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Abstract Integral observers are useful tools for estimating the plant states in the presence of
non-vanishing disturbances resulting from plant-model mismatch and exogenous disturbances. It
is well known that these observers can eliminate bias in all states, given that as many independent
measurements are available as there are independent sources of disturbance. In the most general
case, the dimensionality of the disturbance vector affecting the plant states corresponds to the order
of the system and thus all states need to be measured. This condition, which is termed integral
observability in the literature, represents a fairly restrictive situation. This study focuses on the
more realistic case, where only the output variables are measured. Accordingly, the objective
reduces to the unbiased estimation of the output variables. It is shown that both stability and
asymptotically unbiased output estimation can be achieved if the system is observable, regardless
of the dimensionality of the disturbance vector. Furthermore, a condition is provided under which,
using output measurements, the errors in all states can be pushed to zero. It is also proposed to
use off-line output measurements to tune the observer using a calibration-like approach. Integral
observers and integral Kalman filters are evaluated via the simulation of a fourth-order linear system
perturbed by unknown non-vanishing disturbances.

Keywords: Integral observer; integral Kalman filter; integral observability; plant-model mismatch;
robust estimation; unbiased estimation.

1 Introduction

State estimation is a necessary component of process monitoring and control, as these techniques
often require information that is too expensive or impossible to obtain from direct measurements.
Estimation attempts to reconstruct the missing information from both the output measurements
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and prior knowledge in the form of a dynamic model [11]. For linear systems with perfect model
information and gaussian measurement noise, the optimal estimator is the Kalman filter (KF)
[16]. Unfortunately, the models used for state estimation are rarely accurate, and there is a lot of
uncertainty in the form of plant-model mismatch and exogenous disturbances. In the presence of
uncertainty, the state estimates are typically biased. To reduce this bias, the following classes of
techniques have been proposed in the literature:

1. Minmax approach. The estimator is designed for the worst scenario in terms of uncertainty,
and interval bounds on the estimates are provided [1, 4]. However, this approach can be very
conservative.

2. Decoupling from unknown disturbances. The observer is designed to decouple the dynamics of
the estimation errors from the unknown disturbances [19, 8, 9, 15]. This way, the states and
the unknown disturbances can be estimated separately. However, the conditions necessary
for decoupling might be difficult to meet in practice (at least as many output measurements
as there are unknown sources of disturbance), and thus applicability is limited.

3. Absorption of unknown disturbances. The effect of unknown disturbances is absorbed in
auxiliary states. This is done by augmenting the state vector with additional state variables.
This approach has been given various names over the decades such as bias estimation [13,
17, 18], garbage collector [10], or integral observer [3, 22]. Note that, with integral observers,
unbiased estimation of all states typically requires the measurement of all states [24, 28], or
of at least as many independent outputs as there are independent sources of disturbance [25],
which is rather impractical.

Usually, full-state estimation is considered because of the close link between estimation theory and
the full-state feedback literature [7]. In some cases, however, the goal is to control only a subset of
the states, for which full-state knowledge is not required. Also, in the context of process monitoring,
it often suffices to estimate accurately the variables being monitored. For these cases, it may be
helpful to design observers that are capable of estimating the variables of interest more accurately
than could be done via full-state estimation.

This study is concerned with the asymptotically unbiased estimation of output variables. One may
ask: Why estimate the output variables since they can be measured? The main reason is of course
the reduction of measurement errors through the use of ”model-based” filtering, which can indeed
be optimal under certain circumstances. Another reason is to be able to obtain ”faster” estimates
when, in certain processes, the variables of interest can only be measured at low frequency and with
significant delay. In these cases, inter-sample estimates are important, for which the estimation
problem has to be reformulated as a multi-rate scheme [26]. In such a scheme, some or all of the
measurements are available less frequently (slow time scale) than the estimates are needed (fast
time scale). One way of handling two-time-scale systems is to extrapolate the slow measurements
for the fast time scale by using some kind of approximations, e.g. zero-order hold or polynomial
approximations, and then use a single-rate estimation technique [27, 28]. Another approach is to
update the estimates only when the slow measurements become available and, in-between, use the
predictions given by the process model corrected using the available fast measurements [2, 23, 5].
This multi-rate aspect is not addressed in this paper.
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There is another question related to the estimation of output variables: Is it possible to design
an integral observer that asymptotically leads to unbiased estimation of all states, not simply the
measured ones? This is indeed possible if (i) the mean value of the non-vanishing disturbance
vector (modeled as process noise) is known, and (ii) the disturbance directions can be ”reached”
by the integral states.

This paper investigates integral observers capable of accurate asymptotic estimation (filtering) of
the output variables, for which the classical observability of the states from the output measure-
ments is the only required condition. In other words, no condition on the number of measurements
relative to the number of disturbance sources is imposed. In addition, this study will show how the
observer can be tuned using off-line output measurements and a calibration-like procedure that is
well known in the field of chemometrics [21].

Both the proportional-integral observer (PI observer) and the integral Kalman filter (IKF) will be
investigated. The structure of the two estimators is the same, the main difference being the way
the gain matrices are computed: constant gains computed via pole placement for the observer,
and time-varying gains resulting from the solution of a Riccati differential equation expressing
variance propagation. The main focus of this study concerns structural properties leading to bias
elimination. This structural investigation will be done for the PI observer, IKF being solely used
in the simulation to show the attainable performance in the (ideal) case where the process and
measurement noise covariances are known.

The paper is organized as follows. Observer structures, including P and PI observers and KF and
IKF filters, are introduced in Section 2. The possibility of bias elimination in the output variables
and the important property of observer stability are discussed in Section 3. Calibration-based
tuning of the PI observer is proposed in Section 4. The PI observer and IKF are evaluated for
various simulated scenarios in Section 5, and conclusions are drawn in Section 6.

2 Observers for Unbiased Estimation

2.1 System and uncertainty description

Consider a plant described by the following linear time-invariant (LTI) discrete-time state-space
equations:

xk+1 = Axk + Buk + wk, x0 = xo, (1)

yk = Hxk + vk,

where uk ∈ ℜq is the input vector, xk ∈ ℜn the state vector with unknown initial values xo, and
yk ∈ ℜp the measured output vector. The matrix A denotes the state propagation matrix, B the
effect of the inputs on the states, and H the measurement model. The vectors wk and vk represent
stationary process and measurement noises, respectively.

The basic system-theoretical assumption used in this work is:

A.1 H is of rank p and the pair (A,H) is observable.
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The process noise vector wk can be thought of as being generated by the noise vector W nk and
the additive disturbance term D dk as follows:

wk = W nk + D dk, (2)

where Wnk represent filtered white noise and Ddk expresses the effect of deterministic disturbances
such as parametric uncertainty, unmodeled dynamics, nonlinear or time-varying terms in systems
dynamics and non-zero-mean exogenous disturbances [8]. The process noise wk has mean E(wk) =
µk and covariance Q = W W T , where E (·) denotes the mathematical expectation operator. On the
other hand, the measurement noise vector vk has zero mean and covariance R. It is furthermore
assumed that the two noise sequences are uncorrelated.

This work deals with the ability to asymptotically reject estimation errors caused by the non-
vanishing disturbance vector wk. For that purpose, we will introduce an important assumption
regarding the disturbance vector:

A.2 As the plant reaches steady state, the disturbance vector wk goes to the (non-zero) value µ∞.

This assumption is well suited for the case of plant-model mismatch since, when xk and uk go to
steady state, the resulting mismatch reaches a constant value. Furthermore, the chosen framework
allows dealing with time-varying disturbances, as long as the disturbances vary slowly compared to
the convergence speed of the observer. This point will be discussed later and is well documented
in the application of integral observers to an experimental fermentation process [5].

2.2 Observer structures

This subsection presents various observer and filter structures and investigates their ability to
produce unbiased estimates.

2.2.1 P observer

The first structure studied is the Luenberger proportional observer [20]:

x̂k+1 = Ax̂k + Buk + KLO(yk − ŷk), x̂0 = E (xo) , (3)

ŷk = Hx̂k,

where the symbol (̂·) denotes the estimate of a variable and KLO ∈ ℜn×p the gain matrix of the
Luenberger observer acting on the y measurements. Combining (1) and (3), the dynamics of the
estimation error ex,k = xk − x̂k can be written as:

E(ex,k+1) = (A − KLOH)E(ex,k) + µk, ex,0 = xo − E (xo) . (4)

With Assumption A.2, these dynamics reach steady state asymptotically if all eigenvalues of (A−
KLOH) are within the unit circle. This is guaranteed if the pair (A,H) is observable [7].
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2.2.2 Kalman filter

The problem of state estimation can also be addressed using a Kalman filter with time-varying
gains. The main advantage of using a Kalman filter is its optimality, that is, it minimizes the
covariance of the estimation errors. The Kalman filter gains are obtained as the solution of a
Riccati equation that involves the covariances of the process and measurement noises. The Kalman
filter equations read:

x̂k+1 = Ax̂k + Buk + KKF (k)(yk − ŷk), x̂0 = E (xo) , (5)

ŷk = Hx̂k,

KKF (k) = AP (k)HT (R + HP (k)HT )−1,

P (k + 1) = AP (k)AT + Q − AP (k)HT (R + HP (k)HT )−1HP (k)AT ,

where KKF (k) ∈ ℜn×p denotes the Kalman gain matrix at the time instant k and P (k) ∈ ℜn×n

the estimation error covariance matrix.

Often, the steady-state solution KKF is used, which corresponds to a fixed-gain P observer, the
main difference being the way the gains are computed. In a P observer, the gains are chosen via
pole placement, with the pole locations being the key decision, while the Kalman filter computes
gains that minimize the covariance of the estimation errors based on the assumed knowledge of the
process and measurement noise covariances.

2.2.3 PI observer

As in the context of feedback control, integral action can be used to remove the bias in estimates.
The structure proposed here is a linear proportional-integral observer based on the y measurements:

x̂k+1 = Ax̂k + Buk + Kx(yk − ŷk) + Kiαk, x̂0 = E (xo) , (6)

αk+1 = αk + Kα(yk − ŷk), α0 = 0,

ŷk = Hx̂k,

where the integral states α ∈ ℜp are built from the output errors using the gain matrix Kα ∈ ℜp×p,
while Kx ∈ ℜn×p is the proportional gain matrix acting on the y measurements, and Ki ∈ ℜn×p

the gain matrix acting on the integral states. The dynamics of the augmented (n + p)-dimensional
estimation error ēk is:

E(ēk+1) =
(

Ā − K̄H̄
)

E(ēk) + µ̄k, (7)

ēk =

[

ex,k

αk

]

, Ā =

[

A Ki

0p×n Ip

]

,

K̄ =

[

Kx

Kα

]

, H̄ =
[

H 0p×p

]

, µ̄k =

[

µk

0p

]

.

Arbitrary pole placement for the errors dynamics requires here the observability of the pair (Ā, H̄),
which will be discussed in detail in the next section. Also therein, the convergence of the error
vector to zero will be analyzed.
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2.2.4 Integral Kalman filter

In the same manner a P observer is extended to a PI observer, a Kalman filter can be extended to
an integral Kalman filter. The IKF structure is [16]:

x̂k+1 = Ax̂k + Buk + Kx
KF (k)(yk − ŷk) + Kiαk, x̂0 = E (xo) , (8)

αk+1 = αk + Kα
KF (k)(yk − ŷk), α0 = 0,

ŷk = Hx̂k,

Kx
KF (k) = (AP (k)HT + KiP T

xαHT )(R + HP (k)HT )−1

Kα
KF (k) = P T

xα(k)HT (R + HP (k)HT )−1

P̄ (k + 1) = ĀP (k)ĀT + Q̄ − ĀP̄ (k)H̄T (R + H̄P (k)H̄T )−1H̄P̄ (k)ĀT ,

with

P̄ =

[

P Pxα

P T
xα Pα

]

, Q̄ =

[

Q 0
0 0

]

,

where the integral states α ∈ ℜp are built from the output errors using the time-varying gain
matrix Kα

KF (k) ∈ ℜp×p, while Kx
KF (k) ∈ ℜn×p is the Kalman gain matrix at the time instant k,

and Ki ∈ ℜn×p the gain matrix acting on the integral states. Pα denotes the variance-covariance
of the integral states and Pxα the covariance between the states x and the integral states α.

Convergence of the Riccati equation requires the observability of the pair (Ā, H̄). Also, at steady
state, IKF corresponds to a PI observer and thus shares the same convergence properties. Again,
the main difference between the PI observer and IKF lies in the way the filter gains are computed.

3 Analysis of PI observer

3.1 Asymptotic error analysis for P observer

For the P observer, the steady-state error (i.e. for k → ∞) is given by:

E(ex,∞) = (I − A + KLOH)−1µ∞. (9)

Note that, if the system is observable, it is not possible to have E(ex,∞) = 0 since (A − KLOH)
has all its eigenvalues in the unit circle [7]. Hence, the bias cannot be eliminated in all states with
a finite-gain P observer. However, the bias can be reduced with high-gain observers [6, 14].

On the other hand, if the filtering problem concerns only the estimation of the output variables,
then it is possible to choose the observer gain KLO such that

E(ey,∞) = E(Hex,∞) = H(I − A + KLOH)−1µ∞ = 0 (10)

for a particular µ∞. Hence, with a P observer, the bias in the measured states can be eliminated
asymptotically if the mean of the process noise is known and the observer gain KLO designed
appropriately. However, if µ∞ is unknown, or if it changes, unbiased estimation of the outputs is
not possible.
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3.2 Asymptotic error analysis for PI observer

This section first shows that the PI observer generates unbiased estimates of the output variables.
This result is presented in the next theorem.

Theorem 1. Consider the system (1) with a process noise that is asymptotically non-zero mean,
i.e. µ∞ 6= 0, and the PI observer (6). Let the gains Kx, Kα and Ki of the PI observer be chosen
so that (Ā − K̄H̄) is Schur stable. Then, E(ey,∞) = 0.

Proof. The hypothesis that (Ā− K̄H̄) is Schur stable implies that (I − Ā + K̄H̄) is full rank. The
steady-state values can be calculated from the following equation:

[

I − A + KxH −Ki

KαH 0

] [

E(ex,∞)
E(α∞)

]

=

[

µ∞

0p

]

. (11)

The fact that (I − Ā + K̄H̄) is full rank implies that the last rows of (11) are independent, i.e.
KαH is full rank. This, in turn, guarantees that Kα is full rank. Hence, KαH E(ex,∞) = 0 leads
to the error condition E(Hex,∞) = E(ey,∞) = 0.

The above theorem states that the integral observer is able to push the estimation errors from the
measured outputs to the integral states, thereby leading to unbiased estimation of the measured
outputs, i.e. E(ey,∞) = 0. Another important feature of the PI observer is that it can generate
unbiased estimates of all states provided the bias µ∞ is in the span of Ki. This result is presented
in the following theorem.

Theorem 2. Consider the system (1) with a process noise that is asymptotically non-zero mean,
i.e. µ∞ 6= 0, and the PI observer (6). Let the gains Kx, Kα and Ki of the PI observer be chosen
so that (Ā− K̄H̄) is Schur stable. If µ∞ is in the span of Ki, i.e. µ∞ = Kici for some ci ∈ ℜp, or
equivalently if (In − Ki(Ki)+)µ∞ = 0, then E(ex,∞) = 0.

Proof. Since µ∞ = Kici, (11) can be written as

[

I − A + KxH −Ki

KαH 0

] [

E(ex,∞)
E(α∞) + ci

]

=

[

0n

0p

]

. (12)

The hypothesis that (Ā− K̄H̄) is Schur stable implies that (I − Ā+ K̄H̄) is full rank. This in turn
implies E(ex,∞) = 0 and E(α∞) = −ci.

At this point, it is interesting to compare the performance of the P and PI observers for µ∞ 6= 0.
With a P observer, it is impossible to remove the errors in all states; if µ∞ is constant and known
and the observer designed appropriately, then the output errors can be pushed to zero. In contrast,
a PI observer obeying the conditions given in Theorem 2 guarantees unbiased output estimates. In
addition, under certain conditions, the error in all states can be pushed to zero.

It is also interesting to note that the dimension of span of Ki is rank(Ki) = p, i.e. the number of
outputs. Hence, once Ki is chosen, µ∞ can live in a p-dimensional space without having any effect
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on the estimation of any of the states. In other words, as the number of outputs is increased, there
is more flexibility to accommodate the disturbances and still provide unbiased state estimation.
The extreme case is p = n, for which all states can be estimated bias free without any restriction
on µ∞.

The above theorems indicate that unbiased output estimates in the general case, and unbiased
state estimates as a special case, can be obtained if the observer is stable, i.e. if the pair (Ā, H̄) is
observable. The next subsection will show that stability is guaranteed by the observability of the
pair (A,H).

3.3 Stability of PI observer

An important question regards whether or not the poles of the observer can be placed arbitrarily
and thus the stability of the observer guaranteed a priori. The next theorem shows that there exists
a choice of Ki such that the pair (Ā, H̄) is indeed observable, thereby leading to arbitrary pole
placement.

Theorem 3. Let the pair (A,H) be observable. Then, there exists a Ki such that the pair (Ā, H̄)
is observable.

Proof. The observability matrix of the pair (Ā, H̄) is:

O =



















H̄

H̄Ā

H̄Ā2

H̄Ā3

...
H̄Ān+p−1



















=



















H 0p×p

HA HKi

HA2 H (A + I) Ki

HA3 H
(

A2 + A + I
)

Ki

...
...

HA(n+p−1) H
(

A(n+p−2) + · · · + A + I
)

Ki



















.

The rank of the matrix O ∈ ℜ(n+p)p×(n+p) must be (n + p) for the pair (Ā, H̄) to be observable.
The proof continues by choosing (n + p) rows of this matrix such that the resulting matrix, termed
Ō ∈ ℜ(n+p)×(n+p), is full rank. The procedure is as follows:

1. Denote by hT
i the ith row of the matrix H.
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2. Build the matrices M1, M2, M12, M3 and M4 as follows:

M1 =

























































hT
1

hT
1 A

hT
1 A2

...
hT

1 Aq1−1

hT
2

hT
2 A
...

hT
2 Aq2−1

...
hT

p

hT
p A
...

hT
p Aqp−1

























































, M2 =











hT
1 Aq1

hT
2 Aq2

...
hT

p Aqp











, M12 =

[

M1

M2

]

,

M3 =



































































01×p

hT
1

hT
1 (A + I)

...

hT
1

(

A(q1−2) + · · · + A + I
)

01×p

hT
2

hT
2 (A + I)

...

hT
2

(

A(q2−2) + · · · + A + I
)

...
01×p

hT
p

hT
p (A + I)

...

hT
p

(

A(qp−2) + · · · + A + I
)



































































, M4 =











hT
1

(

A(q1−1) + · · · + A + I
)

hT
2

(

A(q2−1) + · · · + A + I
)

...

hT
p

(

A(qp−1) + · · · + A + I
)











,

by choosing the vector of indices q = {q1, q2, . . . , qp}, 0 ≤ qi ≤ n− 1, such that
∑

qi = n− p,
M1 is of dimension (n − p) × n with rank(M1) = n − p, M2 is of dimension p × n with
rank(M2) = p, and M12 is of dimension n × n with rank(M12) = n. Such a choice of q is
guaranteed by the fact that the pair (A,H) is observable. Note that, by construction, the
rows of the matrices M3 and M4 are linear combinations of the rows of M1.

3. Select the (n + p) rows of the matrix of Ō based on the matrices M1 - M4 as follows,

Ō =





M1 M3K
i

M2 M4K
i

M2A (M2 + M4)K
i



 .

9



Let Ki ∈ ℜn×p be a rank p-matrix chosen in the null space of M1 ∈ ℜ(n−p)×n of rank (n− p). Note
that Ki is also in the null space of M3 and M4 since the latter are linear combinations of the rows
of M1. With this choice of Ki, the matrix Ō becomes:

Ō =





M1 0
M2 0

M2A M2K
i



 =

[

M12 0
M2A M2K

i

]

.

To show that Ō is full rank, it is shown that Ōv = 0 implies v = 0:

Ōv =

[

M12 0
M2A M2K

i

] [

v1

v2

]

= 0,

M12 v1 = 0 and M2Av1 + M2K
i v2 = 0.

Since rank(M12) = n, v1 = 0. Since rank(M2) = rank(Ki) = p, v2 = 0. Hence, v = 0, and the
matrices Ō and O are of rank (n + p).

Since the pair (Ā, H̄) is observable, arbitrary pole placement is possible, which leads to the stability
of (Ā− K̄H̄). Consequently, it is always possible to obtain unbiased output estimates as stated by
Theorem 1.

3.4 Integral observability

The observability of the pair (Ā, H̄) is termed integral observability. In the literature [24, 28],
integral observability is studied with more integrators than necessary, that is, n integrators instead
of p. With Kα ∈ ℜn×p and Ki = In ∈ ℜn×n, it follows that the pair (Ā, H̄) is observable if
and only if rank(H) = n, i.e. p = n. Note that, if rank(H) = n implies the observability of
the pair (A,H) [7], the converse is not true. Obviously, this rank condition is more restrictive
than the observability requirement on the pair (A,H) required by the PI observer. The fact that
the condition rank(H) = n is not required here can be explained by the non-redundant structure
of the PI observer – only as many integrators as the number of measurements are used, whereas
the integral observer proposed in the literature uses n integrators even when fewer variables are
measured.

4 Calibration-based Tuning

The gain matrix Ki acting on the integral states is chosen according to the procedure described
in Section 3.3 to guarantee observability of the pair (Ā, H̄). The observer gains Kx and Kα

are typically chosen via pole placement. The Kalman gains Kx
KF (k) and Kα

KF (k) are computed
recursively according to (8) based on the assumed knowledge ofQ and R, which are typically chosen
by trial and error.

In contrast, it is proposed here to tune the observers and filters via calibration using measured data.
The tuning step is carried out off-line based on measurements of the outputs y. This approach is
analogous to calibration, which has been used extensively in the field of chemometrics [21]. The

10



calibration approach consists of two steps: the calibration step fixes the model, while the prediction
step uses it for prediction. Similarly, the estimation procedure here also comprises two steps: (i)
the tuning step, where an optimization problem is solved to compute the observer gains and fix the
estimator, and (ii) the estimation step, where the estimator obtained in Step (i) is used to compute
the state estimates for a different set of data.

The calibration procedure is illustrated next for the PI observer. Since Ki is determined separately
to ensure the observability of the pair (Ā, H̄), the remaining degrees of freedom are the elements
of Kx and Kα. With the objective to tune the observer for the estimation of the output variables,
the calibration problem can be formulated as the minimization of the mean-square estimation error
of these variables:

min
Kx,Kα

J =

N−1
∑

k=0

E
(

(yk − ŷk)
T S (yk − ŷk)

)

(13)

s.t. x̂k+1 = Ax̂k + Buk + Kx(yk − ŷk) + Kiαk, x̂0 = E (xo) ,

αk+1 = αk + Kα(yk − ŷk), α0 = 0,

ŷk = Hx̂k,

where the matrix S is introduced to appropriately weigh the various output variables. This is an
off-line procedure that requires all N measurements to be available simultaneously.

Note that the objective function in (13) is the mean-square error (a scalar) and not the covari-
ance matrix that is typically used in estimation problems [16]. The reason for choosing a scalar
objective function rather than a matrix is that, except for the special case of linear systems with
white noise, there exists no unique estimator gain that minimizes every element of the matrix.
Hence, a weighted sum of the various elements of the matrix is necessary to determine the solu-
tion. The mean-square estimation error E

(

(yk − ŷk)
T S (yk − ŷk)

)

, which is the trace of the matrix
E

(

(yk − ŷk)S (yk − ŷk)
T
)

, represents one such possible weighting. The mean-square error contains
two terms, the square of the bias and the variance, both weighted equally [12]. Since integral
observers eliminate bias, the real issue is variance minimization.

The optimization problem (13) guarantees a stable observer if data with infinite length and infinitely
many realizations are used. Since this is not the case in practice, an additional stability constraint
may be necessary. Typically, the stability constraint |λi| < 1, ∀i = 1, . . . , n + p, is enforced, where
λi represents the ith pole of the closed-loop system.

5 Illustrative Example

This section illustrates the performance of the observers and filters discussed above. We will
consider three simulation scenarios involving constant, piecewise-constant and time-varying distur-
bances, respectively.
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5.1 Problem formulation

5.1.1 System equations

Consider the 4th-order LTI discrete-time model given by (1) and (2) with:

A =









0.91 0 0.11 0
0 0.66 0.13 −0.06
0 −0.06 0.75 0.02

0.10 0.05 0 0.80









, B =









−0.05
0.05
0.1
−0.1









, H =

[

0 1 0 0
0 0 1 0

]

,

wk = nk + dk, nk → N(0, Q), vk → N(0, R),

Q =









2 0 0 0
0 3 0 0
0 0 5 0
0 0 0 3









, R =

[

3 0
0 5

]

,

for k = 0, 1, . . . , 200. This system has two output variables, the states x2 and x3, which need to be
estimated as accurately as possible. It can be verified that the pair (A,H) is observable.

5.1.2 Simulation scenarios

The simulation scenarios presented in Table 1 are considered, with the following numerical values:

dconstant,k =
[

3 6 4.5 0.6
]T

for k ∈ [0, 200],

dpiecewise,k =

{

= dconstant,k for k ∈ [0, 99],

=
[

3.9 −6 −6 −2.4
]T

for k ∈ [100, 200],

dvarying,k = ∆Axk

∆A =









−0.015 0.045 −0.015 0.015
0.03 0.21 −0.045 0.03

−0.015 −0.03 0.15 −0.075
0.0075 0 −0.075 0.15









xtune,o =
[

20 −30 50 −30
]T

, xestimate,o = −xtune,o,

utune,k =
0.5(0.1k)2.2 + 20 sin(0.05k) − 20

e0.005k
− 100,

uestimate,k = −0.005k2 − 16 sin(0.1k) + 200.

The initial conditions and input sequences are different for the tuning and estimation steps.
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Table 1: Simulation runs with indication of the nature of the process noise (disturbances), the
initial conditions and the input sequence.

Simulation 1 2 3

Disturbances constant piecewise-constant time-varying

wk nk + dconstant,k nk + dpiecewise,k nk + dvarying,k

x̂0 xtune,o xestimate,o xestimate,o

uk utune,k uestimate,k uestimate,k

5.1.3 Performance measures

To compare the performance of the various estimation methods, Monte-Carlo simulations are carried
out. 10 realizations1 that use different noise sequences nk and vk are considered. The following
quantities are computed from the estimation error ex,k = xk − x̂k at the kth sampling instant:

• mek
∼= E (ex,k) - the n-dimensional vector of error means. For each state and at the time

instant k, it represents the mean of the estimation error over various realizations.

• Vek
∼= diag

(

E
(

(ex,k − mek
)(ex,k − mek

)T
))

- the n-dimensional vector of error variances.
These variations stems from the process and measurement noises considered in the simulation.

• Πek
∼= diag

(

E
(

ex,ke
T
x,k

))

- the n-dimensional vector of mean-square errors (MSE). These

errors represent the contribution of both the error means and the error variances.

• ΣΠek
=

∑n
i=1 Πei,k

- the scalar total MSE. It represents the sum of the MSE over the n states.

Additionally, in order to have a global indication of the estimator performance over the whole time
interval considered, the above quantities can be summed up over the index k to give:

me =
∑

k

|mek
|, Ve =

∑

k

Vek
, Πe =

∑

k

Πek
, ΣΠe =

∑

k

ΣΠek
.

5.2 Comparison of various estimation schemes

The performance of PI observers tuned using the calibration approach will be compared to that of
IKF tuned using Kalman recursion (5) based on the knowledge of the true process and measurement
noise covariances. Note that this very favorable situation for IKF can only be implemented in a
simulation context, for which Q and R are perfectly known.

1Note that such a small number of realizations does not provide accurate statistical properties. However, a
sufficient approximation of these properties can be obtained with minimal computational effort.
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Open-loop model prediction and Kalman filtering without integral action will also be shown, the
goal being to illustrate that neither open-loop model prediction nor a perfectly tuned proportional
observer – the KF – is appropriate in the presence of non-vanishing disturbances.

5.2.1 Constant disturbances – Simulation 1

We consider succesively open-loop model prediction, Kalman filtering, PI observer and IKF.

1. Open-loop model prediction is obtained by integration of the system given in Section 5.2.1
for the conditions given in Table 1.

2. The KF has several tuning parameters:
• P (0), the initial value of the covariance matrix, is chosen to be a diagonal matrix, with

large values on the diagonal, P (0) = 100 In;

• Q and R are assumed to be known in this simulation study.

The closed-loop poles at steady state, i.e. the eigenvalues of (A − KKF H), are:

λKF =
[

0.7163 ± 0.0951i 0.7635 0.9238
]T

.

3. The PI observer is tuned by first choosing the gain Ki as:

Ki = 0.1

[

0 1 0 0
0 0 1 0

]T

, (14)

which leads to an observable pair (Ā, H̄).

The gains Kx and Kα are tuned using calibration by numerically solving (13). The resulting
closed-loop poles are:

λPI =
[

0.3379 0.4745 0.8115 0.8980 ± 0.0037i 0.9034
]T

.

4. The IKF is tuned as follows:
• P̄ (0), the initial value of the covariance matrix, is chosen to be a diagonal matrix, with

large values on the diagonal, P̄ (0) = 100 In+p;

• Q̄ is chosen as in (8), where Q is considered to be known;

• R is also known.

The resulting closed-loop poles at steady state are:

λIKF =
[

0.6959 ± 0.0944i 0.7646 0.9224 0.9946 0.9950
]T

.

Figure 1 presents the performance of open-loop model prediction and Kalman filtering. Without
integral action, it is not surprising that the effect of the constant disturbances cannot be compen-
sated.

Figure 2 and Table 2 compare the performance of the PI observer and IKF. The two integral
estimators perform similarly well for the output variables x2 and x3, and much better than KF.
Since the PI observer is tuned for the very same data and IKF has perfect covariance information,
it is not surprising that they both perform well for x2 and x3. The next subsection will consider
the more realistic scenario where the PI observer is not tuned with the data used for estimation.
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Figure 1: Open-loop model prediction and Kalman filtering for one realization in Simulation 1
(constant disturbances). Plant – (black) dash-dotted line; open-loop model prediction – (red) solid
line; KF – (blue) dashed line.

Table 2: Performance of the PI observer and IKF in Simulation 1 (constant disturbances; PI
observer tuned on the same data) for k ∈ [60, 200] and 10 realizations.

PI observer IKF

me









4.96 × 103

7.16 × 101

9.18 × 101

2.90 · 103

















4.92 × 103

8.09 × 101

1.41 × 102

2.86 × 103









Ve









8.91 × 103

6.28 × 102

9.62 × 102

3.07 × 103

















2.55 × 103

8.99 × 102

1.40 × 103

1.82 × 103









Πe









1.83 × 105

6 .80 × 10 2

1 .06 × 10 3

6.26 × 104

















1.73 × 105

9 .70 × 10 2

1 .59 × 10 3

5.97 × 104









ΣΠe 2.47 × 105 2.35 × 105
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Figure 2: Performance of the PI observer and IKF for one realization in Simulation 1 (constant
disturbances; PI observer tuned on the same data). Plant – (black) dash-dotted line; PI observer
– (red) solid line; IKF – (blue) dashed line.
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Figure 3: Open-loop model prediction and Kalman filtering for one realization in Simulation 2
(piecewise-constant disturbances). Plant – (black) dash-dotted line; open-loop model prediction –
(red) solid line; KF – (blue) dashed line.

5.2.2 Piecewise-constant disturbances – Simulation 2

Figure 3 presents the performance of open-loop model prediction and Kalman filtering. As expected,
the performance is poor without integral action.

Figure 4 and Table 3 compare the performance of the PI observer and IKF in the presence of a
previously unknown piecewise-constant disturbances. It is seen that the PI observer outperforms
IKF regarding the estimation of the output variables x2 and x3. This is due to the fact that IKF
reacts slowly to the disturbance change that occurs at k = 100. Indeed, once the IKF gains have
converged to their steady-state values, the filter looses its capacity to ’adapt’ to the change in
disturbances.

In order to improve the performance of IKF, the covariance matrix can be re-initialized at k = 100,
i.e. P̄ (100) = P̄ (0) and α100 = α0. As seen in Figure 5 and Table 3, the re-initialized IKF performs
well, even slightly better than the PI observer. However, this comparison is unfair since IKF has
access to additional information compared to the PI observer, namely knowledge of the instant at
which the disturbances change. In fact, if the same information is available to both observers, the
PI observer outperforms IKF (not shown here). This confirms the conjecture that calibrating the
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Figure 4: Performance of the PI observer and IKF for one realization in Simulation 2 (piecewise-
constant disturbances; PI observer tuned on a different set of data). Plant – (black) dash-dotted
line; PI observer – (red) solid line; IKF – (blue) dashed line.

gains is at least as effective as covariance propagation based on perfect knowledge of Qand R.

5.2.3 Time-varying disturbances caused by plant-model mismatch – Simulation 3

Figure 6 presents the performance of open-loop model prediction and Kalman filtering. Once again,
the performance is poor for both of them.

Figure 7 and Table 4 compare the performance of the PI observer and IKF in the presence of plant-
model mismatch. As in Simulation 2, the PI observer outperforms IKF regarding the estimation of
the output variables x2 and x3. This is due to the fact that IKF reacts slowly to the disturbance
change. Looking at the closed-loop poles of the PI observer and IKF, it is seen that the absolute
values are smaller for the PI observer. This implies that the dynamics of the PI observer are faster
than those of IKF. For this particular simulation with plant-model mismatch, since the dynamics
of the PI observer are faster than those of the time-varying disturbance, the PI observer can ’catch-
up’. In contrast, the dynamics of IKF, after convergence of the covariance propagation, are rather
slow. Hence, repeated IKF re-initialization would be necessary to keep it alive, which however is
not very practical!
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Figure 5: Performance of the PI observer and re-initialized IKF for one realization in Simulation
2 (piecewise-constant disturbances; PI observer tuned on a different set of data). Plant – (black)
dash-dotted line; PI observer – (red) solid line; IKF – (blue) dashed line.

Table 3: Performance of the PI observer, IKF and re-initialized IKF in Simulation 2 (piecewise-
constant disturbances; PI observer tuned on a different set of data) for k ∈ [60, 200] and 10 real-
izations.

PI observer IKF IKFre−init.

me









5.04 × 103

2.08 × 102

4.06 × 102

2.39 · 103

















3.40 × 103

2.71 × 103

2.29 × 103

1.58 × 103

















5.42 × 103

1.74 × 102

1.94 × 102

1.63 · 103









Ve









9.03 × 103

6.32 × 102

1.14 × 103

3.03 · 103

















1.58 × 103

8.58 × 102

1.74 × 103

1.63 · 103

















1.41 × 103

8.89 × 102

1.75 × 103

1.62 × 103









Πe









2.15 × 105

2 .02 × 10 3

4 .71 × 10 3

5.88 × 104

















8.96 × 104

7 .66 × 10 4

5 .42 × 10 4

2.33 × 104

















2.11 × 105

1 .52 × 10 3

2 .24 × 10 3

2.37 × 104









ΣΠe 2.80 × 105 2.44 × 105 2.39 × 105
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Figure 6: Open-loop model prediction and Kalman filtering for one realization in Simulation 3
(time-varying disturbances). Plant – (black) dash-dotted line; open-loop model prediction – (red)
solid line; KF – (blue) dashed line.
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Figure 7: Performance of the PI observer and IKF for one realization in Simulation 3 (time-varying
disturbances; PI observer tuned on a different set of data). Plant – (black) dash-dotted line; PI
observer – (red) solid line; IKF – (blue) dashed line.

Once again, the PI observer outperforms IKF, given the same amount of information. Note that
there is no theoretical guarantee that the PI observer would cope with any time-varying disturbances
so well. Only asymptotic convergence for constant disturbances can be guaranteed. But, for
some particular cases, the dynamics of the PI can be tuned so as to cope well with time-varying
disturbances as well.

5.2.4 Unbiased estimation based on the knowledge of µ∞ – Simulation 1

According to Theorem 2, the span of Ki relative to the disturbance direction µ∞ determines
whether an integral observer can eliminate the bias in all states. If Ki is chosen solely to produce
an observable pair (Ā, H̄), unbiased estimation can only be guaranteed for the outputs. If, in
addition to fulfilling this observability condition, Ki is forced to span the disturbance space, then
unbiased estimation of all states can be achieved.

In Section 5.2.1, Ki was chosen to guarantee observability and thus lead to unbiased output esti-
mates. In this section, we assume that µ∞ is known, and the the first row of Ki is set equal to µ∞,
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Table 4: Performance of the PI observer and IKF in Simulation 3 (time-varying disturbances; PI
observer tuned on a different set of data) for k ∈ [60, 200] and 10 realizations.

PI IKF

me









4.19 × 103

4.64 × 102

7.00 × 102

1.59 × 104

















2.54 × 103

4.00 × 103

2.92 × 103

1.58 × 104









Ve









2.19 × 104

7.91 × 102

1.44 × 103

7.34 × 103

















2.56 × 103

2.87 × 103

3.45 × 103

1.00 × 104









Πe









2.07 × 105

3 .00 × 10 3

6 .40 × 10 3

1.98 × 106

















5.86 × 104

2 .49 × 10 5

7 .86 × 10 4

1.94 × 106









ΣΠe 2.20 × 106 2.32 × 106

while the second row is chosen to guarantee an observable pair (Ā, H̄), for example:

Ki =

[

3 6 4.5 0.6
0 0 0.1 0

]T

. (15)

Note that the assumption that µ∞ is known may be unrealistic in practice. However, the objective
of this section is simply to illustrate the theoretical result of Theorem 2. The gains Kx and Kα

are tuned using calibration by numerically solving (13). The resulting closed-loop poles are:

λPI =
[

0.3411 ± 0.0110i 0.7766 0.9208 0.9578 0.9899
]T

.

The IKF is tuned as in Section 5.2.1.

Figure 8 and Table 5 compare the performance of the PI observer and IKF. The two estimators
perform similarly well for x2 and x3, but IKF is better for x1 and x4. The reason is that the PI
observer is tuned to perform well for the output variables x2 and x3, while IKF performs equally
well for all state variables.

A comparison of Figures 2 and 8 shows that using µ∞ to design Ki does not affect much the
estimation of the measured variables but has a large effect on the unmeasured ones for both the
PI observer and IKF. The design of an appropriate Ki, which attempts to both satisfy µ∞ = Ki ci

and guarantee the observability of (Ā, H̄), represents a topic for further research.

6 Conclusions

This paper has investigated the design of observers with the objective of estimating accurately a
subset of the states. It is shown that it is possible to eliminate the steady-state offset in the variables
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Figure 8: Performance of the PI observer and IKF for one realization in Simulation 1 (constant
disturbances; PI observer tuned to eliminate bias in all states). Plant – (black) dash-dotted line;
PI observer – (red) solid line; IKF – (blue) dashed line.

Table 5: Performance of the PI observers and IKF in Simulation 1 (constant disturbances; PI
observer tuned to eliminate bias in all states) for k ∈ [60, 200] and 10 realizations.

PI observer IKF

me









1.64 × 102

6.89 × 101

9.21 × 101

1.19 · 102

















1.05 × 102

7.92 × 101

1.31 × 102

7.77 × 101









Ve









2.98 × 103

5.65 × 102

9.33 × 102

2.10 × 103

















2.48 × 103

8.99 × 102

1.40 × 103

1.91 × 103









Πe









3.28 × 103

6 .18 × 10 2

1 .03 × 10 3

2.27 × 103

















2.61 × 103

9 .69 × 10 2

1 .57 × 10 3

1.98 × 103









ΣΠe 7.21 × 103 7.14 × 103
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of interest by appropriately tuning a P observer based on the knowledge of the asymptotic value of
the process noise. However, on-line retuning would be required when the disturbances change.

To circumvent this problem, integral observers do include auxiliary states that can absorb the effect
of unknown disturbances and remove it from the output estimates. This work has shown that the
observer poles can be placed arbitrarily even for the case where not all the states are measured.
This leads to a stable observer and asymptotically unbiased output estimates. In fact, the simplest
observer structure that guarantees both arbitrary pole placement and unbiased output estimation
has been identified. Note also that unbiased estimation of all the states is possible if the gain matrix
Ki spans the disturbance space.

The choice of Ki in the null space of the matrix M1 guarantees the observability of (Ā, H̄) and thus
observer stability and unbiased output estimation. However, Ki in the null space of M1 is only a
sufficient condition. This means that one can very well have a Ki that is not in the null space of
M1 but still guarantees observability. Hence, there exists a certain flexibility in the choice of Ki,
which would guarantee unbiased estimation of all the state variables upon knowledge of µ∞.

It has also been shown that observer tuning can be carried out using experimental data and nu-
merical optimization using a calibration-like approach. The PI observer tuned this way compared
favorably with IKF, which in this work used perfect knowledge of the process and measurement
noise covariances.

The analysis part of the paper is limited to LTI systems in the presence of asymptotically constant
disturbances. Both piecewise-constant and time-varying disturbances have been considered. As a
general rule, integral observers can cope with slowly-varying disturbances, provided the observer
dynamics are fast compared to the disturbance changes. However, being able to handle faster time-
varying disturbances would most likely require the use of high-gain observers as proposed in [25],
which however is rather impractical in the presence of measurement noise and process uncertainties.
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