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ABSTRACT

In a multiview-imaging setting, image-acquisition costs could
be substantially diminished if some of the cameras operate at
a reduced quality. Compressed sensing is proposed to effectu-
ate such a reduction in image quality wherein certain images
are acquired with random measurements at a reduced sam-
pling rate via projection onto a random basis of lower dimen-
sion. To recover such projected images, compressed-sensing
recovery incorporating disparity compensation is employed.
Based on a recent compressed-sensing recovery algorithm for
images that couples an iterative projection-based reconstruc-
tion with a smoothing step, the proposed algorithm drives im-
age recovery using the projection-domain residual between
the random measurements of the image in question and a
disparity-based prediction created from adjacent, high-quality
images. Experimental results reveal that the disparity-based
reconstruction significantly outperforms direct reconstruction
using simply the random measurements of the image alone.

Keywords— Compressed sensing, multiview, disparity
compensation, directional transforms

1. INTRODUCTION

More and more applications, like 3D reconstruction, creation
of virtual environments, surveillance applications, etc., re-
quire systems which capture a scene with several cameras.
In these cases, the correlation between images is high be-
cause they describe the same scene. Compression, restora-
tion, or other data processing should therefore exploit this re-
dundancy in order to improve performance. The correlation
between multiview images can be taken into account by esti-
mating the disparity between them, which corresponds to the
displacement of an object between the images and which is a
quantity related to the object’s depth. Since multiview tech-
nology is relatively new, the acquisition of the multiview data
can be rather costly. However, the acquisition cost of mul-
tiview images could be greatly reduced if only some of the
multiviews are captured at high resolution or high fidelity; the
other views could possibly be acquired at a lower acquisition
cost and thereby be reduced in quality. Such lower acquisi-
tion cost could be effectuated by using a compressed-sensing

(CS) recovery of these latter images. CS (e.g., [1]) is a re-
cent paradigm which allows describing a signal with a rate
lower than Nyquist without any loss. This is possible under
a certain hypothesis of sparsity, and is often driven by linear
projection onto random basis. Such random-projection-based
signal acquisition could feasibly be accomplished using a so-
called single-pixel camera [2]; the corresponding reconstruc-
tion can be achieved via any one of a number of emerging
schemes for CS image reconstruction (e.g., [3, 4, 5]).

In this paper, we propose to incorporate disparity compen-
sation (DC) into the CS reconstruction of multiview images.
In [4], an efficient block-based CS reconstruction of images
using directional transforms was proposed. Our goal here is
to improve the performance of this algorithm by considering
disparity information at the reconstruction. The results that
we obtain are promising and demonstrate that we can reach a
recovery quality of more than 50 dB with an acquisition sam-
pling rate divided by at least two. As previously mentioned,
we anticipate that this paradigm can be useful in a multiview
acquisition wherein some cameras have lower quality than
others.

The remainder of the paper is organized as follows. Sec. 2
gives an overview of the CS paradigm introducing the basics
for our method which is in turn presented in detail in Sec. 3.
Experimental results demonstrating the efficiency of the DC
scheme are presented in Sec. 4. Finally, some concluding re-
marks are made in Sec. 5.

2. BACKGROUND

In CS, a real-valued signal x of length N has to be recov-
ered from M samples, where M ! N [1]. In other words,
x should be reconstructed from the observations y = Φx,
where y has length M , and ΦM×N is called the measurement
matrix. This recovery is possible if x is sufficiently sparse in
a certain space. The usual choice for the measurement basis
Φ is a random matrix; in the following, we assume that Φ is
orthonormal such that ΦΦT = I . In general, the sparsity con-
dition for x recovery will exist with respect to some unknown
transform Ψ. In this case, the key to CS reconstruction is
the production of a sparse set of significant transform coeffi-
cients, x̌ = Ψx, and the ideal recovery procedure searches for
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the x̌ with the smallest l0 norm consistent with the observed
y. However, as this l0 optimization is NP-complete, several
alternative procedures have been proposed. For example, ap-
plying a convex relaxation to the l0 problem results in an l1
optimization, as exemplified by basis/matching-pursuit-based
algorithms [6, 7, 8]:

x̌ = argmin
x̌

‖x̌‖1 , such that y = ΦΨ−1x̌

where Ψ−1 represents the inverse transform. Generally, such
algorithms could be implemented with linear programming.

Recently, projection-based CS-reconstruction techniques
have been proposed [9]. Algorithms of this class recover x̌ by
successively projecting and thresholding: the reconstruction
starts from some initial approximation x̌(0), which is further
refined in an iterative manner, as in the following:

ˇ̌x(i) = x̌(i) +
ΨΦT

λ
(y − ΦΨ−1x̌(i))

x̌(i+1) =







ˇ̌x(i),
∣

∣

∣

ˇ̌x(i)
∣

∣

∣
≥ τ (i)

0, otherwise
,

(1)

where λ is a scaling factor, and τ (i) is the threshold used at the
ith iteration. It is straightforward to see that this procedure is
a specific instance of a projected Landweber (PL) algorithm
[10].

In [3], a block-based approach of the above paradigm for
the CS recovery of 2D images was proposed. In this tech-
nique, the sampling of an image is driven by random matrices
applied block-by-block to the image, while the reconstruc-
tion is a variant of the PL reconstruction of (1) that incorpo-
rates a smoothing operation (e.g. Wiener filtering), ostensibly
to eliminate block artifacts due to the block-based sampling.
Due to its combination of block-based CS (BCS) sampling
and smoothed-PL (SPL) reconstruction, this technique was
denoted BCS-SPL in [4]; we adopt this same terminology
here. The recovery process in BCS-SPL is iterative—the ap-
proximation of the image at iteration i+1, x(i+1), is obtained
from x(i) as [4]:

function x(i+1) = SPL(x(i), y,Φblock,Ψ,λ)

x̂(i) = Wiener(x(i))

for each block j

ˆ̂x(i)
j = x̂(i)

j + ΦT
block(y − Φblockx̂

(i)
j )

ˇ̌x(i) = Ψˆ̂x(i)

x̌(i) = Threshold(ˇ̌x(i),λ)

x̄(i) = Ψ−1x̌(i)

for each block j

x(i+1)
j = x̄(i) + ΦT

block(y − Φblockx̄
(i)
j )

(2)

In [4], the initialization is done as x(0) = ΦT y, and the recon-
struction process is stopped once

∣

∣D(i+1) −D(i)
∣

∣ < 10−4,

where D is defined as the mean squared error (MSE), D(i) =
1

block size

∥

∥

∥
x(i) − ˆ̂x(i−1)

∥

∥

∥

2
, between the ith image reconstruc-

tion and the first refinement step at the (i + 1) iteration.
We note that we employ hard thresholding for the operator
Threshold(·), where the convergence factor λ is fixed for all
iterations [11] (specifically, it varies as function of the num-
ber of coefficients of Ψ from one transform to another [12]).
We note also that the convergence for hard-thresholding algo-
rithms of this nature has been proven in [13].

3. DC-BCS-SPL RECONSTRUCTION

In [4], the BCS-SPL reconstruction originating in [3] was
demonstrated to provide effective reconstruction for 2D im-
ages when used with directional transforms. In the following,
we propose an iterative DC algorithm for the reconstruction
of multiview images; this algorithm is based on the BCS-SPL
method described in the previous section and incorporates
the estimation of and compensation for disparity between the
multiple views. Since multiview images are strongly corre-
lated, we exploit this correlation by deploying CS reconstruc-
tion on the DC residual. The method assumes the same setup
as in [4]; that is, for the current image xd, which is the image
to be CS-reconstructed, we have the projection/measurement
matrix Φ; the set of observations, y = Φxd; and the direc-
tional transform used in the reconstruction, Ψ. Additionally,
to adapt the BCS-SPL algorithm to the multiview scenario,
we assume that we know images adjacent to xd; specifically,
we know the closest images to the “left” and “right” of xd

which are xd−1 and xd+1, respectively.

The DC-BCS-SPL algorithm is partitioned into two
phases. In the first phase, a predictor xp for xd is cre-
ated by bidirectionally interpolating the closest views, xp =
ImageInterpolation(xd−1,xd+1). Next, we calculate the
residual r between the original observation y and the observa-
tion resulting from the projection of xp using the same mea-
surement matrix, Φ. This residual then drives the BCS-SPL
reconstruction. We note that, alternatively, xp could be given
by the direct BCS-SPL reconstruction of the current image,
i.e., xp = BCS-SPL(y,Φ,Ψ). However, we have found
that, at low subrates (M/N small), the quality of the interpo-
lated image is much better than that of the direct BCS-SPL
reconstruction.

In the second phase, the reconstructed residual r̂ is fur-
ther refined with reverse DC to obtain the final reconstruction
x̂d. In the second phase, DVd−1 and DVd+1 are the left
and right disparity vectors, respectively; these are obtained
from disparity estimation (DE) applied to the current recon-
struction, x̂d, of the current image and the left and right ad-
jacent images. The disparity vectors then drive the DC of the
current image to produce the current prediction, xp, and its
corresponding residual, r. We note that the second phase of
the algorithm is repeated k times. The complete algorithm is
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presented below:
Given Φ, Ψ, and y = Φxd:

(1)

















xp = ImageInterpolation(xd−1,xd+1)

yp = Φxp

r = y − yp

r̂ = BCS-SPL(r,Φ,Ψ)

x̂d = xp + r̂

Repeat k times:

(2)





















{DVd−1,DVd+1} = DE(x̂d,xd−1,xd+1)

xp = DC(x̂d,DVd−1,DVd+1)

yp = Φxp

r = y − yp

r̂ = BCS-SPL(r,Φ,Ψ)

x̂d = xp + r̂

As illustrated in Fig. 1, the quality of DC-based recon-
struction is several dBs higher than that obtained by direct
BCS-SPL reconstruction. We have found this to be true re-
gardless of the transform Ψ employed. Note that Fig. 1 is
for a single iteration (k = 1) of phase 2 of the reconstruc-
tion; further improvement results from iteratively repeating
phase 2. Given the quality of the reconstruction after phase 1,
the predictor at each step will be obtained by DC between the
current reconstructed image and its neighbors; the improve-
ment in reconstruction quality is due to the refinement of the
disparity vectors, leading to a smoother residual at each step
which is much easily reconstructed by BCS-SPL.

Note that the original images (xd−1 and xd+1) are used
as references for DE. This is pertinent, since the proposed al-
gorithm serves to reduce the acquisition cost (camera quality)
by at least 25% (equivalent to a subrate M/N = 0.5, the
maximum we consider). We note also that phase 2 of the pro-
posed algorithm converges quickly—typically, 2 ≤ k ≤ 5
is sufficient for convergence in PSNR to the second decimal
place.

4. EXPERIMENTAL RESULTS

In this section, we present more comprehensive experimen-
tal results, evaluating several directional transforms for both
direct and DC-based CS reconstruction. Specifically, we de-
ploy a discrete cosine (DCT), a discrete wavelet (DWT), a
dual-tree discrete wavelet (DDWT) [14], and a contourlet
transform (CT) [15] within the BCS-SPL framework as de-
scribed in Sec. 3. We refer to the resulting implementations
as transform for direct CS reconstruction using the trans-
form in question, and DC-transform for the corresponding
DC scheme using the algorithm of Sec. 3; here, transform ∈
{DCT,DWT,DDWT,CT}. In our simulations, the disparity

(a)

(b)

Fig. 1. Monopoly, 512 × 512: BCS-SPL reconstruction us-
ing 64 × 64 DCT at subrate M/N = 0.2. (a) Direct BCS-
SPL (PSNR = 29.03 dB); (b) one-step DC-BCS-SPL (PSNR
= 42.70 dB).

is estimated using a full-search block-based DE algorithm,
where the size of the block is 16 × 16, and the search area is
32× 32 pixels. For BCS-SPL, we have used a 64× 64 block
size for the sampling and reconstruction processes. The num-
ber of decomposition levels for the tested transforms is 6. We
use the BCS-SPL implementation available from its authors1.

Figs. 2–5 present the PSNR performance for several 512×
512 images from the Middlebury database2 at several sub-
rates, M/N . All images are rectified and the radial distortion
has been removed. It should be noted that, since the qual-
ity of reconstruction can vary due to the randomness of the

1http://www.ece.msstate.edu/˜fowler/
2http://cat.middlebury.edu/stereo/data.html
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Fig. 2. Reconstruction quality (dB) for ”Aloe” test image, as
a function of the subrate, and for different transforms.

measurement matrix Φ, all PSNR values in the figures are
obtained by averaging 5 independent trials. It is evident that
the DC-based recovery leads to higher-quality results, having
an average gain of ∼7 dB with respect to direct BCS-SPL re-
construction. The results confirm that both direct BCS-SPL
as well as DC-BCS-SPL with the DDWT achieve the best
performance at both low and high subrates. Moreover, for
highly textured content (e.g., the Monopoly image), the gain
of the DC-based reconstruction over the direct reconstruction
reaches a peak of ∼13 dB.

5. CONCLUSION

In this paper, we have considered the situation in which ran-
dom projections coupled with CS reconstruction are used
to reduce image-acquisition cost within a multiview setting.
Specifically, we have assumed that an image is subject to ran-
dom projections during its acquisition, and that high-quality
adjacent images are available to aid its CS reconstruction. We
have proposed the incorporation of DE and DC into the CS re-
construction, such that two adjacent images are used to form
a prediction of the current image in between them. This pre-
dicted image is then projected using the same measurement
matrix as was used to acquire the random CS projections of
the current image. CS reconstruction then proceeds on the
residual between the projected prediction and the projected
image. Experimental results reveal a substantial increase in
reconstruction quality for the DC-based algorithm as opposed
to a simple, direct CS reconstruction driven by the random
measurements of the image rather than the projection-domain
residual.

We note that, although we have specifically considered the
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Fig. 3. Reconstruction quality (dB) for ”Baby” test image, as
a function of the subrate, and for different transforms.
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Fig. 4. Reconstruction quality (dB) for ”Bowling” test image,
as a function of the subrate, and for different transforms.
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Fig. 5. Reconstruction quality (dB) for ”Monopoly” test im-
age, as a function of the subrate, and for different transforms.

multiview setting, we anticipate that the techniques presented
here are also applicable to stereo images in which one image
is acquired with high quality and the other is subject to CS-
based random projections. In the DC-BCS-SPL algorithm we
present here, one would simply modify the prediction process
so as to be unidirectional rather than bidirectional.

6. REFERENCES

[1] E. J. Candès and M. B. Wakin, “An introduction to com-
pressive sampling,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 21–30, March 2008.

[2] D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte,
D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Bara-
niuk, “A new compressive imaging camera architecture
using optical-domain compression,” in Computational

Imaging IV, C. A. Bouman, E. L. Miller, and I. Pollak,
Eds. San Jose, CA: Proc. SPIE 6065, January 2006, p.
606509.

[3] L. Gan, “Block compressed sensing of natural images,”
in Proceedings of the International Conference on Digi-

tal Signal Processing, Cardiff, UK, July 2007, pp. 403–
406.

[4] S. Mun and J. E. Fowler, “Block compressed sensing
of images using directional transforms,” in Proceedings

of the International Conference on Image Processing,
Cairo, Egypt, November 2009, pp. 3021–3024.

[5] E. Candès, J. Romberg, and T. Tao, “Stable signal re-
covery from incomplete and inaccurate measurements,”

Communications on Pure and Applied Mathematics,
vol. 59, no. 8, pp. 1207–1223, August 2006.

[6] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal on Sci-

entific Computing, vol. 20, no. 1, pp. 33–61, August
1998.

[7] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright,
“Gradient projection for sparse reconstruction: Appli-
cation to compressed sensing and other inverse prob-
lems,” IEEE Journal on Selected Areas in Communica-

tions, vol. 1, no. 4, pp. 586–597, December 2007.

[8] T. T. Do, L. Gan, N. Nguyen, and T. D. Tran, “Sparsity
adaptive matching pursuit algorithm for practical com-
pressed sensing,” in Proceedings of the 42th Asilomar

Conference on Signals, Systems, and Computers, Pacific
Grove, California, October 2008, pp. 581–587.

[9] J. Haupt and R. Nowak, “Signal reconstruction from
noisy random projections,” IEEE Transactions on Infor-

mation Theory, vol. 52, no. 49, pp. 4036–4048, 2006.

[10] M. Bertero and P. Boccacci, Introduction to Inverse

Problems in Imaging. Bristol, UK: Institute of Physics
Publishing, 1998.

[11] K. K. Herrity, A. C. Gilbert, and J. A. Tropp, “Sparse ap-
proximation via iterative thresholding,” in Proceedings

of the International Conference on Acoustics, Speech,

and Signal Processing, vol. 3, Toulouse, France, May
2006, pp. 14–19.

[12] D. L. Donoho, “De-noising by soft-thresholding,” IEEE

Transactions on Information Theory, vol. 41, no. 3, pp.
613–627, May 1995.

[13] T. Blumensath and M. E. Davies, “Iterative threshold-
ing for sparse approximations,” The Journal of Fourier

Analysis and Applications, vol. 14, no. 5, pp. 629–654,
December 2008.

[14] N. G. Kingsbury, “Complex wavelets for shift invari-
ant analysis and filtering of signals,” Journal of Applied

Computational Harmonic Analysis, vol. 10, pp. 234–
253, May 2001.

[15] M. N. Do and M. Vetterli, “The contourlet transform:
An efficient directional multiresolution image repre-
sentation,” IEEE Transactions on Image Processing,
vol. 14, no. 12, pp. 2091–2106, December 2005.

1229


