the

remaining M are counterfactuals. In order to estimate the different treatment ef-
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fects, the unconfoundedness and common support assumptions have to be satisfied.

Given the covariates, whereas the unconfoundedness requires the treatment indi-

cator to be independent of the realized outcomes, the common support ensures to

find a counterpart in the comparison group, which is addressed by the computation

of the propensity score. In this regard, a practical suggestion is that the existence

of differently treated units can be ignored in a given pairwise category comparison

since they are not needed for identification.

For the implementation of the categorical matching, it is needed to run as

many probit estimations as the number of effects we are interested in. So, once

identified the probability of receiving a given subsidy size compared with the next

larger one, conditional on the set of pre-treatment covariates, it is possible to

compute the associated treatment effect. Counterfactuals are selected by using the

caliper method (set at 0.01). That represents a scalar defining the boundary of

the neighborhood in which matching is allowed. In this way, we seek to ensure

the quality of matching, since “bad” matches are prevented to be included in

comparison groups.

Analogously to the continuous treatment matching, to control for time-invariant

firm-specific characteristics, it is appropriate to combine the multi-valued discrete

matching with the DiD technique. Hence, the outcome variable which is the log

private R&D expenditure will also be taken in first differences. Consequently, each

treatment effect is nothing else than the difference in differences of the outcome

variable: the pure treatment effect when time-varying factors (observed and unob-

served) are balanced over categories.6

6 Of course, we cannot completely rule out that there exist (firm-specific) time-varying unobserv-
ables affecting the receipt of public funding and private expenditure in research.
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4 Data and Variables

Data for our empirical analysis are collected from four different data sources, three

of them provided by Statistics Denmark. The first database is the Danish R&D

Statistics, a survey conducted biennially from 1997 to 2005 by the Danish Centre

for Studies in Research and Research Policy. Although this survey presents a

longitudinal dimension (1997, 1999, 2001, 2003, 2005), only a subsample of firms

is recorded over the entire time span. To use lagged values in the computation

of the simple and general propensity score in our analysis, we retain only firms

that are in the survey at least for two consecutive periods. Additionally, extremes

values (i.e. 1st and 99th percentile of the distribution) in terms of private R&D

intensity or received public R&D funds have been excluded to avoid pervasive

influences of outliers.7 From this survey we are interested in these variables: the

amount of public funding, the private R&D expenditure and the presence of a R&D

department within the firm.

The second data source is the “Integrated Database for Labor Market Research”

(IDA). IDA is a longitudinal employer-employee database in which detailed infor-

mation on individuals employed in the Danish firms is recorded every year on the

30th of November. From IDA it is possible to compute the firm’s share of workers

with vocational education and of employees with tertiary education. We proceed to

classify firms into 18 industries and determine whether a firm has been established

only within the three most recent years (dummy for entrepreneurship, “newentr”).8

The third data-source we use is an accounting database from a Danish credit

rating agency - “Købmandstandens Oplysningsbureau” (KØB) - containing infor-

mation on firms’ sales, value added, exports, total assets, and indebtedness.

7 See also Wagner (2008).
8 The industry classification is at the two-digit level. The different industries are business ser-

vices, chemical products, construction, financial services, food - beverages and tobacco, hotels &
restaurants, leather products, machinery & equipments, metal products, mineral products, paper
products and petroleum products, plastic products, R&D services, textile products, transports,
wholesale trade, wood products.

11



The last source has been provided by the Centre for Economic and Business

Research (CEBR). It consists of a data set on patent applications and grants

ascribed to Danish firms at the EPO in the period 1978-2003. From this data source

we retrieve information on co-patents in order to proxy the firms’ involvement

in cooperation or other forms of collaboration with other economic actors. Co-

patenting behavior - as captured by a co-patent dummy - is often related to the

firm’s ability to exploit external knowledge and generate beneficial spillovers as

well. It would have been ideal to include the number of patent applications among

the matching variables, but unfortunately that induces severe collinearity problems

with the co-patent dummy variable.

Obviously, the treatment variable is the amount of the R&D subsidy received

from the government or other public institutions.

The matching is defined on the basis of the following pre-treatment variables:

log of total assets scaled to value added, indebtedness (log of loans), exports scaled

to sales, R&D intensity indicator (private R&D expenditure over sales), a measure

of public funding dependence (the ratio of public funds received to private R&D

expenditure), shares of highly skilled employees and vocational workers, dummies

for co-patent, size, industry and year.

Several among these covariates typically appear also in the related literature.

The dummies account for potential macroeconomic fluctuations (business cycle

effects), common demand or supply shocks or idiosyncratic shocks to a given com-

pany size or a given industry, while the other pre-treatment variables capture

firm-specific and observable heterogeneity.

In this prospective, and a novelty in this literature, is the inclusion in the se-

lection equation of the public funding dependence, to account for limited private

resources that may constraint firms’ private R&D initiative.9 To account specif-

ically for credit constraints, easy to envisage considered the relevant sunk costs

9 Previous studies have typically used a dummy variable informing on whether the firm received
the treatment or not.

12



associated to R&D activity, we also include indebtedness. Equally important, we

add the dummy variable for entrepreneurship to our selection equation as innova-

tive entrepreneurship and business potentials are key factors openly accounted by

Danish authorities in the assignation of public R&D funding.

The ratio of firms’ total assets over value added proxies for capital intensity:

if the policy maker is more keen to favor support of labor-intensive production

(employment promoting policies), capital-intensive firms may result disadvantaged

vis-à-vis labor-intensive firms, so that a high capital intensity may be negatively

associated with the propensity to be supported.

The inclusion of the shares of workers’ categories is informative on the com-

position of the firm’s workforce and accounts for the human capital embedded in

the production process. The presence of an in-house R&D department is used in

combination with the labor force composition to proxy firms’ ability to properly

exploit internal and external knowledge sources (absorptive capacity). Our aim is

again to control for the creation of an internal and/or external center of knowledge

and the promotion of workers’ skills and competencies which are among the core

factors for the allocation of public R&D funding. In this respect, the exports sales

ratio might reveal a propensity by a policy maker to fund companies more active in

international markets and characterized by higher productivity levels with larger

potential for innovations.10 Size dummies are defined as follows: firms with less

than 20 employees, between 20 and 49, between 50 and 99, and equal or larger than

a hundred. This classification finds justification in the Danish industrial structure,

dominated by small and medium firms (enterprises with less than 50 employees

account for more than 95% of the total firm population, e.g. OECD 2005).

Overall our strategy emerges clearly: each variable in the selection equation

expresses our attempt to account at the best of our knowledge for the criteria that

Danish public authorities declare to use for the targeting of their subsidies. Namely,

cooperation, skill development, internationalization, entrepreneurship, high-tech

10Bernard and Jensen (1999) and Melitz (2003) among others.
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projects, good business plans and performance.

4.1 Descriptive Statistics

Table 1 describes the main variables used in the analysis, favoring the compar-

isons across the four categories of firms. The first two variables listed are the two

outcome variables (the dependent variables of our analysis); the other variables

are all used in the selection equation and determine the matching between control

and treated groups. Funded firms are divided into three groups (Cat 1, Cat 2 and

Cat 3) corresponding to the first, second and third tercile of the public subsidy

distribution respectively.11 Cat 0 is the residual category including firms that were

never granted public R&D support, but nevertheless are performing R&D. Cat 0

is by far the largest group of firms. It counts 12, 566 companies, while each tercile

contains 147 funded enterprises. The number of observations shrinks notably when

we account only for financed firms. This data limitation is ascribable to the design

of the R&D survey characterized by a poor overlap of firms between-waves.

Both the average of private R&D expenditure and the level of indebtedness

(reported in log of million DKK) are increasing along the defined categories. As

expected, the share of larger firms also enlarges from the bottom to the top quar-

tile. However, these patterns are not common for all other variables considered,

which show non-monotonic relations between categories. For instance, the other

dependent variable - the average private R&D growth - peaks in Cat 2, while it is

on a quite low level in Cat 0.

Similarly, the share of new entrant firms is more similar between Cat 0 and Cat

3, but it grows from the first to the second category. The lowest average level of

capital intensity is recorded for firms in Cat 0, while the highest is recorded for the

least funded ones. The non-financed firms also show the lowest export intensity,

but - on average - this variable is decreasing in accordance with the amount of

11Companies belonging to Cat 1 receive between DKK 0, 003 and 0, 265 million, those in Cat 2
between DKK 0, 265 and 1, 350 million and those in Cat 3 from DKK 1, 350 to 208, 391 million.
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public funding provided.

It is worth noting that firms in Cat 2 show higher value in R&D intensity than

firms in Cat 3, but nevertheless they are both considerably larger than those re-

ported for the least and not funded categories. The most financed firms also exhibit

a stronger dependence on public subsidies: on average the public support is almost

half of the private R&D expenditure for Cat 3. However, such a group of firms

largely dominates all other categories for fruitful cooperation or collaboration in

research activities (proxied by co-patenting behavior) with other economic actors.

Nevertheless, it appears extremely interesting that the category with higher R&D

intensity (Cat 2) also presents the lowest dependence on public support among the

categories of financed companies.

Every surveyed funded firm declares the presence of an internal R&D depart-

ment, whereas only 23% of not financed businesses perform in-house R&D activi-

ties. That motivates the inclusion of this dummy in our analysis, which together

with the labor force composition allows us to compare (financed with not financed)

firms that presumably detain similar abilities to internalize knowledge and conse-

quently turn it into innovations. Finally, the dummy indicating firms’ partial or

total foreign ownership does not turn out to be particularly informative: only the

0.1% of the untreated firms shows such a characteristic. However, its inclusion is

useful to exclude foreign-owned firms from the sample, preventing eventual bias po-

tentially induced by unobservables related to the legal status. A similar argument

applies to five industries that are not represented in at least one category: financial

sector, hotels & restaurants; paper products; petroleum products; transports.

It is plausible that these stylized facts partially reflect the targeting defined

by public authorities (mentioned above), but the degree of dependence on public

subsidies raises reasonable concerns about the optimality of the allocation and the

social returns of R&D funds.
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5 Results

This section presents the results based on our categorical and continuous matching

evaluation. In the first approach, we divide financed firms into three categories

reflecting the terciles of the distribution of the R&D support grant. This choice

is clearly data-driven since it is not grounded on any a priori knowledge about

optimal amount thresholds. Although the decision of partitioning the entire R&D

subsidy distribution in three equally populated groups is to some extent arbitrary,

it appears to us as the most sensible option given the size of our sample. In fact, one

trades off the number of groups analyzed with the number of observation available

in each group. If the number of available observations is not sufficient, not only

estimates lose efficiency, but the estimation method also becomes unfeasible due to

the lack of a common support. This limit does not affect the continuous matching

method similarly, which approximates the distribution of public funds according

to a normal density function.

We then turn to the medium-run evaluation and robustness checks.

5.1 Main Results

Table 2 summarizes the estimations obtained with the categorical matching method

for our two outcome variables, namely the log-level of private R&D spending and

the log difference of private R&D spending (i.e. growth rate of private R&D

spending). While the first variable eases the interpretation of our treatment effect,

the latter better accounts for unobserved heterogeneity and therefore constitutes

our benchmark when we evaluate the significance of our effects.

The first row of Table 2 refers to the standard dichotomous matching method

in which all categories of publicly financed firms (Cat 1, Cat 2 and Cat 3) are

compared with untreated ones (Cat 0). This simple comparison shows a quite

large positive and significant effect of public funds provision: on average the set

of financed firms invests about 65% more than not financed ones. However, scru-
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tinizing the pairs of differently funded versus unfunded companies, this result is

not confirmed for the first tercile (Cat 1). In this case, the treatment effect is

positive but insignificant. The interpretation of the results is unchanged if we con-

sider the growth in private R&D expenditure: treated firms exceed of nearly 28%

untreated ones and again Cat 1 does not significantly differ from Cat 0. Similarly

for the comparison between Cat 3 and Cat 0 or Cat 1 when the private R&D

growth is considered as outcome variable. However, the last two terciles of the

treated firms show significantly positive effects with respect to the untreated or

least treated firms for the log level of private R&D spending. Interestingly, when

we only compare treated firms, we find that firms belonging to Cat 3 do not present

any significant additionality effect with respect to those in Cat 2. Overall, Cat 2 is

the only category that seems to show consistent additionality effects for both out-

come variables, indicating that companies receiving the largest doses of treatment

might substitute private R&D with public subsidies.

In line with this argument, we deepen our analysis to investigate the role that

different amounts of public subsidy may have in determining a crowding- out effect

of public R&D support.

Table 4 shows results from the continuous treatment matching evaluation. For

a large number of treatment doses over the subsidy distribution, the marginal

effects of R&D spending on the outcome variable are computed for a 1% variation

in the amount of public subsidy received. For instance, a firm currently receiving

approximately DKK 8.2 million subsidy would increase both its log level private

R&D expenditure and its growth rate of private R&D of 0.2%, had the subsidy

received increased of 1%.12 The change at this threshold level (i.e, DKK 8.2 million)

is statistically significant only for the outcome variable in first difference, while the

threshold level for the outcome variable in levels is slightly superior (i.e. DKK 18.2

12Made 100 the initial level of R&D spending, the percentage increase in the level of spending
corresponds in absolute terms rather than in log scale to an increase of 100(0.0024)− 1 = 0, 0111
or 1.11%.
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million). Overall, these results confirm the hypothesis of crowding-out between

private expenditure and public financing for a considerably high level of treatment

doses, and these negative treatment effects strengthen with the increase of the

dose.

Finally, it is opportune to complement these results from the intra-tercile eval-

uation (i.e., continuous treatment evaluation) with those from the inter-tercile

comparisons (i.e. categorical treatment evaluation). It emerges that crowding-in

effects occur for several doses of treatment, mainly in the second tercile and in the

last part of the first tercile, if the outcome variable is taken in log-levels. Although

somewhat more restricted in the range, these findings are confirmed also for the

rate of private R&D spending growth. Since differences in growth rates better ac-

count for firm-specific time-invariant effects, we are more confident in evaluations

having such an outcome variable.

5.2 Robustness Checks

The sensitivity analysis corroborates our main findings. Specifically, increasing the

treatment doses from 1% to 5 and 10%, we find stronger substitution effects: Table

5 clearly shows that increases of 5 or 10% lead to significant crowding-out effects

for amounts already above DKK 4.5 million, as compared to the DKK 8, 2 million

threshold arising with a 1% increase in the treatment dose. Therefore the firms are

mainly in the highest tercile of the public funding distribution that tends to sub-

stitute between private and public funding. Moreover, the crowding-out behavior

seems non-linear in the increase in the publicly provided funds: the substitution

effect between private and public spending increases more than proportionally to

the increase in the the funding received.
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5.3 Medium-run Effects

Among the novelties of our study is the combination of a short-run analysis with

a medium-run one. It is, in fact, sensible that crowding-out effects may not sub-

stantiate immediately after the treatment, but they rather spread over a number

of years. To investigate this issue, we draw on the categorical matching evaluation

again. Specifically, we partition again the firms into three categories based on the

average subsidy received over the sample period. Clearly, the latter constitutes the

average dose treatment and includes also amounts equal to zero. The non-treated

are necessarily those firms that have never received funding. Both outcome vari-

ables are evaluated at the end of the sample period, while the variables in the

selection equations - upon which firms will be merged - are evaluated at the be-

ginning of our sample period, namely 1997. That is, like a one-period analysis

where the treatment is just calculated as the average of the treatments over the

entire sample span, the outcome is taken in the last period of the sample and the

pre-selection variables are the values in the first period of the sample. A 8-year

window between the matching and the final treatment status being a rather long

period of time, the causality nature of the analysis weakens; our results should

then be cautiously interpreted as causal effects.

Table 3 presents our results. The standard dichotomous matching shows no

significant ATTs. On the contrary, as far as the growth of private R&D expenditure

is concerned, public funding to R&D seems to promote private R&D expenditure

for the last tercile of treated compared to the untreated and Cat 1. However, we do

not find any evidence that such a public policy is more effective for firms in Cat 3 as

compared to Cat 2. Thus, we conclude that average levels or growth rates of private

R&D expenditure (for the period 1997-2005) are not significantly different between

categories associated with firms in the last two terciles, confirming partially the

absence of an additionality effect characterizing the short-run view.
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6 Discussion and Conclusions

This paper introduces and discusses new perspectives in the evaluation of the public

funding to R&D, extending current studies in this field to include an intra-group

assessment of the outcome of these policies. Unlike an inter-group analysis directed

to investigate a differentiated impact of R&D grants across differently funded firms,

an intra-group analysis investigates the implications of the current modulation

of public intervention for similarly funded firms. Implemented by means of a

continuous treatment evaluation method, it allows us to investigate the likelihood

of crowding-in and crowding-out effects within each tercile along the distribution

of the public R&D support grant.

The inter-tercile comparison is also presented aside using the categorical match-

ing method.

Both methods are coupled with the DiD approach to account for unobserved

heterogeneity and result strengthened by a rich data set featuring comprehensive

information on the pre-treatment variables.

Our results show that a notable substitution between private and public funds

occurs for a high level of the public subsidy. Firms in the third tercile do not out-

perform those in second tercile. The substitution becomes more apparent when we

analyze the intra-tercile distribution of public funds: we highlight a considerable

reduction in growth of private R&D expenditure among the top beneficiary com-

panies. Specifically, it emerges - on average - that funded firms receiving subsidies

up to DKK 8,2 million exhibit a low private contribution with respect to their

counterfactual units.

Overall these results indicate that an ex-post evaluation of the targets of a R&D

policy is desirable, if not necessary in time of downturns. In fact, if R&D funding

has to become a valid policy instrument to support companies hardly hit by a crisis

and facing financial restrictions, it is inevitable that public resources should not be

redirected away from risky and promising long-term research projects toward the
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big players who would perform equally well without these funding.

The continuous treatment evaluation design presented in this paper is a general

methodology which can be fruitfully applied to assess other similar public policies

or other sources of R&D support, especially in contexts where the modulation

of the public intervention is of great interest. Indeed, generally R&D grants are

nowadays not from a unique source, but rather from a complex system of sources

ranging from private venture capitalists, to public venture companies and min-

isterial, national or supra-national innovation funds. We can therefore conceive

that this method could be successfully applied to future research to investigate the

relative effectiveness of each type of financing source in promoting R&D research.

Unfortunately, we have to refrain from exploring this promising avenue on our data

for objective observational limits of our data set, even if the current survey on in-

novation comprises information - although incomplete - on the types of financing

received by each company.
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Variable Descrip,on Obs Mean Std.	
  dev. Min Max Obs Mean Std.	
  dev. Min Max Obs Mean Std.	
  dev. Min Max Obs Mean Std.	
  dev. Min Max

gr_privR&Dexp growth	
  of	
  private	
  R&D	
  expediture 12566 0.019 0.897 -­‐5.915 6.647 147 0.137 1.204 -­‐3.352 2.802 147 0.291 1.169 -­‐2.020 4.517 147 0.117 1.363 -­‐3.955 4.633

ln_privR&Dexp log	
  private	
  R&D	
  expediture 12566 0.175 0.939 -­‐4.711 7.610 147 0.573 1.828 -­‐4.200 5.753 147 1.976 2.066 -­‐3.381 6.424 147 2.846 1.185 -­‐1.309 7.731

ln_loan log	
  amount	
  of	
  loans 12566 3.929 1.531 -­‐0.001 11.278 147 4.661 1.500 1.310 7.943 147 5.559 1.787 0.229 9.707 147 5.818 1.971 0.474 9.012

ln_totassets_va log	
  (total	
  assets/value	
  added)	
   12566 0.498 0.692 -­‐2.018 8.104 147 0.705 0.618 -­‐0.656 2.236 147 0.685 0.701 -­‐0.643 2.761 147 0.694 1.084 -­‐0.883 5.033

R&D_int R&D	
  expenditure/sales 12566 0.071 1.006 0.000 0.853 147 0.056 0.126 0.000 0.774 147 0.484 1.580 0.000 1.685 147 0.283 0.632 0.000 3.093

Pfun_dep public	
  funding/private	
  R&D	
   12566 0.007 0.115 0.000 0.736 147 0.167 0.741 0.000 2.267 147 0.151 0.393 0.000 2.364 147 0.472 1.198 0.000 8.133

exp_int exports/sales 12566 0.329 0.350 0.000 1.000 147 0.652 0.314 0.000 1.000 147 0.553 0.327 0.000 1.000 147 0.460 0.351 0.000 1.000

copat co-­‐paten,ng	
  dummy	
   12566 0.002 0.047 0.000 1.000 147 0.000 0.000 0.000 1.000 147 0.020 0.141 0.000 1.000 147 0.090 0.288 0.000 1.000

newentr firm	
  established	
  less	
  than	
  3	
  years	
  ago 12566 0.016 0.125 0.000 1.000 147 0.020 0.140 0.000 1.000 147 0.040 0.196 0.000 1.000 147 0.017 0.129 0.000 1.000

sh_voc share	
  of	
  voca,onal	
  workers 12566 0.153 0.131 0.000 1.000 147 0.183 0.128 0.018 0.600 147 0.239 0.160 0.041 0.625 147 0.269 0.125 0.000 1.000

sh_hskill share	
  of	
  highly	
  educated	
  workers 12566 0.073 0.127 0.000 1.000 147 0.104 0.153 0.000 0.800 147 0.146 0.161 0.000 0.646 147 0.226 0.177 0.000 1.000

foreing	
   foreign	
  ownership	
  dummy 12566 0.001 0.031 0.000 1.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000

R&D_d R&D	
  department	
  dummy 12566 0.226 0.418 0.000 1.000 147 1.000 0.000 1.000 1.000 147 1.000 0.000 1.000 1.000 147 1.000 0.000 1.000 1.000

size_1_9 size	
  dummy	
  (1-­‐9	
  employees) 12566 0.113 0.317 0.000 1.000 147 0.014 0.116 0.000 1.000 147 0.034 0.182 0.000 1.000 147 0.014 0.116 0.000 1.000

size_10_19 size	
  dummy	
  (10-­‐19	
  employees) 12566 0.180 0.384 0.000 1.000 147 0.054 0.228 0.000 1.000 147 0.095 0.295 0.000 1.000 147 0.048 0.214 0.000 1.000

size_20_49 size	
  dummy	
  (20-­‐49	
  employees) 12566 0.235 0.424 0.000 1.000 147 0.211 0.409 0.000 1.000 147 0.116 0.321 0.000 1.000 147 0.122 0.329 0.000 1.000

size_50_99 size	
  dummy	
  (50-­‐99	
  employees) 12566 0.162 0.369 0.000 1.000 147 0.163 0.371 0.000 1.000 147 0.082 0.275 0.000 1.000 147 0.116 0.321 0.000 1.000

size_100 size	
  dummy	
  (more	
  than	
  99	
  employees) 12566 0.334 0.472 0.000 1.000 147 0.558 0.498 0.000 1.000 147 0.673 0.471 0.000 1.000 147 0.701 0.460 0.000 1.000

y1 year	
  1997 12566 0.132 0.339 0.000 1.000 147 0.191 0.394 0.000 1.000 147 0.231 0.423 0.000 1.000 147 0.156 0.365 0.000 1.000

y2 year	
  1999 12566 0.258 0.437 0.000 1.000 147 0.054 0.228 0.000 1.000 147 0.327 0.471 0.000 1.000 147 0.408 0.493 0.000 1.000

y3 year	
  2001 12566 0.199 0.399 0.000 1.000 147 0.204 0.404 0.000 1.000 147 0.211 0.409 0.000 1.000 147 0.143 0.351 0.000 1.000

y4 year	
  2003 12566 0.206 0.405 0.000 1.000 147 0.238 0.427 0.000 1.000 147 0.143 0.351 0.000 1.000 147 0.184 0.389 0.000 1.000

y5 year	
  2005 12566 0.204 0.403 0.000 1.000 147 0.279 0.450 0.000 1.000 147 0.088 0.285 0.000 1.000 147 0.109 0.313 0.000 1.000

ind1 Business	
  services 12566 0.201 0.401 0.000 1.000 147 0.177 0.383 0.000 1.000 147 0.245 0.431 0.000 1.000 147 0.340 0.475 0.000 1.000

ind2 Chemical	
  products 12566 0.021 0.144 0.000 1.000 147 0.061 0.241 0.000 1.000 147 0.061 0.241 0.000 1.000 147 0.048 0.214 0.000 1.000

ind3 Construc,on 12566 0.039 0.194 0.000 1.000 147 0.007 0.082 0.000 1.000 147 0.007 0.082 0.000 1.000 147 0.000 0.000 0.000 0.000

ind4 Financial	
  Services 12566 0.001 0.027 0.000 1.000 147 0.007 0.082 0.000 1.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000

ind5 Food,	
  beverages	
  and	
  tobacco 12566 0.045 0.207 0.000 1.000 147 0.095 0.295 0.000 1.000 147 0.088 0.285 0.000 1.000 147 0.082 0.275 0.000 1.000

ind6 Hotels	
  &	
  Restaurants 12566 0.000 0.018 0.000 1.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000

ind7 Leather	
  products 12566 0.002 0.039 0.000 1.000 147 0.014 0.116 0.000 1.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000

ind8 Machinery	
  &	
  equipments 12566 0.233 0.423 0.000 1.000 147 0.272 0.447 0.000 1.000 147 0.354 0.480 0.000 1.000 147 0.252 0.435 0.000 1.000

ind9 Metal	
  products 12566 0.085 0.279 0.000 1.000 147 0.109 0.313 0.000 1.000 147 0.027 0.163 0.000 1.000 147 0.014 0.116 0.000 1.000

ind10 Mineral	
  products 12566 0.021 0.143 0.000 1.000 147 0.020 0.142 0.000 1.000 147 0.014 0.116 0.000 1.000 147 0.027 0.163 0.000 1.000

ind11 Paper	
  products 12566 0.058 0.234 0.000 1.000 147 0.020 0.142 0.000 1.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000

ind12 Petroleum	
  products 12566 0.000 0.020 0.000 1.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000 147 0.000 0.000 0.000 0.000

ind13 Plas,c	
  products 12566 0.028 0.165 0.000 1.000 147 0.068 0.253 0.000 1.000 147 0.082 0.275 0.000 1.000 147 0.014 0.116 0.000 1.000

ind14 R&D	
  services 12566 0.009 0.093 0.000 1.000 147 0.014 0.116 0.000 1.000 147 0.082 0.275 0.000 1.000 147 0.163 0.371 0.000 1.000

ind15 Tex,le	
  products 12566 0.021 0.145 0.000 1.000 147 0.020 0.142 0.000 1.000 147 0.000 0.000 0.000 1.000 147 0.000 0.000 0.000 1.000

ind16 Transports 12566 0.040 0.196 0.000 1.000 147 0.014 0.116 0.000 1.000 147 0.000 0.000 0.000 0.000 147 0.020 0.142 0.000 1.000

ind17 Wholesale	
  trade 12566 0.174 0.379 0.000 1.000 147 0.095 0.295 0.000 1.000 147 0.007 0.082 0.000 1.000 147 0.041 0.199 0.000 1.000

ind18 Wood	
  products 12566 0.022 0.147 0.000 1.000 147 0.007 0.082 0.000 1.000 147 0.020 0.142 0.000 1.000 147 0.000 0.000 0.000 1.000

The	
  first	
  two	
  rows	
  in	
  the	
  list	
  refer	
  to	
  dependent	
  and	
  contemporaneous	
  variables,	
  the	
  others	
  refer	
  to	
  values	
  before	
  treatment	
  occurs.

Cat	
  1	
  :	
  first	
  tercile	
  of	
  financed	
  firms	
   Cat	
  2	
  :	
  second	
  tercile	
  of	
  financed	
  firms	
   Cat	
  3	
  :	
  third	
  tercile	
  of	
  financed	
  firmsCat	
  0	
  :	
  not	
  financed	
  firms	
  

Table	
  1:	
  Descrip/ve	
  Sta/s/cs



Treated	
   Controls ATT Std.	
  Dev t-­‐stat ATT Std.	
  Dev t-­‐stat

Cat	
  1-­‐3 Cat	
  0 0.653 0.258 2.531 0.282 0.156 1.808

Cat	
  1 Cat	
  0 0.056 0.377 0.149 0.090 0.245 0.367

Cat	
  2 Cat	
  0 1.018 0.373 2.729 0.542 0.303 1.789

Cat	
  3 Cat	
  0 1.148 0.424 2.708 0.130 0.163 0.798

Cat	
  2 Cat	
  1 1.108 0.591 1.875 0.686 0.359 1.911

Cat	
  3 Cat	
  1 0.870 0.732 1.189 0.072 0.300 0.240

Cat	
  3 Cat	
  2 0.180 0.487 0.370 -­‐0.316 0.324 -­‐0.975

Treated	
   Controls ATT Std.	
  Dev t-­‐stat ATT Std.	
  Dev t-­‐stat

Cat	
  1-­‐3 Cat	
  0 0.076 0.445 0.171 0.295 0.288 1.024

Cat	
  1 Cat	
  0 0.054 0.346 0.156 -­‐0.098 0.414 -­‐0.237

Cat	
  2 Cat	
  0 0.629 0.392 1.605 0.299 0.416 0.719

Cat	
  3 Cat	
  0 1.271 0.971 1.309 1.287 0.607 2.120

Cat	
  2 Cat	
  1 0.745 1.057 0.705 0.028 0.489 0.057

Cat	
  3 Cat	
  1 1.282 1.555 0.824 1.039 0.603 1.723

Cat	
  3 Cat	
  2 0.308 1.032 0.298 -­‐0.167 0.337 -­‐0.496

Table	
  2	
  -­‐	
  	
  	
  Categorical	
  Matching
Log-­‐level	
  of	
  	
  private	
  R&D	
  expenditure	
  

Log-­‐level	
  of	
  	
  private	
  R&D	
  expenditure	
   	
  Growth	
  of	
  private	
  R&D	
  expenditure	
  

Table	
  3	
  -­‐	
  	
  	
  Categorical	
  Matching	
  -­‐	
  Medium-­‐run

Compared	
  categories

Compared	
  categories

	
  Growth	
  of	
  private	
  R&D	
  expenditure	
  



Cat Public	
  funding	
   Change	
  in	
  private	
  R&D	
   Std.	
  Dev. t_stat Change	
  in	
  private	
  R&D	
  growth	
   Std.	
  Dev. t_stat

1 223.130 0.0067 0.0046 1.459 0.0039 0.0021 1.832

1 246.597 0.0070 0.0044 1.581 0.0038 0.0021 1.828

2 272.532 0.0071 0.0042 1.711 0.0037 0.0020 1.804

2 301.194 0.0073 0.0039 1.851 0.0035 0.0020 1.765

2 332.871 0.0074 0.0037 2.002 0.0033 0.0019 1.719

2 367.879 0.0075 0.0034 2.166 0.0031 0.0019 1.673

2 406.570 0.0076 0.0032 2.342 0.0029 0.0018 1.632

2 449.329 0.0076 0.0030 2.527 0.0027 0.0017 1.593

2 496.585 0.0077 0.0029 2.706 0.0025 0.0016 1.551

2 548.812 0.0079 0.0028 2.857 0.0023 0.0015 1.497

2 606.531 0.0080 0.0027 2.956 0.0021 0.0015 1.423

2 670.320 0.0081 0.0027 2.987 0.0019 0.0014 1.332

2 740.818 0.0083 0.0028 2.954 0.0017 0.0014 1.233

2 818.731 0.0084 0.0029 2.877 0.0016 0.0014 1.134

2 904.837 0.0085 0.0030 2.783 0.0014 0.0014 1.035

2 1000.000 0.0085 0.0032 2.693 0.0013 0.0014 0.931

2 1105.171 0.0084 0.0032 2.614 0.0011 0.0013 0.812

2 1221.403 0.0083 0.0033 2.544 0.0009 0.0013 0.671

2 1349.859 0.0080 0.0033 2.458 0.0007 0.0014 0.513

3 1491.825 0.0077 0.0033 2.324 0.0005 0.0014 0.346

3 1648.721 0.0072 0.0034 2.115 0.0003 0.0015 0.182

3 1822.119 0.0066 0.0036 1.841 0.0000 0.0016 0.027

3 2013.753 0.0060 0.0039 1.544 -­‐0.0002 0.0017 -­‐0.113

3 2225.541 0.0054 0.0042 1.269 -­‐0.0004 0.0018 -­‐0.232

3 2459.603 0.0047 0.0045 1.036 -­‐0.0006 0.0020 -­‐0.329

3 2718.282 0.0040 0.0047 0.846 -­‐0.0009 0.0021 -­‐0.408

3 3004.166 0.0033 0.0048 0.692 -­‐0.0010 0.0022 -­‐0.478

3 3320.117 0.0027 0.0048 0.562 -­‐0.0012 0.0022 -­‐0.547

3 3669.296 0.0021 0.0047 0.446 -­‐0.0014 0.0022 -­‐0.624

3 4055.200 0.0015 0.0045 0.337 -­‐0.0015 0.0021 -­‐0.717

3 4481.689 0.0010 0.0044 0.226 -­‐0.0016 0.0020 -­‐0.829

3 4953.033 0.0005 0.0042 0.109 -­‐0.0018 0.0018 -­‐0.962

3 5473.948 -­‐0.0001 0.0041 -­‐0.017 -­‐0.0019 0.0017 -­‐1.111

3 6049.647 -­‐0.0006 0.0040 -­‐0.152 -­‐0.0020 0.0016 -­‐1.267

3 6685.894 -­‐0.0012 0.0039 -­‐0.294 -­‐0.0022 0.0015 -­‐1.415

3 7389.056 -­‐0.0017 0.0039 -­‐0.443 -­‐0.0024 0.0015 -­‐1.551

3 8166.169 -­‐0.0024 0.0040 -­‐0.593 -­‐0.0025 0.0015 -­‐1.674

3 9025.014 -­‐0.0030 0.0041 -­‐0.743 -­‐0.0027 0.0015 -­‐1.787

3 9974.182 -­‐0.0037 0.0042 -­‐0.889 -­‐0.0030 0.0016 -­‐1.892

3 11023.177 -­‐0.0044 0.0043 -­‐1.027 -­‐0.0032 0.0016 -­‐1.989

3 12182.494 -­‐0.0052 0.0045 -­‐1.158 -­‐0.0034 0.0017 -­‐2.076

3 13463.737 -­‐0.0060 0.0047 -­‐1.279 -­‐0.0037 0.0017 -­‐2.153

3 14879.732 -­‐0.0068 0.0049 -­‐1.391 -­‐0.0040 0.0018 -­‐2.217

3 16444.646 -­‐0.0076 0.0051 -­‐1.491 -­‐0.0042 0.0019 -­‐2.269

3 18174.147 -­‐0.0084 0.0053 -­‐1.578 -­‐0.0045 0.0020 -­‐2.309

3 20085.537 -­‐0.0093 0.0056 -­‐1.649 -­‐0.0048 0.0020 -­‐2.336

3 22197.949 -­‐0.0101 0.0059 -­‐1.703 -­‐0.0051 0.0022 -­‐2.352

3 24532.531 -­‐0.0109 0.0063 -­‐1.739 -­‐0.0054 0.0023 -­‐2.359

3 27112.638 -­‐0.0118 0.0067 -­‐1.761 -­‐0.0057 0.0024 -­‐2.358

3 29964.103 -­‐0.0127 0.0072 -­‐1.770 -­‐0.0060 0.0025 -­‐2.350

Public	
  funding	
  is	
  in	
  1000	
  DKK.

Standard	
  errors	
  are	
  computed	
  by	
  bootstrapping	
  (1000	
  repeEEons).

Table	
  4	
  -­‐	
  Con,nuous	
  Treatment	
  Matching	
  Evalua,on
Change	
  in	
  public	
  funding	
  amount	
  about	
  1%



Cat Public	
  funding	
   Change	
  in	
  private	
  R&D	
   Std.	
  Dev. t_stat Change	
  in	
  private	
  R&D	
  growth	
   Std.	
  Dev. t_stat Change	
  in	
  private	
  R&D	
   Std.	
  Dev. t_stat Change	
  in	
  private	
  R&D	
  growth	
   Std.	
  Dev. t_stat

1 223.130 0.0403 0.0326 1.238 0.0225 0.0201 1.118 0.0812 0.0654 1.242 0.0445 0.0402 1.1055

1 246.597 0.0415 0.0309 1.341 0.0215 0.0197 1.093 0.0834 0.0628 1.329 0.0425 0.0388 1.0940

2 272.532 0.0424 0.0291 1.461 0.0204 0.0191 1.070 0.0853 0.0598 1.426 0.0403 0.0372 1.0818

2 301.194 0.0433 0.0270 1.603 0.0192 0.0183 1.052 0.0869 0.0565 1.537 0.0379 0.0354 1.0693

2 332.871 0.0439 0.0248 1.771 0.0180 0.0173 1.041 0.0881 0.0528 1.668 0.0354 0.0335 1.0560

2 367.879 0.0444 0.0226 1.966 0.0167 0.0162 1.035 0.0891 0.0488 1.824 0.0328 0.0315 1.0406

2 406.570 0.0448 0.0205 2.185 0.0154 0.0150 1.033 0.0897 0.0447 2.007 0.0303 0.0296 1.0219

2 449.329 0.0450 0.0186 2.415 0.0142 0.0138 1.031 0.0901 0.0407 2.213 0.0278 0.0279 0.9992

2 496.585 0.0451 0.0171 2.635 0.0131 0.0128 1.023 0.0903 0.0372 2.426 0.0256 0.0263 0.9727

2 548.812 0.0452 0.0160 2.820 0.0120 0.0120 1.002 0.0903 0.0345 2.617 0.0236 0.0250 0.9436

2 606.531 0.0451 0.0153 2.948 0.0112 0.0116 0.964 0.0901 0.0327 2.759 0.0220 0.0240 0.9141

2 670.320 0.0450 0.0149 3.011 0.0105 0.0115 0.913 0.0898 0.0316 2.842 0.0206 0.0233 0.8868

2 740.818 0.0447 0.0148 3.018 0.0099 0.0115 0.859 0.0893 0.0310 2.884 0.0195 0.0227 0.8624

2 818.731 0.0443 0.0148 2.986 0.0094 0.0116 0.810 0.0885 0.0305 2.900 0.0186 0.0222 0.8377

2 904.837 0.0438 0.0150 2.927 0.0090 0.0117 0.765 0.0873 0.0302 2.889 0.0177 0.0220 0.8045

2 1000.000 0.0431 0.0151 2.846 0.0084 0.0117 0.720 0.0857 0.0303 2.828 0.0166 0.0220 0.7518

2 1105.171 0.0421 0.0154 2.736 0.0078 0.0117 0.662 0.0836 0.0311 2.689 0.0151 0.0225 0.6719

2 1221.403 0.0408 0.0158 2.588 0.0069 0.0118 0.581 0.0809 0.0327 2.472 0.0132 0.0234 0.5634

2 1349.859 0.0392 0.0164 2.391 0.0057 0.0121 0.468 0.0775 0.0352 2.204 0.0106 0.0246 0.4304

3 1491.825 0.0373 0.0173 2.148 0.0041 0.0126 0.326 0.0734 0.0382 1.923 0.0073 0.0261 0.2786

3 1648.721 0.0349 0.0186 1.874 0.0021 0.0132 0.161 0.0686 0.0415 1.654 0.0031 0.0276 0.1134

3 1822.119 0.0323 0.0203 1.594 -­‐0.0002 0.0140 -­‐0.016 0.0631 0.0449 1.406 -­‐0.0018 0.0293 -­‐0.0605

3 2013.753 0.0293 0.0221 1.328 -­‐0.0030 0.0149 -­‐0.199 0.0570 0.0482 1.182 -­‐0.0074 0.0310 -­‐0.2387

3 2225.541 0.0260 0.0239 1.088 -­‐0.0060 0.0157 -­‐0.382 0.0503 0.0514 0.980 -­‐0.0136 0.0326 -­‐0.4182

3 2459.603 0.0225 0.0257 0.877 -­‐0.0093 0.0166 -­‐0.561 0.0433 0.0542 0.798 -­‐0.0204 0.0341 -­‐0.5976

3 2718.282 0.0189 0.0272 0.693 -­‐0.0128 0.0174 -­‐0.736 0.0358 0.0565 0.634 -­‐0.0274 0.0353 -­‐0.7766

3 3004.166 0.0150 0.0283 0.531 -­‐0.0164 0.0182 -­‐0.905 0.0281 0.0582 0.483 -­‐0.0347 0.0363 -­‐0.9553

3 3320.117 0.0111 0.0290 0.383 -­‐0.0201 0.0188 -­‐1.072 0.0203 0.0592 0.342 -­‐0.0421 0.0371 -­‐1.1334

3 3669.296 0.0072 0.0292 0.245 -­‐0.0238 0.0192 -­‐1.239 0.0123 0.0594 0.207 -­‐0.0495 0.0377 -­‐1.3108

3 4055.200 0.0032 0.0291 0.109 -­‐0.0275 0.0195 -­‐1.411 0.0043 0.0590 0.074 -­‐0.0567 0.0381 -­‐1.4878

3 4481.689 -­‐0.0008 0.0287 -­‐0.028 -­‐0.0310 0.0195 -­‐1.591 -­‐0.0036 0.0581 -­‐0.062 -­‐0.0638 0.0383 -­‐1.6659

3 4953.033 -­‐0.0048 0.0282 -­‐0.170 -­‐0.0345 0.0194 -­‐1.781 -­‐0.0116 0.0568 -­‐0.203 -­‐0.0706 0.0382 -­‐1.8473

3 5473.948 -­‐0.0087 0.0277 -­‐0.315 -­‐0.0378 0.0191 -­‐1.978 -­‐0.0195 0.0554 -­‐0.351 -­‐0.0772 0.0380 -­‐2.0335

3 6049.647 -­‐0.0127 0.0273 -­‐0.465 -­‐0.0410 0.0188 -­‐2.176 -­‐0.0273 0.0541 -­‐0.505 -­‐0.0836 0.0376 -­‐2.2237

3 6685.894 -­‐0.0166 0.0269 -­‐0.617 -­‐0.0441 0.0186 -­‐2.368 -­‐0.0352 0.0532 -­‐0.661 -­‐0.0897 0.0371 -­‐2.4140

3 7389.056 -­‐0.0205 0.0267 -­‐0.771 -­‐0.0470 0.0185 -­‐2.545 -­‐0.0431 0.0528 -­‐0.816 -­‐0.0955 0.0368 -­‐2.5972

3 8166.169 -­‐0.0245 0.0265 -­‐0.926 -­‐0.0499 0.0184 -­‐2.704 -­‐0.0510 0.0528 -­‐0.966 -­‐0.1011 0.0366 -­‐2.7659

3 9025.014 -­‐0.0285 0.0264 -­‐1.081 -­‐0.0526 0.0185 -­‐2.843 -­‐0.0590 0.0531 -­‐1.111 -­‐0.1065 0.0365 -­‐2.9153

3 9974.182 -­‐0.0326 0.0263 -­‐1.236 -­‐0.0552 0.0186 -­‐2.965 -­‐0.0672 0.0537 -­‐1.251 -­‐0.1118 0.0367 -­‐3.0451

3 11023.177 -­‐0.0367 0.0264 -­‐1.390 -­‐0.0578 0.0188 -­‐3.072 -­‐0.0754 0.0543 -­‐1.389 -­‐0.1168 0.0370 -­‐3.1588

3 12182.494 -­‐0.0409 0.0265 -­‐1.541 -­‐0.0603 0.0190 -­‐3.167 -­‐0.0838 0.0549 -­‐1.527 -­‐0.1218 0.0373 -­‐3.2609

3 13463.737 -­‐0.0451 0.0267 -­‐1.693 -­‐0.0627 0.0193 -­‐3.254 -­‐0.0924 0.0555 -­‐1.666 -­‐0.1265 0.0377 -­‐3.3546

3 14879.732 -­‐0.0494 0.0268 -­‐1.845 -­‐0.0650 0.0195 -­‐3.333 -­‐0.1011 0.0559 -­‐1.807 -­‐0.1310 0.0381 -­‐3.4408

3 16444.646 -­‐0.0538 0.0269 -­‐1.998 -­‐0.0671 0.0197 -­‐3.402 -­‐0.1098 0.0564 -­‐1.948 -­‐0.1353 0.0385 -­‐3.5176

3 18174.147 -­‐0.0582 0.0271 -­‐2.148 -­‐0.0692 0.0200 -­‐3.460 -­‐0.1187 0.0568 -­‐2.089 -­‐0.1392 0.0389 -­‐3.5810

3 20085.537 -­‐0.0626 0.0273 -­‐2.292 -­‐0.0710 0.0203 -­‐3.501 -­‐0.1275 0.0573 -­‐2.225 -­‐0.1428 0.0394 -­‐3.6264

3 22197.949 -­‐0.0670 0.0277 -­‐2.421 -­‐0.0726 0.0206 -­‐3.519 -­‐0.1363 0.0579 -­‐2.352 -­‐0.1459 0.0400 -­‐3.6484

3 24532.531 -­‐0.0714 0.0282 -­‐2.530 -­‐0.0740 0.0211 -­‐3.510 -­‐0.1450 0.0589 -­‐2.463 -­‐0.1486 0.0408 -­‐3.6431

3 27112.638 -­‐0.0757 0.0290 -­‐2.614 -­‐0.0751 0.0216 -­‐3.472 -­‐0.1536 0.0602 -­‐2.551 -­‐0.1507 0.0418 -­‐3.6082

3 29964.103 -­‐0.0800 0.0300 -­‐2.671 -­‐0.0760 0.0223 -­‐3.404 -­‐0.1621 0.0620 -­‐2.613 -­‐0.1524 0.0430 -­‐3.5442

Public	
  funding	
  is	
  in	
  1000	
  DKK.

Standard	
  errors	
  are	
  computed	
  by	
  bootstrapping	
  (1000	
  repeEEons).

Change	
  in	
  public	
  funding	
  amount	
  about	
  5% Change	
  in	
  public	
  funding	
  amount	
  about	
  10%

Table	
  5:	
  Robustness	
  Checks
Con3nuous	
  Treatment	
  Matching	
  Evalua3on	
  with	
  Different	
  Treatment	
  Doses
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